找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

AZP81

型号:

AZP81

描述:

PECL / ECL基于过滤器的乘法器和限幅放大器,可选择启用[ PECL/ECL Filter-Based Multiplier & Limiting Amp with Selectable Enable ]

品牌:

AZM[ ARIZONA MICROTEK, INC ]

页数:

16 页

PDF大小:

201 K

ARIZONA MICROTEK, INC.  
AZP81  
PECL/ECL Filter-Based Multiplier & Limiting Amp with Selectable Enable  
FEATURES  
PACKAGE AVAILABILITY  
PACKAGE  
PART NO. MARKING NOTES  
High Bandwidth for 1+GHz  
3.0V to 5.5V Power Supply  
Selectable Enable Polarity  
Designed for Filters to Select Odd or  
Even Harmonics  
MLP 16 (3x3) Green /  
RoHS Compliant /  
Lead (Pb) Free  
AZP81LG  
AZMG  
1,2  
P81  
<Date Code>  
1
Add R1 at end of part number for 7 inch (1K parts), R2 for 13 inch  
(2.5K parts) Tape & Reel.  
S-Parameter (.s1p and .s2p) Files  
Available on Arizona Microtek Website  
2
Date code format: “Y” for year followed by “WW” for week.  
DESCRIPTION  
The AZP81 is a specialized multiplier chip designed to be used with an external filter. It supplies three different  
gain paths. A low gain path is used with a resonator, usually a crystal (D/D¯ to Q¯). An intermediate gain path with  
fast output edges supplies a filter (D/D¯ to FLTRDR/¯F¯L¯T¯R¯¯D¯R¯). A high gain limiting amp (AMPIN to QHG/Q¯HG  
with a selectable enable provides industry standard 100k PECL/ECL outputs.  
)
When QHG/Q¯HG are disabled, the AZP81’s oscillator loop continues to operate. See truth table below for enable  
function. It also provides a VBB and 470Ω internal bias resistors from D/D¯ to VBB and AMPIN to VBB. The VBB pin  
can support 1.5mA sink/source current. Bypassing VBB and D¯ to ground with 0.01 to 0.1 μF capacitors is  
recommended.  
Output Q¯ has an on-chip 4mA pull-down current source while output FLTRDR has an on-chip 8mA pull-down  
current source. External resistors to VEE may also be used to increase pull-down current to a maximum of 25mA each.  
ENABLE TRUTH TABLE  
D
EN-SEL EN (PECL/CMOS)  
QHG  
Low  
Data  
Data  
Low  
Q¯HG  
High  
Data  
Data  
High  
D
Q
NC  
Low  
NC  
VEE*  
VEE*  
High or NC  
Low or NC  
High  
FLTRDR  
FLTRDR  
470Ω  
*Connections to VEE must be less than 1Ω.  
VBB  
4mA  
8mA  
470Ω  
PIN DESCRIPTION  
QHG  
AMPIN  
PIN  
FUNCTION  
LIMITING AMP  
D/D¯  
Q¯  
AMPIN  
Inputs from Resonator  
Output to Resonator  
Inputs from Filter  
Outputs to Filter  
QHG  
EN  
VEE  
FLTRDR/¯F¯L¯T¯R¯¯D¯R¯  
QHG/Q¯HG  
VBB  
EN  
Outputs w/High Gain  
Ref. Voltage Output  
Enable Input  
EN-SEL  
EN-SEL  
Selects Enable Logic  
1630 S. STAPLEY DR., SUITE 127 MESA, ARIZONA 85204 USA (480) 962-5881 FAX (623) 505-2414  
www.azmicrotek.com  
AZP81  
TIMING DIAGRAMS  
D to Q¯/FLTRDR  
AMPIN  
EN  
(EN-SEL CONNECTED TO VEE  
)
(EN-SEL OPEN)  
EN  
QHG  
AMPIN to QHG  
AZP81L PINOUT  
Leave Pad  
Open or  
Connect to  
VEE  
TOP VIEW  
June 2009 Rev - 4  
www.azmicrotek.com  
2
AZP81  
Absolute Maximum Ratings. Beyond which device life may be impaired.  
Characteristic  
Symbol  
Rating  
Unit  
PECL Power Supply  
PECL Input Voltage  
PECL EN Input Voltage (VEE = 0V)  
ECL Power Supply  
ECL Input Voltage  
ECL EN Input Voltage (VEE = 0V)  
Output Current --- Continuous  
Q¯, FLTRDR/F¯L¯T¯¯R¯D¯R¯ --- Surge  
(VEE = 0V)  
(VEE = 0V)  
VEE  
VI  
VI  
VEE  
VI  
VI  
0 to 6.0  
±0.75 with respect to VBB  
0 to 6.0  
-6.0 to 0  
±0.75 with respect to VBB  
VDC  
VDC  
VDC  
VDC  
VDC  
VDC  
(VCC = 0V)  
(VCC = 0V)  
-6.0 to 0  
25  
50  
IOUT  
mA  
Output Current  
QHG/Q¯HG  
Operating Temperature Range  
--- Continuous  
--- Surge  
50  
100  
-40 to +85  
IOUT  
TA  
mA  
°C  
100K ECL DC Characteristics (VEE = -3.0V to -5.5V, VCC = GND)  
-40°C  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Output HIGH Voltage  
Q¯, FLTRDR/F¯L¯T¯¯R¯D¯R¯  
Output LOW Voltage  
Q¯, FLTRDR/F¯L¯T¯¯R¯D¯R¯  
Output HIGH Voltage1  
QHG/Q¯HG  
VOH  
VOL  
VOH  
VOL  
-1045  
-895  
-1005  
-855  
-1685  
-880  
-980  
-830  
-910  
-760  
-1610  
-880  
mV  
mV  
mV  
mV  
-2010  
-1085  
-1830  
-1710  
-880  
-1985  
-1025  
-1810  
-1965  
-1025  
-1810  
-1665  
-880  
-1910  
-1025  
-1810  
Output LOW Voltage1  
QHG/Q¯HG  
-1555  
-1620  
-1620  
-1620  
Input HIGH Voltage  
VIH  
D/D¯  
EN  
-1165  
-1165  
-390  
VCC  
-1165  
-1165  
-390  
VCC  
-1165  
-1165  
-390  
VCC  
-1165  
-1165  
-390  
VCC  
mV  
Input LOW Voltage  
VIL  
VBB  
IIL  
D/D¯  
EN  
-2250  
VEE  
-1390  
-1475  
-1475  
-1250  
-2250  
VEE  
-1390  
-1475  
-1475  
-1250  
-2250  
VEE  
-1390  
-1475  
-1475  
-1250  
-2250  
VEE  
-1390  
-1475  
-1475  
-1250  
mV  
mV  
μA  
Reference Voltage  
Input LOW Current  
EN (ECL)  
-150  
-300  
-150  
-300  
-150  
-300  
-150  
-300  
EN (CMOS)  
Input HIGH Current EN  
Power Supply Current  
150  
63  
150  
63  
150  
63  
150  
68  
IIH  
IEE  
μA  
mA  
1.  
Specified with each output terminated through a 50resistor to VCC – 2V.  
100K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V)  
-40°C  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Output HIGH Voltage  
Q¯, FLTRDR/F¯L¯T¯¯R¯D¯R¯  
Output LOW Voltage  
Q¯, FLTRDR/F¯L¯T¯¯R¯D¯R¯  
Output HIGH Voltage1  
QHG/Q¯HG  
VOH  
VOL  
VOH  
VOL  
2255  
2405  
2295  
2445  
2320  
2470  
2390  
2540  
mV  
mV  
mV  
mV  
1290  
2215  
1470  
1590  
2420  
1745  
1315  
2275  
1490  
1615  
2420  
1680  
1335  
2275  
1490  
1635  
2420  
1680  
1390  
2275  
1490  
1690  
2420  
1680  
Output LOW Voltage1  
QHG/Q¯HG  
Input HIGH Voltage  
VIH  
D/D¯  
EN  
2135  
2135  
2910  
VCC  
2135  
2135  
2910  
VCC  
2135  
2135  
2910  
VCC  
2135  
2135  
2910  
VCC  
mV  
Input LOW Voltage  
VIL  
VBB  
IIL  
D/D¯  
EN  
1050  
VEE  
1910  
1825  
1825  
2050  
1050  
VEE  
1910  
1050  
VEE  
2050  
1825  
1825  
1910  
1050  
VEE  
2050  
1825  
1825  
1910  
-1475  
-1475  
2050  
mV  
mV  
μA  
Reference Voltage  
Input LOW Current  
EN (ECL)  
-150  
-300  
-150  
-300  
-150  
-300  
-150  
-300  
EN (CMOS)  
Input HIGH Current EN  
Power Supply Current1  
150  
63  
150  
63  
150  
63  
150  
68  
IIH  
IEE  
μA  
mA  
1.  
2.  
For supply voltages other than 3.3V, use the ECL table values and ADD supply voltage value.  
Specified with each output terminated through a 50resistor to VCC – 2V.  
June 2009 Rev - 4  
www.azmicrotek.com  
3
AZP81  
100K PECL DC Characteristics (VEE = GND, VCC = +5.0V)  
-40°C  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Output HIGH Voltage  
Q¯, FLTRDR/F¯L¯T¯R¯¯D¯R  
Output LOW Voltage  
Q¯, FLTRDR/F¯L¯T¯R¯¯D¯R  
Output HIGH Voltage1  
QHG/Q¯HG  
VOH  
VOL  
VOH  
VOL  
3955  
4105  
3995  
4145  
4020  
4170  
4090  
4240  
mV  
mV  
mV  
mV  
2990  
3915  
1470  
3290  
4120  
1745  
3015  
3975  
1490  
3315  
4120  
1680  
3035  
3975  
1490  
3335  
4120  
1680  
3090  
3975  
1490  
3390  
4120  
1680  
Output LOW Voltage1  
QHG/Q¯HG  
Input HIGH Voltage  
VIH  
D/D¯  
EN  
3835  
3835  
4610  
VCC  
3835  
3835  
4610  
VCC  
3835  
3835  
4610  
VCC  
3835  
3835  
4610  
VCC  
mV  
Input LOW Voltage  
VIL  
VBB  
IIL  
D/D¯  
EN  
2750  
VEE  
3610  
3525  
3525  
3750  
2750  
VEE  
3610  
3525  
3525  
3750  
2750  
VEE  
3610  
3525  
3525  
3750  
2750  
VEE  
3610  
3525  
3525  
3750  
mV  
mV  
μA  
Reference Voltage  
Input LOW Current  
EN (ECL)  
-150  
-300  
-150  
-300  
-150  
-300  
-150  
-300  
EN (CMOS)  
Input HIGH Current EN  
Power Supply Current1  
150  
63  
150  
63  
150  
63  
150  
68  
IIH  
IEE  
μA  
mA  
1. For supply voltages other than 5.0V, use the ECL table values and ADD supply voltage value.  
2. Specified with each output terminated through a 50resistor to VCC – 2V.  
AC Characteristics (VEE = -3.0V to -5.5V; VCC = GND or VCC = 3.0V to 5.5V, VEE = GND)  
-40°C  
Typ  
0°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Propagation Delay  
D/D¯ to Q¯  
90  
130  
200  
200  
260  
380  
20  
2000  
2000  
90  
130  
200  
200  
260  
380  
20  
2000  
2000  
90  
130  
200  
200  
260  
380  
20  
2000  
2000  
90  
130  
200  
200  
260  
380  
20  
2000  
2000  
tPLH / tPHL  
ps  
D/D¯ to FLTRDR/F¯L¯T¯¯R¯D¯R¯ 2  
1
AMPIN to QHG/Q¯HG (SE)  
tSKEW  
Duty Cycle Skew3  
Input Swing (SE)4  
(SE)  
D/D¯  
AMPIN  
5
5
5
5
ps  
300  
150  
300  
150  
300  
150  
300  
150  
VPP (AC)  
mV  
Output Rise/Fall Times (20%  
- 80%)  
tr / tf  
80  
240  
80  
240  
80  
240  
80  
240  
ps  
Maximum Recommended  
Multiply Ratio  
xMAX  
Even Harmonics  
Odd Harmonics  
8
7
8
7
8
7
8
7
1.  
2.  
3.  
4.  
Specified with QHG/Q¯HG terminated through a 50resistor to VCC – 2V.  
Specified with FLTRDR terminated into an AC coupled 50load, F¯L¯T¯¯R¯D¯R¯ into an AC coupled 50load along an external 8mA pull-down current.  
Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device.  
Single ended input swing for which AC parameters guaranteed.  
SINGLE ENDED AC PP INPUT  
June 2009 Rev - 4  
www.azmicrotek.com  
4
AZP81  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
FREQUENCY (MHz)  
Fig 1: Typical Large Signal Outputs, QHG/Q¯HG  
Measured with 750mVPP on AMPIN, QHG/Q¯HG each terminated to VCC-2V via 50 resistors.  
June 2009 Rev - 4  
www.azmicrotek.com  
5
AZP81  
APPLICATION  
The AZP81 is a “filter-based” oscillator gain stage and multiplier. Generating a spectrum of harmonics from a sine-  
wave input, an external bandpass filter selects the desired harmonic.  
A crystal or SAW (with associated passive discrete components) is connected between D and Q¯ (pins 1 and 16,  
respectively) to form an high stability oscillator stage. Alternatively, an external Colpitts, Pierce or similar sine-  
wave oscillator may be fed into D (pin 1) to drive the AZP81. In this case, input amplitude should be less than 1 VPP  
on D for best results. Also, tie the Q¯ pin to VCC to reduce fundamental subharmonic and other noise source coupling  
into the circuit board.  
The D input also drives another higher gain stage. This stage generates fast edges with resultant high harmonic  
spectral content. In one mode, the signal on FLTRDR (pin 14) is a square wave with greater spectral energy at odd  
harmonics (3x, 5x, 7x). Figure 4 illustrates the typical spectral output at FLTRDR. Another mode is selected by  
connecting F¯L¯¯T¯R¯D¯¯R and FLTRDR. This mode generates a pulse wave which contains greater spectral energy at  
even harmonics (2x, 4x, 6x, 8x). Figure 5 illustrates the typical spectral output at FLTRDR when the two pins are  
shorted together.  
An external bandpass filter inserted between FLTRDR (or FLTRDR/F¯L¯T¯¯R¯D¯¯R) and AMPIN (pin 7) selects the  
desired harmonic and attenuates the rest. This filter is typically either an LC or SAW implementation. The bandpass  
filter is AC coupled since both the FLTDR and AMPIN signals are internally biased. The filter must be designed for  
the drive impedance found at FLTRDR and the input impedance at AMPIN.  
Graphs that follow in this data sheet show the S-parameters for these pins. Also included are graphs of the output  
impedance magnitude of FLTRDR and the input impedance magnitude of AMPIN. These impedance graphs provide  
a way to approximate the filter required without the use of S-parameter based design software.  
The filter and other elements on the circuit board must be placed carefully to minimize subharmonic feed-through.  
The resultant signal level at AMPIN should be 150 mV peak-peak or greater for best limiting amplifier performance.  
The limiting amplifier provides a high bandwidth PECL/ECL output into the standard load of 50to VCC – 2V.  
Figure 1 shows the large signal output swing versus frequency.  
It may be desirable to hold off the limiting amplifier operation until the sine-wave oscillator has started. A capacitor  
may be used with the EN pin to create a delay. Connect the capacitor from EN to VCC (if EN-SEL is open) or VEE (if  
EN-SEL is connected to VEE). This modification will avoid high-frequency parasitic feedback from the circuit board  
during oscillator startup. A 220ρF capacitor will provide approximately 10μs delay.  
Arizona Microtek’s website (www.azmicrotek.com) contains S-parameters for all signal paths in industry-standard  
.s1p and .s2p format supporting an easier RF design process.  
June 2009 Rev - 4  
www.azmicrotek.com  
6
AZP81  
ADD THIS CONNECTION  
TO CONVERT SQUARE  
WAVE INTO PULSE WAVE  
CRYSTAL  
Q
FLTRDR  
13  
BAND  
PASS  
FLTRDR  
OR  
16  
14  
SAW  
FILTER  
AZP81  
D
D
1
2
AMPIN  
7
3
10  
9
QHG  
QHG  
VBB  
LIMITING  
AMP  
12  
EN  
Fig 2: Typical Multiplier Application  
(Simplified Logic Shown)  
Fig 3: Typical LC Band Pass Filter  
June 2009 Rev - 4  
www.azmicrotek.com  
7
AZP81  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
155 MHz INPUT  
FREQUENCY  
ODD  
HARMONICS  
7x MAXIMUM  
RECOMMENDED  
HARMONIC  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
FREQUENCY (MHz)  
Fig 4: Typical Spectrum Output of FLTRDR (Square wave)  
Full Limiting 155 MHz Input Signal  
0
8x MAXIMUM  
RECOMMENDED  
HARMONIC  
EVEN  
HARMONICS  
155 MHz INPUT  
FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
FREQUENCY (MHz)  
Fig 5: Typical Spectrum Output of FLTRDR (Pulse wave)  
Full Limiting 155 MHz Input Signal  
June 2009 Rev - 4  
www.azmicrotek.com  
8
AZP81  
S-PARAMETERS  
0.9  
0.85  
0.8  
0
-10  
-20  
-30  
-40  
-50  
S11 MAG  
S11 PHASE  
0.75  
0.7  
0.65  
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 6: S11, D to Q¯  
0.04  
0.032  
0.024  
0.016  
0.008  
225  
200  
175  
150  
125  
100  
S12 MAG  
S12 PHASE  
0
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 7: S12, D to Q¯  
June 2009 Rev - 4  
www.azmicrotek.com  
9
AZP81  
8
7.5  
7
180  
160  
140  
120  
100  
80  
S21 MAG  
S21 PHASE  
6.5  
6
5.5  
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 8: S21, D to Q¯  
0.8  
0.7  
0.6  
0.5  
0.4  
180  
170  
160  
150  
140  
130  
S22 MAG  
S22 PHASE  
0.3  
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 9: S22, D to Q¯  
June 2009 Rev - 4  
www.azmicrotek.com  
10  
AZP81  
0.85  
0.8  
0
-15  
-30  
-45  
-60  
-75  
0.75  
0.7  
S11 MAG (1)  
S11 MAG (2)  
S11 PHASE (1)  
S11 PHASE (2)  
0.65  
0.6  
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 10: S11, D to FLTRDR  
0.03  
0.024  
0.018  
0.012  
0.006  
225  
200  
175  
150  
125  
100  
S12 MAG (1)  
S12 MAG (2)  
S21 PHASE (1)  
S21 PHASE (2)  
0
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 11: S12, D to FLTRDR  
(1): F¯L¯T¯¯R¯D¯R¯ open, not connected to FLTRDR  
(2): F¯L¯T¯¯R¯D¯R¯ connected to FLTRDR  
June 2009 Rev - 4  
www.azmicrotek.com  
11  
AZP81  
30  
24  
18  
12  
6
0
-50  
-100  
-150  
-200  
-250  
S21 MAG (1)  
S21 MAG (2)  
S21 PHASE (1)  
S21 PHASE (2)  
0
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 12: S21, D to FLTRDR  
1
0.8  
0.6  
0.4  
0.2  
180  
160  
140  
120  
100  
80  
S22 MAG (1)  
S22 MAG (2)  
S22 PHASE (1)  
S22 PHASE (2)  
0
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 13: S22, D to FLTRDR  
(1): F¯L¯T¯¯R¯D¯R¯ open, not connected to FLTRDR  
(2): F¯L¯T¯¯R¯D¯R¯ connected to FLTRDR  
June 2009 Rev - 4  
www.azmicrotek.com  
12  
AZP81  
0.82  
0.81  
0.8  
0
-10  
-20  
-30  
-40  
-50  
-60  
S11 MAG  
0.79  
0.78  
0.77  
0.76  
S11 PHASE  
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 14: S11, AMPIN to QHG  
June 2009 Rev - 4  
www.azmicrotek.com  
13  
AZP81  
IMPEDANCES  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
OUTPUT IMPEDANCE (1)  
OUTPUT IMPEDANCE (2)  
0
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 15: FLTDR Output Impedance  
(1): F¯L¯T¯¯R¯D¯R¯ open, not connected to FLTRDR  
(2): F¯L¯T¯¯R¯D¯R¯ connected to FLTRDR  
500  
400  
300  
200  
100  
0
INPUT  
IMPEDANCE  
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350  
Frequency (MHz)  
Fig 16: AMPIN Input Impedance  
June 2009 Rev - 4  
www.azmicrotek.com  
14  
AZP81  
PACKAGE DIAGRAM  
MLP 16  
A
D
D2  
D2/2  
2.  
D
2
B
INDEX AREA  
(D/2 x E/2)  
E2/2  
E2  
E
2
3 x  
e
E
2
1
e
5.  
2 x  
aaa C  
16 x b  
3.  
TOP VIEW  
2 x  
aaa C  
M
bbb C A B  
L
3 x  
e
BOTTOM VIEW  
ccc C  
A3  
A
0.08 C  
SEATING  
PLANE  
4.  
SIDE  
VIEW  
C
A1  
MILLIMETERS  
NOTES:  
DIM MIN  
MAX  
1.00  
1. DIMENSIONING AND TOLERANCING  
CONFORM TO ASME T14-1994.  
2. THE TERMINAL #1 AND PAD  
NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012.  
0.80  
0.00  
A
A1  
A3  
b
0.05  
0.25 REF  
0.18  
2.90  
0.25  
2.90  
0.25  
0.30  
3.10  
1.95  
3.10  
1.95  
D
3. DIMENSION b APPLIES TO METALLIZED  
D2  
E
PAD AND IS MEASURED BETWEEN 0.25  
AND 0.30 mm FROM PAD TIP.  
E2  
e
4. COPLANARITY APPLIES TO THE  
0.50 BSC  
EXPOSED PADS AS WELL AS THE  
TERMINALS.  
0.30  
0.50  
L
0.25  
0.10  
0.10  
aaa  
bbb  
ccc  
INSIDE CORNERS OF METALLIZED PAD  
MAY BE SQUARE OR ROUNDED  
5.  
June 2009 Rev - 4  
www.azmicrotek.com  
15  
AZP81  
Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc.  
makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona  
Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license  
rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems  
intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly  
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part.  
June 2009 Rev - 4  
www.azmicrotek.com  
16  
厂商 型号 描述 页数 下载

AZM

AZP51 低相位噪声的正弦波LVPECL缓冲器/分频器[ Low Phase Noise Sine Wave to LVPECL Buffer/Divider ] 9 页

AZM

AZP51SG 低相位噪声的正弦波LVPECL缓冲器/分频器[ Low Phase Noise Sine Wave to LVPECL Buffer/Divider ] 9 页

AZM

AZP51_12 低相位噪声正弦波/ CMOS到LVPECL缓冲器/分频器[ Low Phase Noise Sine Wave/CMOS to LVPECL Buffer/Divider ] 9 页

AZM

AZP52 低相位噪声的正弦波LVPECL缓冲器/分频器[ Low Phase Noise Sine Wave to LVPECL Buffer/Divider ] 9 页

AZM

AZP52SG 低相位噪声的正弦波LVPECL缓冲器/分频器[ Low Phase Noise Sine Wave to LVPECL Buffer/Divider ] 9 页

AZM

AZP52_13 低相位噪声正弦波/ CMOS到LVPECL缓冲器/转换器[ Low Phase Noise Sine Wave / CMOS to LVPECL Buffer / Translator ] 9 页

AZM

AZP53 低相位噪声的正弦波LVPECL缓冲器/分频器[ Low Phase Noise Sine Wave to LVPECL Buffer/Divider ] 9 页

AZM

AZP53PG 低相位噪声的正弦波LVPECL缓冲器/分频器[ Low Phase Noise Sine Wave to LVPECL Buffer/Divider ] 9 页

AZM

AZP53QG 低相位噪声正弦波/ CMOS[ Low Phase Noise Sine Wave/CMOS ] 13 页

AZM

AZP53_13 低相位噪声正弦波/ CMOS到LVPECL缓冲器/转换器[ Low Phase Noise Sine Wave / CMOS to LVPECL Buffer / Translator ] 13 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.266923s