找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYUSB3610

型号:

CYUSB3610

品牌:

CYPRESS[ CYPRESS ]

页数:

35 页

PDF大小:

915 K

CYUSB3610  
EZ-USB GX3: SuperSpeed USB  
to Gigabit Ethernet Bridge Controller  
EZ-USB GX3: SuperSpeed USB to Gigabit Ethernet Bridge Controller  
Supports automatic loading of USB Device Descriptors,  
Node-ID, etc. from internal memory or external EEPROM after  
Features  
power-on initialization  
Low-power single chip USB 3.0 to 10/100/1000M Gigabit  
Ethernet Bridge Controller with Energy Efficient Ethernet (EEE)  
Single 25 MHz clock input from crystal or oscillator source  
Integrates on-chip power-on reset circuit  
Gigabit Ethernet Controller  
Supports IEEE 802.3az (Energy Efficient Ethernet)  
IEEE 802.3, 802.3u, and 802.3ab compatible  
Integrates 10/100/1000Mbps Gigabit Ethernet MAC/PHY  
Integrates pipelined RISC SoC (System on Chip) for handling  
protocol and control functions  
Supports dynamic cable length detection and dynamic power  
68-pin QFN 8 mm × 8 mm RoHS/REACH compliant package  
Operating temperature: 0 °C to 70 °C  
adjustment Green Ethernet (Gigabit mode only)  
Supports parallel detection and automatic polarity correction  
Supports crossover detection and auto-correction  
Target Applications  
Supports IPv4/IPv6 packet Checksum Offload  
Engine  
(COE)  
to reduce CPU loading, including IPv4  
Docking Station  
USB Dongle  
IP/TCP/UDP/ICMP/IGMP  
&
IPv6 TCP/UDP/ICMPv6  
checksum check & generation  
Supports TCP Large Send Offload V1  
Embedded systems  
Network Printer  
USB Port Replicator  
POS, Card Reader  
Netbook, UMPC, MID  
Ultrabook  
Supports full duplex operation with IEEE 802.3x flow control  
and half duplex operation with back-pressure flow control.  
Supports IEEE 802.1P Layer 2 Priority Encoding and  
Decoding  
Supports IEEE 802.1QVLANtagging and2VLAN ID filtering;  
received VLAN Tag (4 bytes) can be stripped off or preserved  
Supports Jumbo frame  
PHY loop-back diagnostic capability  
USB Device Controller  
Integrates on-chip USB 3.0 PHY and controller  
Supports USB 3.0 power saving modes (U0, U1, U2, and U3)  
IP STB, IP TV  
Gaming Console  
High performance packet transfer rate over USB bus using  
burst transfer mechanism  
Functional Description  
Advanced Power Management Features  
Supports power management offload (ARP & NS)  
Supports dynamic power management to reduce power  
dissipation during idle or light traffic  
Supports AutoDetach power saving. Soft-disconnect from  
USB host when Ethernet cable is unplugged  
Supports advanced link down power saving when Ethernet  
cable is unplugged  
The GX3 SuperSpeed USB to 10/100/1000M Gigabit Ethernet  
Bridge Controller is a high-performance and highly integrated  
controller that enables low-cost design, small form-factor, and  
simple plug-and-play Gigabit Ethernet network connection  
capability for docking stations, desktops, notebook PCs,  
Ultrabooks, gaming consoles, digital-home appliances, and any  
embedded system using a standard USB port.  
GX3 implements a 10/100/1000Mbps Ethernet LAN function  
based on IEEE802.3, IEEE802.3u, and IEEE802.3ab standards  
with embedded SRAMs for packet buffering. It also integrates an  
on-chip 10/100/1000Mbps EEE-compliant Ethernet PHY to  
simplify system design. It features a USB interface to  
communicate with a USB Host Controller and is compliant with  
USB specification v3.0.  
Wake-on-LAN Feature  
Supportssuspendmodeandremotewakeupvialink-change,  
Magic Packet, Microsoft wakeup frame and external wakeup  
pin  
Supports Bonjour wake-on-demand  
Supports serial EEPROM (93C56/66) for storing USB  
Descriptors, Node-ID, etc  
Cypress Semiconductor Corporation  
Document Number: 001-94768 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 31, 2018  
CYUSB3610  
Block Diagram  
CS  
SCK  
SDA  
XTALIN  
XTALOUT  
MFA[3:0],  
GPIO[3:0]  
Data  
RAM  
PLL  
oscillator  
Reset  
RESET#  
Serial  
EEPROM  
interface  
GPIOs,  
LEDs  
Pipelined  
RISC  
DMA  
Engine  
ROM  
DP/DM  
SSTXP(M)  
SSRXP(M)  
USB  
3.0  
PHY  
USB  
3.0  
core  
SuperSpeed USB to  
Gigabit Ethernet  
Bridge  
Gigabit  
Ethernet  
PHY  
MDIP[3:0]  
MDIN[3:0]  
Checksum  
Offload  
Engine  
SRAM  
buffer  
Memory  
Arbiter  
GMAC  
core  
Document Number: 001-94768 Rev. *C  
Page 2 of 35  
CYUSB3610  
Contents  
Pin Configurations ...........................................................4  
Signal Description ............................................................5  
Pin Description .................................................................5  
Settings .............................................................................8  
Hardware Setting  
USB Configuration Structure ........................................20  
Electrical Specifications ................................................21  
DC Characteristics ....................................................21  
Thermal Characteristics ............................................24  
Power Consumption ..................................................25  
Power-up Sequence ..................................................27  
AC Timing Characteristics .........................................28  
Package Information ......................................................30  
68-pin QFN 8 × 8 package ........................................30  
Recommended PCB Footprint  
for 68-pin QFN 8x8 package ............................................31  
Ordering Information ......................................................32  
Acronyms ........................................................................33  
Document Conventions .................................................33  
Units of measure .......................................................33  
Document History Page .................................................34  
Sales, Solutions, and Legal Information ......................35  
Worldwide Sales and Design Support .......................35  
Products ....................................................................35  
PSoC® Solutions ......................................................35  
Cypress Developer Community .................................35  
Technical Support .....................................................35  
for Operation Mode and Multi-Function Pins ......................8  
Functional Overview ........................................................9  
USB Core and Interfaces ............................................9  
Energy Efficient Ethernet (EEE) ..................................9  
10/100/1000M Ethernet PHY ......................................9  
MAC Core ....................................................................9  
Checksum Offload Engine (COE) ...............................9  
Memory Arbiter ............................................................9  
USB to Ethernet Bridge ...............................................9  
SEEPROM Loader Interface .....................................10  
GPIOs and LED .........................................................10  
PLL Clock Generator .................................................10  
Reset Generation ......................................................10  
Default Wake-On-LAN (DWOL) Ready Mode ................11  
Procedure to Enable Default WOL Ready Mode .......11  
Flow Chart of Default WOL Ready Mode ..................13  
Serial EEPROM Memory Map ........................................14  
Detailed Description ..................................................15  
Document Number: 001-94768 Rev. *C  
Page 3 of 35  
CYUSB3610  
Pin Configurations  
Figure 1. 68-pin QFN pinout  
Document Number: 001-94768 Rev. *C  
Page 4 of 35  
CYUSB3610  
Signal Description  
The following abbreviations apply to the following pin description table.  
Signal Name  
Signal Description  
Signal Name  
Signal Description  
I12  
I3  
Input, 1.2 V  
Input, 3.3 V  
AI  
Analog Input  
AO  
AB  
PU  
PD  
S
Analog Output  
I5  
Input, 3.3 V with 5 V tolerance  
Output, 3.3 V  
Analog Bi-directional I/O  
Internal Pull Up (75 kΩ)  
Internal Pull Down (75 kΩ)  
Schmitt Trigger  
O3  
B5  
B3  
P
Bi-directional I/O, 3.3 V with 5 V tolerance  
Bi-directional I/O, 3.3 V  
Power/GND  
T
Tri-stateable  
Pin Description  
Pin Name  
Type  
Pin No.  
Pin Description  
USB Interface  
DP  
AB  
AB  
23  
24  
29  
27  
34  
32  
21  
USB 2.0 D+ pin.  
DM  
USB 2.0 D– pin.  
SSTXP  
SSTXM  
SSRXP  
SSRXM  
VBUS  
AB  
USB 3.0 SSTX+ pin.  
USB 3.0 SSTX– pin.  
USB 3.0 SSRX+ pin.  
USB 3.0 SSRX– pin.  
AB  
AB  
AB  
I5/PD/S  
VBUS pin input. Please connect to USB bus power.  
Gigabit EEE Ethernet PHY Interface  
RSET_BG  
MDIP0  
AO  
AB  
AB  
47  
53  
54  
For Ethernet PHY’s internal biasing. Please connect to GND througha 2.49 kΩ +1% resistor.  
In MDI mode, this is the first pair in 1000Base-T, i.e. the BI_DA+/- pair, and is the transmit  
pair in 10Base-T and 100Base-TX.  
In MDI crossover mode, this pair acts as the BI_DB+/- pair, and is the receive pair in  
10Base-T and 100Base-TX.  
MDIN0  
MDIP1  
MDIN1  
AB  
AB  
56  
57  
In MDI mode, this is the secondpair in 1000Base-T,i.e. the BI_DB+/- pair, and is the receive  
pair in 10Base-T and 100Base-TX.  
In MDI crossover mode, this pair acts as the BI_DA+/- pair, and is the transmit pair in  
10Base-T and 100Base-TX.  
MDIP2  
AB  
AB  
AB  
AB  
59  
60  
62  
63  
In MDI mode, this is the third pair in 1000Base-T, i.e., the BI_DC+/- pair.  
In MDI crossover mode, this pair acts as the BI_DD+/- pair.  
MDIN2  
MDIP3  
In MDI mode, this is the fourth pair in 1000Base-T, i.e., the BI_DD+/- pair.  
In MDI crossover mode, this pair acts as the BI_DC+/- pair.  
MDIN3  
Clock Pins  
XTALIN  
XTALOUT  
CLKOUT  
I3  
38  
39  
42  
25 MHz ± 0.005% crystal or oscillator clock input.  
25 MHz crystal or oscillator clock output.  
O3  
O3  
A controllable 25MHz clock output.  
Please connect it to CLKIN pin with a 22 Ohm termination resistor near to CLKOUT pin.  
CLKIN  
I3  
50  
25 MHz clock input.  
Please connect it to CLKOUT pin with a 22 Ohm termination resistor.  
Document Number: 001-94768 Rev. *C  
Page 5 of 35  
CYUSB3610  
Pin Description (continued)  
Pin Name  
Type  
Pin No.  
Pin Description  
Serial EEPROM Interface  
SCK  
CS  
B5/PD/T  
B5/PD/T  
B5/PU/T  
16  
EEPROM Clock. SCK is an output clock to EEPROM to provide timing reference for the  
transfer of CS, and SDA signals. SCK only drive high / low only while accessing EEPROM  
otherwise it is tri-stated and internally pulled down.  
17  
15  
EEPROMChip Select. CS is assertedhighsynchronouslywith respectto risingedge of SCK  
as chip select signal. CS drives high / low only while accessing EEPROM otherwise it is  
tri-stated and internally pulled down.  
SDA  
EEPROM Data. SDA is the serial output data to EEPROM’s data input pin and is  
synchronous with respect to the rising edge of SCK. SDA drives high / low only while  
accessing EEPROM otherwise it is tri-stated and internally pulled up.  
Misc. Pins  
RESET#  
I5/PU/S  
I3/PU/S  
I5/PD/S  
18  
41  
20  
Extrernal chip reset input.Active low. This input feeds to the internal power-on reset circuitry,  
which provides the main reset source of this chip.  
WAKEUP#  
SLF_PWR  
Remote-wakeup trigger from external pin. WAKEUP# should be asserted low for more than  
2 cycles of 25 MHz clock to be effective.  
Self_power Indication Input.  
0: will indicate to Host that this device is a bus-powered device.  
1: will indicate to Host that this device is a self-powered device.  
GPIO[3]  
B3/PD  
B3/PD  
B3/PD  
B3/PD  
3
4
5
6
General Purpose Input/Output Pin 3.  
General Purpose Input/Output Pin 2.  
General Purpose Input/Output Pin 1.  
GPIO[2]  
GPIO[1]  
GPIO[0]/PME  
General Purpose Input/Output Pin 0 or PME (Power Management Event). This pin is an  
input pin by default after power-on reset. GPIO[0] also can be defined as PME output to  
indicate wake up event detected.  
MFA[3]  
MFA[2]  
MFA[1]  
MFA[0]  
B3  
B3  
B3  
B3  
7
8
Itisamulti-functionpin.It acts as a USB SuperSpeed indicator on power up. It can be defined  
as a GPIO pin. Please refer to Table 3 on page 8.  
It is a multi-function pin. It acts as an Ethernet PHYLED indicator (Link 10/100/1000+Active)  
by default. It can be defined as a GPIO pin. Please refer to Table 3 on page 8.  
13  
14  
It is a multi-function pin. It acts as an Ethernet PHY LED indicator (Link 10/100/1000) by  
default and can be a GPIO pin. Please refer to Table 3 on page 8.  
It is a multi-function pin. It acts as an Ethernet PHY LED indicator (Active) and can be a  
GPIO pin. Please refer to Table 3 on page 8.  
NC  
I3/PD/S  
I3/PD  
I3/PD  
I3/S  
68  
1
Test pin. User can keep this pin NC.  
Test pin. User can keep this pin NC.  
Test pin. User can keep this pin NC.  
Test pin. User should pull down this pin.  
Test pin. User should pull down this pin.  
Test pin. User should pull down this pin.  
NC  
NC  
2
RESERVED  
RESERVED  
RESERVED  
NC  
66  
67  
46  
I3/S  
I3  
O3  
11, 36, 44, Test pin. NC.  
51, 52, 64  
Power and Ground Pins  
A3V3  
P
P
P
P
25  
22  
Analog Power for USB 3.0 transceiver. 3.3V.  
GND_3V3  
U3TXVDDQ  
U3TXVSS  
Analog Ground for USB 3.0 transceiver.  
Analog Power for USB 3.0 transceiver. 1.2 V.  
Analog Ground for USB 3.0 transceiver.  
26  
28, 30  
Document Number: 001-94768 Rev. *C  
Page 6 of 35  
CYUSB3610  
Pin Description (continued)  
Pin Name  
U3RXVDDQ  
U3RXVSS  
E12VDDQ  
E33VDDQ  
E12VCC  
E33VCC  
CVDDQ  
Type  
P
Pin No.  
31  
Pin Description  
Analog Power for USB 3.0 transceiver. 1.2 V.  
P
33, 35  
48  
Analog Ground for USB 3.0 transceiver.  
Analog Power for Ethernet PHY. 1.2 V.  
Analog Power for Ethernet PHY. 3.3 V.  
Analog Power for Ethernet PHY. 1.2 V.  
Analog Power for Ethernet PHY. 3.3 V.  
Digital I/O Power for Clock pins. 3.3 V.  
Digital Ground for clock pins.  
P
P
49  
P
55, 61  
58  
P
P
37  
VSS  
P
40  
DVDD  
P
10, 19, 45, Digital Core Power. 1.2 V.  
65  
DVSS  
VIO  
P
P
9
Digital Ground to E-pad  
Digital I/O Power. 3.3 V.  
12, 43  
Document Number: 001-94768 Rev. *C  
Page 7 of 35  
CYUSB3610  
Settings  
Hardware Setting for Operation Mode and Multi-Function Pins  
The following hardware settings define the desired operation mode and some multi-function pin configurations. The logic levels shown  
on setting the pins below are sampled from the chip I/O pins during power on reset based on the setting of the pin’s pull-up or pull-down  
resistor in the schematic.  
EEPROM Offset 05h, Flag[4]: Defines the multi-function pin GPIO[0] / PME  
GPIO[0] is a general purpose I/O normally controlled by vendor commands. User can change this pin to operate as a PME (Power  
Management Event) for remote wake up. Please refer to Flag (EEPROM: 05h) on page 15 for detailed description of “Flag” of bit  
4 (PME_PIN).  
GPIO[1] pin: Determines whether this chip will go to Default WOL (Wake-On-LAN) Ready Mode after power on reset.  
Table 1. GPIO[1] Description  
GPIO[1]  
Description  
0
1
Normal operation mode. By default, internal pull-up resistor (4.7 KΩ) is enabled.  
Enable Default WOL Ready Mode. Notice that the external pulled-up resistor must be 4.7 KΩ.  
For more details, please refer to Default Wake-On-LAN (DWOL) Ready Mode on page 11.  
GPIO[2] pin: Determines whether SSTXP swaps with SSTXM and SSRXP swaps with SSRXM for USB3.0 PHY.  
Table 2. GPIO[2] Description  
GPIO[2]  
Description  
0
1
Disable swapping. By default, internal pull-up resistor (4.7 KΩ) is enabled.  
Enable swapping. Notice that the external pulled-up resistor must be 4.7 KΩ.  
MFA[3] ~ MFA[0] pins: There are 4 multi-function pins. They can be used either for driving indicator LEDs or as normal GPIOs  
controlled by vendor command PIN Control Register MFA_EN.  
Table 3. MFA_3 ~ MFA_0 pin configuration  
Section LED Mode  
PIN Name  
Default Definition  
(EEPROM: 42h) on  
page 16  
MFA Control Register  
MFA[3]  
MFA[2]  
MFA[1]  
MFA[0]  
LED_USB indicator (Super-speed)  
Programmable LED (Link 10/100/1000+Active)  
Programmable LED (Link 10/100/1000)  
Programmable LED (Active)  
LED_3  
LED_2  
LED_1  
LED_0  
MFAIO_3  
MFAIO_2  
MFAIO_1  
MFAIO_0  
Document Number: 001-94768 Rev. *C  
Page 8 of 35  
CYUSB3610  
Functional Overview  
USB Core and Interfaces  
The USB core is made up of USB 3.0 PHY and Device Controller. The USB 3.0 PHY processes USB Physical layer signals. The USB  
3.0 Device Controller is interfaced with USB 3.0 PHY by PIPE/UTMI buses and it processes packets of link layer and protocol layer.  
The USB 3.0 Device Controller supports Bulk IN, Bulk OUT and Interrupt IN transfers for data transactions.  
Energy Efficient Ethernet (EEE)  
GX3 supports IEEE 802.3az, also known as Energy Efficient Ethernet (EEE) at 10Mbps, 100Mbps and 1000Mbps. It also supports  
EEE specified negotiation method to enable link partner to determine whether EEE is supported and to select the best set of  
parameters common to both devices. It provides a protocol to coordinate transitions to/from a lower power consumption level (Low  
Power Idle mode) based on link utilization. When no packets are being transmitted, the system goes to Low Power Idle mode to save  
power. Once packets need to be transmitted, the system returns to normal mode, and starts transmitting packets without changing  
the link status and without dropping/corrupting frames.  
During the Low Power Idle mode, most of the circuits are disabled to save power. However, the transition time to/from Low Power  
Idle mode is kept small enough to be transparent to the upper layer protocols and applications.  
10/100/1000M Ethernet PHY  
The 10/100/1000M Ethernet PHY is compliant with 10Base-T, 100Base-TX, and 1000Base-T IEEE 802.3 standards. It provides all  
the necessary physical layer functions to transmit and receive Ethernet packets over CAT 5 UTP cable or CAT 3 UTP (10 Mbps only)  
cable. It uses state-of-the-art DSP technology and an Analog Front End (AFE) to enable high-speed data transmission and reception  
over UTP cable. Crossover Detection & Auto-Correction, polarity correction, adaptive equalization, cross-talk cancellation, echo  
cancellation, timing recovery, and error correction functions are also implemented.  
MAC Core  
The MAC core supports IEEE 802.3, IEEE 802.3u and IEEE 802.3ab MAC sub-layer functions, such as basic MAC frame receive and  
transmit, CRC checking and generation, filtering, forwarding, flow-control in full-duplex mode, and collision-detection and handling in  
half-duplex mode, etc. It supports virtual local area network (VLAN)-tagged frames according to IEEE 802.1Q specification in both  
transmit and receive functions. The MAC core also implements CRC-32 checking at full-speed using a multi-stage, cyclic redundancy  
code (CRC) calculation architecture with optional forwarding of the frame check sequence (FCS) field to the user application CRC-32  
generation and append on transmit.  
Checksum Offload Engine (COE)  
The Checksum Offload Engine (COE) supports IPv4, IPv6, layer 4 (TCP, UDP, ICMP, ICMPv6 and IGMP) header processing functions  
and real time checksum calculation in the hardware.  
The COE supports the following features in layer 3:  
IP header parsing, including IPv4 and IPv6  
IPv6 routing header type 0 supported  
IPv4 header checksum check and generation (There is no checksum field in IPv6 header)  
Detecting on RX direction for IP packets with error header checksum  
The COE supports the following features in layer 4:  
TCP and UDP checksum check and generation for non-fragmented packet  
TCP Large Send Offload V1  
ICMP, ICMPv6 and IGMP message checksum check and generation for non-fragmented packet  
Memory Arbiter  
The memory arbiter block stores received MAC frames into on-chip SRAM (packet buffer) and then forward it to the USB bus upon  
request from the USB host via Bulk IN transfer. It also monitors the packet buffer usage in full-duplex mode for triggering PAUSE  
frame (or in half-duplex mode to activate Back pressure jam signal) transmission out on transmit (TX) direction. The memory arbiter  
block is also responsible for storing MAC frames received from the USB host via Bulk OUT transfer and scheduling transmission out  
towards Ethernet network.  
USB to Ethernet Bridge  
The USB to Ethernet bridge block converts Ethernet MAC frames into USB packets or vice-versa. This block supports burst transfer  
mechanism to offload software burden and to offer very high packet transfer throughput over USB bus.  
Document Number: 001-94768 Rev. *C  
Page 9 of 35  
CYUSB3610  
SEEPROM Loader Interface  
The SEEPROM loader interface is responsible for reading configuration data automatically from the external serial EEPROM after  
power-on reset.  
If the content of EEPROM offset 05h (low byte) is equal to (0xFF - SUM [EEPROM offset 03h ~ 04h]), the EEPROM is the first  
candidate for SEEEPROM loader.  
GPIOs and LED  
There are 4 GPIO pins (GPIO[0/1/2/3]) and 4 multi-function pins group A (MFA[0/1/2/3]) provided by this chip. The MFA[0/1/2/3] pins  
are also used for LED indication. Please refer to LED Mode (EEPROM: 42h) on page 16 for details.  
PLL Clock Generator  
GX3 includes an on-chip internal oscillator circuit for 25 MHz which allows the chip to operate cost effectively with just external 25 MHz  
crystals.  
The external 25 MHz crystal or oscillator, via pins XTALIN/XTALOUT, provides the reference clock to internal oscillator circuit to  
generate clock for the embedded Ethernet PHY, embedded USB PHY, and base clock for the ASIC.  
The external 25 MHz Crystal spec is listed in below table. For more details on crystal timing, please refer to Clock Timing on page 28  
and CYUSB3610 demo board reference schematic.  
Table 4. External 25 MHz Crystal Units specifications  
Parameter  
Symbol  
Typical Value  
25.000000 MHz  
Fundamental  
+30 ppm  
Nominal Frequency  
Oscillation Mode  
fO  
Frequency Tolerance (@25 °C)  
Frequency Stability Over Operating Temperature Range  
Equivalent Series Resistance  
Load Capacitance  
+30 ppm  
ESR  
CL  
70 Ω max.  
12 pF  
Drive Level  
350 µW  
Operation Temperature Range  
Aging  
0
°C~ +70 °C  
+3 ppm/year  
Reset Generation  
GX3 integrates an on-chip power-on-reset circuit, which simplifies the external reset circuitry on the board. The power-on-reset circuit  
generates a reset pulse after 1.2 V core power ramps up to 0.72 V (typical threshold). The external reset pin, RESET#, can be directly  
connected to the input of the power-on-reset circuit and can also be used as an additional hardware reset source. For more details  
on RESET# timing, please refer to Reset Timing on page 28.  
Document Number: 001-94768 Rev. *C  
Page 10 of 35  
CYUSB3610  
Default Wake-On-LAN (DWOL) Ready Mode  
This Default WOL Ready Mode application is different from normal operation where GX3 Suspend/Resume state usually has to be  
configured by software driver during normal system operation. This application applies to a system that uses a predefined remote  
wakeup event to turn on the system power supply and its peripheral circuits without having any system software running in the  
beginning. This is quite useful when a system has been powered down already and a user needs to power on the system remotely.  
GX3 can be configured to support Default WOL Ready Mode, where no system driver is required to configure its WOL related settings  
after power on reset. A system design usually partitions its power supply into two or more groups and the GX3 is supplied with an  
independent power separated from the system processor. The power supply of GX3 is usually available as soon as power plug is  
connected. The power supply of system processor remains off initially when power plug is connected and is controlled by GX3’s PME  
pin, which can be activated whenever GX3 detects a pre-defined wakeup event such as valid Magic Packet reception or the WAKEUP#  
pin trigger. To reduce power consumption, initially the USB host controller communicating with GX3 can also be unpowered as the  
system processor.  
The PME pin of GX3 can control the power management IC (PMIC) to power up the system processor along with the USB host  
controller, which will perform USB transactions with GX3 after both have been initialized. The pin polarity of PME is configured as  
high active when enabling Default WOL Ready Mode. Note that the GX3 must be in self-power (via setting EEPROM Flag [0]) mode  
for this function.  
Procedure to Enable Default WOL Ready Mode  
EN  
PMIC  
vcc  
4.7k  
VBUS  
PME  
GX3  
Appilcation  
Processor  
GPIO[1]  
RESET#  
USB  
Host  
DP/DM  
WAKEUP#  
To enable Default WOL Ready Mode, configure GPIO[0] pin as PME (via setting EEPROM Flag [12]) and have GPIO[1] pulled-up  
with a 4.7K resistor. After power on reset, GX3 will disable most functions including USB transceiver (see Note 2) but enable Magic  
Packet detector logic, internal Ethernet PHY and its auto-negotiation function to be ready to  
receive Magic Packet. When a valid Magic Packet is received, GX3 will assert the PME pin to indicate to system processor the wakeup  
event. The PME pin, when being configured as static level output signal (via setting EEPROM Flag [15], see Note 3), can be used to  
control the power management IC to enable system power supply. After asserting the PME pin, GX3 will also exit from the Default  
WOL Ready Mode and revert back to normal operation mode to start normal USB device detection, handshaking, and enumeration.  
The PME pin, when being configured as static level output signal, maintains its signal level until RESET# is asserted again. If RESET#  
to GX3 is asserted with GPIO[1] pulled-up, the Default WOL Ready Mode will be re-entered. Otherwise (GPIO[1] being pulled-down),  
it will enter into normal operation mode and the normal USB device detection, handshaking and enumeration process should take  
place right after RESET# negation.  
Notes  
1. For complete truth table of wakeup events supported, please refer to below on the “GPIO[1] = 1” setting.  
2. When the Default WOL Ready Mode is enabled, the DP/DM pins of GX3 will be in tri-state.  
3. Please refer to Flag (EEPROM: 05h) on page 15. The bit [15:12] of Flag (PME_IND, PME_TYP, PME_POL, PME_PIN) = 0111.  
4. It is recommended that VBUS pin be connected to system power group directly. This way the VBUS will become HIGH when power management IC enables the  
system power supply.  
Document Number: 001-94768 Rev. *C  
Page 11 of 35  
CYUSB3610  
Table 5. Remote Wakeup Truth Table  
Setting  
Wakeup Event  
Receiving a  
Link status  
change  
Waken Up  
Device  
wakes up  
RWU bit of Set_Feature  
Host sends Receiving a  
EX-  
TWAKE_N  
pin  
by  
Flag byte in  
EEPROM  
standard  
RWWF RWMP RWLC GPIO_1 [5]  
resume  
signal  
Wakeup  
Frame  
Magic Packet detected On  
PHY  
command  
USB Host  
Device  
Device  
Device  
Device  
Device  
Device  
Device  
X
0
1
1
1
1
1
X
X
0
1
1
1
1
1
0
X
X
1
X
X
0
X
X
0
0
1
1
X
0
0
0
0
0
0
0
0
1
J -> K  
Yes  
No  
X
X
X
X
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0
1
Yes  
0
0
Yes  
0
0
X
0
X
0
Low-pulse  
Low-pulse  
Yes  
Note  
5. About Default WOL Ready Mode, please refer to GPIOs and LED on page 10.  
Document Number: 001-94768 Rev. *C  
Page 12 of 35  
CYUSB3610  
Flow Chart of Default WOL Ready Mode  
(1) Operation Mode setting by Pin#19, #21  
(2) Set GPIO_0 as PME definition  
(3) Pull-up GPIO[1] to enable Default WOL Ready mode.  
(4) Power on reset, either by on-chip power-on reset circuit or RESET# pin.  
The Default WOL Ready Mode is enabled.  
NO  
Wakeup event asserts?  
YES  
(1) PME asserts with static level that is used as power  
control to system processor.  
(2) Default WOL Ready Mode is disabled.  
System processor powers on and supplies VBUS  
to GX3.  
GX3 is in normal operation mode.  
NO  
Assert RESET# and  
GPIO[1] = 1?  
YES  
(1) PME de-asserts.  
(2) The Default WOL Ready Mode is  
enabled.  
Document Number: 001-94768 Rev. *C  
Page 13 of 35  
CYUSB3610  
Serial EEPROM Memory Map  
Table 6. Serial EEPROM Memory Map  
EEPROM OFFSET  
HIGH BYTE  
LOW BYTE  
Node ID 0 (Note 6)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
Node ID  
Node ID  
Node ID  
1
3
5
Node ID  
Node ID  
2
4
PID_HB  
VID_HB  
Flag  
PID_LB  
VID_LB  
EEPROM Checksum (Note 7)  
Reserved  
Reserved  
07h  
08h  
Max. Power for Self Power  
EndPoint1 for SS/HS  
Max. Power for Bus Power  
EndPoint1 for FS  
09h  
Language ID High Byte  
Language ID Low Byte  
Offset of Product String (0Eh)  
Offset of Manufacturer String (1Ah)  
Offset of Serial Number String (26h)  
Offset of BOS-type Descriptor (2Dh)  
0Ah  
Length of Product String (bytes)  
Length of Manufacturer String (bytes)  
Length of Serial Number String (bytes)  
Length of BOS-type Descriptor (bytes)  
0Bh  
0Ch  
0Dh  
19~0Eh  
25~1Ah  
2C~26h  
3B~2Dh  
3Ch  
Product String: (Max.) 24 bytes  
Manufacturer String: (Max.) 24 bytes  
Serial Number String: (Max.) 14 bytes  
BOS-type Descriptor: (Max.) 30 bytes  
Reserved  
Max. Burst: [7:4] for EP3, [3:0] for EP2  
Fixed_pattern (10 bytes)  
41~3Dh  
42h  
LED_Mode_HB  
LED_Mode_LB  
Notes  
6. The Node ID 0 value cannot be set to 0xFF and 1st bit of Node ID 0 cannot be set to “1” (i.e. cannot be set to multicast MAC address).  
7. The value of EEPROM Checksum field located at EEPROM offset 05h (low byte). The correct value must be equal to (0xFF - SUM [EEPROM offset 03h ~ 04h]). If  
SUM [EEPROM offset 03h ~ 04h] has carry, please add ‘1’ to its result.  
8. Total usage is about 134 bytes.  
Document Number: 001-94768 Rev. *C  
Page 14 of 35  
CYUSB3610  
Detailed Description  
The following sections provide detailed descriptions for some of the fields in memory maps of serial EEPROM.  
Node ID (00~02h)  
The Node ID 0 to 5 bytes represent the MAC address of the device, for example, if MAC address = 04-23-45-67-89-AB, then Node  
ID 0 = 04h, Node ID 1 = 23h, Node ID 2 = 45h, Node ID 3 = 67h, Node ID 4 = 89h, and Node ID 5 = ABh.  
Default values: Node ID {0, 1, 2, 3, 4, 5} = 00-0E-C6-F9-D0-00.  
Flag (EEPROM: 05h)  
Table 7. Flag (EEPROM: 05h)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PME_IND  
PME_TYPE  
PME_POL  
PME_PIN  
0
0
WOLLP  
RWU  
RWU: Remote Wakeup support.  
1: Indicate that this device supports Remote Wakeup (default).  
0: Not supported.  
WOLLP: Wake-On-LAN Low Power function.  
1: Enabled (default).  
0: Disabled.  
PME_PIN: PME / GPIO[0].  
1: Set GPIO[0] pin as PME (default).  
0: GPIO[0] pin is controlled by vendor command.  
PME_POL: PME pin active Polarity.  
1: PME active high (default).  
0: PME active low.  
PME_TYP: PME I/O Type.  
1: PME output is a Push-Pull driver (default).  
0: PME output to function as an open-drain buffer.  
PME_IND: PME indication.  
1: A 1.363 ms pulse active when detecting wake-up event.  
0: A static signal active when detecting wake-up event (default).  
Max. Power for Self/Bus Power (07h)  
They are Max power values’ setting of powered device for EEPROM at offset 07h.  
The default value of Bus Power is 3Eh.  
For USB 3.0, the power value is 496 mA (Unit = 8 mA).  
For USB 2.0, the power value is 248mA (Unit = 4 mA).  
Self power setting follows conversion above.  
Document Number: 001-94768 Rev. *C  
Page 15 of 35  
CYUSB3610  
EndPoint1 for SS/HS/FS (EEPROM:08h)  
The time interval (named “bInterval”) for polling Interrupt IN endpoint 1 for data transfers of SuperSpeed/High-Speed/Full-Speed is  
stored at EEPROM offset 08h. It is expressed in frames or microframes depending on the device operating speed (i.e. either  
1 millisecond or 125 μs units).  
The default “bInterval” value is 0Bh for Super-Speed/High-Speed (the polling time of endpoint 1 = 2(11-1) × 125 μs =128 ms) and is  
80h for Full-Speed (the polling time of endpoint 1 = 128 × 1 ms = 128 ms).  
Max. Burst for EP3/EP2 (EEPROM: 3Ch)  
This value is bMaxBurst field in SS endpoint companion descriptor.  
LED Mode (EEPROM: 42h)  
LED Mode defines the indication setting for LED_0/1/2/3 function of MFA[0/1/2/3] pins.  
Table 8. Bit 7~Bit 0: LED_Mode_LB  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
LED1_100  
LED1_10  
LED1_Active LED0_Duplex LED0_1000  
LED0_100  
LED0_10  
LED0_Active  
Table 9. Bit 15~Bit 8: LED_Mode_HB  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
1
LED2_Duplex LED2_1000  
LED2_100  
LED2_10  
LED2_Active LED1_Duplex LED1_1000  
Note: Bit 15 must be ‘1’ to enable the LED_mode setting; otherwise, it will work at default LED mode.  
The LED mode table is as below:  
Document Number: 001-94768 Rev. *C  
Page 16 of 35  
CYUSB3610  
Table 10. LED Mode Setting Table  
Full duplex  
Link speed (Mbps)  
Active  
Description of Indication  
(TX/RX)  
1000  
100  
2
10  
1
Bit  
4
3
0
LED_0  
0
0
0
0
0
USB3.0 Super Speed: It turns ON when device  
operates at USB3.0 Super Speed.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Active (Default for LED0)  
Link 10  
Link 10+Active  
Link 100  
Link 100+Active  
Link 100/10  
Link 100/10+Active  
Link 1000  
Link 1000+Active  
Link 1000/10  
Link 1000/10+Active  
Link 1000/100  
Link 1000/100+Active  
Link 1000/100/10  
Link 1000/100/10+Active  
Full duplex  
Bit  
9
8
7
6
5
LED_1  
0
0
0
0
0
USB3.0 Super Speed: It turns ON when device  
operates at USB3.0 Super Speed.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Active  
Link 10  
Link 10+Active  
Link 100  
Link 100+Active  
Link 100/10  
Link 100/10+Active  
Link 1000  
Link 1000+Active  
Link 1000/10  
Link 1000/10+Active  
Link 1000/100  
Link 1000/100+Active  
Link 1000/100/10  
Link 1000/100/10+Active  
Full duplex  
Document Number: 001-94768 Rev. *C  
Page 17 of 35  
CYUSB3610  
Table 10. LED Mode Setting Table (continued)  
Link speed (Mbps)  
Active  
Full duplex  
Description of Indication  
(TX/RX)  
1000  
13  
100  
12  
0
10  
11  
0
Bit  
14  
10  
LED_2  
0
0
0
USB3.0 Super Speed: It turns ON when device  
operates at USB3.0 Super Speed.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Active  
Link 10  
Link 10+Active  
Link 100  
Link 100+Active  
Link 100/10  
Link 100/10+Active  
Link 1000  
Link 1000+Active  
Link 1000/10  
Link 1000/10+Active  
Link 1000/100  
Link 1000/100+Active  
Link 1000/100/10  
Link 1000/100/10+Active  
Full duplex  
Bit  
4
3
2
1
0
LED_3  
0
0
0
0
1
USB3.0 Super Speed: The LED_0 mode MUST  
be set to “Active” only when the LED_3 is used.  
It will be ON when device operates at USB3.0  
and  
keep  
flashing  
when  
device  
is  
receiving/transmitting packets.  
Fixed_pattern (EEPROM: 41~3Dh)  
Please write these 10 bytes of fixed_pattern with hexadecimal (from low bytes to high bytes) = “40 4A 40 00 40 30 0D 49 90 41”.  
Document Number: 001-94768 Rev. *C  
Page 18 of 35  
CYUSB3610  
Internal Memory Description  
The internal Memory data is a fixed value. User can’t modify it.  
Table 11. Internal Memory Description  
Field Definition  
Default Values  
00 0E C6 F9 D0 00  
Description  
Node ID  
Node ID 0 ~ 5  
PID of GX3  
Product ID (PID)  
Vender ID (VID)  
10 36  
B4 04  
Cypress VID  
Flag - Remote Wakeup and PME 73  
setting, etc.  
Enable the “remote wakeup” and Low  
Power WOL function (Note 9)  
Max Power for Bus Power  
3E  
496 mA for USB 3.0  
248 mA for USB 2.0  
(Note 10)  
Max Power for Self Power  
01  
8 mA for USB 3.0  
4 mA for USB 2.0  
(Note 10)  
Length of Product String  
03  
Product String Length (Note 11)  
Manufacturer String Length (Note 11)  
“GX3”  
Length of Manufacturer String  
Product String (Max. 12 bytes)  
07  
41 58 33 00 00 00 00 00 00 00 00 00  
43 79 70 72 65 73 73 00 00 00  
Manufacture String (Max. 10  
bytes)  
“Cypress”  
Fixed Pattern  
40 4A 40 00 40 30 0D 49 90 41  
Fixed pattern to be written  
External EEPROM Description  
User can assign the specific VID/PID, Serial Number, Manufacture String, Product String, etc. user defined fields by external  
EEPROM. Please refer to GX3 EEPROM User Guide document for more details about how to configure GX3 EEPROM content.  
Note the EEPROM checksum field should be changed together with the VID/PID fields.  
Notes  
9. Remote Wakeup/PME Settings  
The offset 05h field of GX3 EEPROM is used to configure the Remote Wakeup and PME functions. Please refer to Serial EEPROM Memory Map on page 14 for the  
detailed description of EEPROM offset 05h.  
The RWU bit of GX3 EEPROM offset 05h is used to configure the “bmAttributes” field of Standard Configuration Descriptor that will be reported to the USB host  
controller when the GET_DESCRIPTOR command with CONFIGURATION type is issued. Please refer to “Section 9.6.3 Configuration” of Universal Serial Bus 3.0  
Spec for the detailed description of the “bmAttributes” field of Standard Configuration Descriptor.  
The power mode about Bus-powered or Self-powered is decided by the SELF_PWR pin when chip powers on. This will be updated to the “bmAttributes” field of  
Standard Configuration Descriptor.  
10. Max Power Setting  
The low byte of GX3 EEPROM offset 07h (for bus-powered) field and high byte of GX3 EEPROM offset 07h (for self-powered) field are used to configure the  
“bMaxPower” field of Standard Configuration Descriptor that will be reported to the USB host controller when the GET_DESCRIPTOR command with  
CONFIGURATION type is issued. Please refer to “Section 9.6.3 Configuration” of Universal Serial Bus 3.0 Spec for the detailed description of the “bMaxPower” field  
of Standard Configuration Descriptor. These fields are used to define the Maximum power consumption of the USB device drawn from the USB bus in this specific  
configuration when the device is fully operational.  
11. Product/Manufacturer/Serial Number String Settings  
The “Offset” fields of Product/Manufacturer/Serial Number String are fixed in GX3 EEPROM memory map. Please DO NOT change the recommended values of these  
fields.  
If you need to change the Product/Manufacturer/Serial Number strings on your GX3 EEPROM, please modify the “Length” fields of Product/Manufacturer/Serial  
Number String to meet the exact string length of your Product/Manufacturer/Serial Number strings.  
Document Number: 001-94768 Rev. *C  
Page 19 of 35  
CYUSB3610  
USB Configuration Structure  
GX3 supports only one USB configuration, one interface and four USB endpoints. The four endpoints are defined as below:  
Endpoint 0: Control endpoint. It is used for configuring the device.  
Endpoint 1: Interrupt endpoint. It is used for reporting network Link status.  
Endpoint 2: Bulk IN endpoint. It is used for receiving Ethernet Packet.  
Endpoint 3: Bulk OUT endpoint. It is used for transmitting Ethernet Packet.  
Document Number: 001-94768 Rev. *C  
Page 20 of 35  
CYUSB3610  
Electrical Specifications  
DC Characteristics  
Absolute Maximum Ratings  
Table 12. Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
Unit  
V
VCCK  
Digital core power supply  
–0.5 to 1.44  
–0.5 to 1.6  
–0.5 to 1.6  
–0.1 to 1.26  
–0.1 to 1.26  
–0.5 to 4.2  
–0.5 to 4.6  
–0.5 to 4.6  
–0.4 to 3.7  
–0.4 to 3.7  
–0.5 to 4.2  
–0.5 to 5.8  
U3TXVDDQ  
U3RXVDDQ  
E12VDDQ  
E12VCC  
VIO33  
Analog Power for USB Transceiver. 1.2 V  
Analog Power for USB Transceiver. 1.2 V  
Analog Power for Ethernet PHY. 1.2 V  
Analog Power for Ethernet PHY. 1.2 V  
Power supply of 3.3 V I/O  
V
V
V
V
V
CVDDQ  
A3V3  
Power supply of 3.3 V for clock pin.  
Analog Power 3.3 V for USB Transceiver.  
Analog Power for Ethernet PHY. 3.3 V  
Analog Power for Ethernet PHY. 3.3 V  
Input voltage of 3.3 V I/O  
V
V
E33VDDQ  
E33VCC  
VIN3  
V
V
V
Input voltage of 3.3 V I/O with 5 V tolerant  
Storage temperature  
V
TSTG  
IIN  
–65 to 150 °C  
DC input current  
50  
50  
mA  
mA  
IOUT  
Output short circuit current  
Notes:  
1.Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the  
optional sections of this datasheet. Exposure to absolute maximum rating condition for extended periods may affect device reliability.  
2. The input and output negative voltage ratings may be exceeded if the input and output currents under ratings are observed.  
Document Number: 001-94768 Rev. *C  
Page 21 of 35  
CYUSB3610  
Recommended Operating Conditions  
Table 13. Recommended Operating Conditions  
Symbol  
VCCK  
Parameter  
Min  
1.14  
1.14  
1.14  
1.14  
1.14  
3.13  
3.13  
3.13  
2.97  
2.97  
3.13  
3.13  
Typ  
1.2  
1.2  
1.2  
1.2  
1.2  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
Max  
1.26  
1.26  
1.26  
1.26  
1.26  
3.47  
3.47  
3.47  
3.63  
3.63  
3.47  
5.25  
125  
Unit  
V
Digital core power supply  
U3TXVDDQ  
U3RXVDDQ  
E12VDDQ  
E12VCC  
VIO  
Analog Power for USB Transceiver. 1.2 V  
Analog Power for USB Transceiver. 1.2 V  
Analog Power for Ethernet PHY. 1.2 V  
Analog Power for Ethernet PHY. 1.2 V  
Power supply of 3.3 V I/O  
V
V
V
V
V
CVDDQ  
A3V3  
Power supply of 3.3 V for clock pin.  
Analog Power 3.3 V for USB Transceiver.  
Analog Power for Ethernet PHY. 3.3 V  
Analog Power for Ethernet PHY. 3.3 V  
Input voltage of 3.3 V I/O  
V
V
E33VDDQ  
E33VCC  
VIN3  
V
V
V
Input voltage of 3.3 V I/O with 5 V tolerance  
Maximum junction operating temperature  
Ambient operating temperature  
V
Tj  
°C  
°C  
Ta  
0
70  
Leakage Current and Capacitance  
Table 14. Leakage Current and Capacitance  
Symbol  
Parameter  
Conditions  
VIN = 3.3 V or 0 V  
Min  
Typ  
Max  
Unit  
IIN  
True 3.3 V I/O input leakage  
current  
≤±1  
μA  
VIN 5 V or 0 V  
=
3.3 V with 5 V tolerance I/O input  
leakage current  
<±1  
pF  
CIN  
Input capacitance  
3.3 V I/O cells  
2.25  
3.6  
pF  
pF  
3.3 V with 5 V tolerant I/O cells  
Note: CIN includes the cell layout capacitance and pad capacitance (Estimated to be 0.5 pF).  
Document Number: 001-94768 Rev. *C  
Page 22 of 35  
CYUSB3610  
DC Characteristics of 3.3 V I/O Pins  
Table 15. DC Characteristics of 3.3 V I/O Pins  
Symbol  
Parameter  
Input low voltage  
Conditions  
Min  
Typ  
Max  
0.8  
Unit  
V
Vil  
LVTTL  
LVTTL  
Vih  
Vt-  
Input high voltage  
2.0  
0.8  
V
Schmitt trigger negative going  
threshold voltage  
1.1  
V
Vt+  
Vol  
Schmitt trigger positive going  
threshold voltage  
1.6  
2.0  
V
Output low voltage  
Output high voltage  
|Iol| = 4~8mA  
0.4  
V
V
V
Voh  
Vopu [12]  
|Ioh| = 4~8mA  
2.4  
Output pull-up voltage for 5 V  
tolerance I/O cells  
PU = High, PD = Low E = 0,  
|I | = 1 μA  
pu  
VIO  
0.9  
Rpu  
Rpd  
Input pull-up resistance  
PU = High, PD = Low  
PU = Low, PD = High  
40  
40  
75  
75  
190  
190  
KΩ  
KΩ  
Input pull-down resistance  
Note  
12. This parameter indicates that the pull-up resistor for the 5 V tolerance I/O cells cannot reach the V DC level even without the DC loading current.  
IO  
Document Number: 001-94768 Rev. *C  
Page 23 of 35  
CYUSB3610  
Thermal Characteristics  
Table 16. Thermal Characteristics  
Description  
Thermal resistance of junction to case  
Thermal resistance of junction to ambient  
Symbol  
JC  
Rating  
8.3  
Units  
C/W  
C/W  
°
JA  
21.4  
°
Note: JA, JC defined as below  
JA = (TJ – TA) / P  
JC = (TJ – TC) / P  
TJ: maximum junction temperature (°C)  
TA: ambient or environment temperature (°C)  
TC: the top centre of compound surface temperature (°C)  
P: input power (watts)  
Document Number: 001-94768 Rev. *C  
Page 24 of 35  
CYUSB3610  
Power Consumption  
Table 17. Power Consumption  
Symbol  
IVCC12  
Description  
Conditions  
Min  
Typ  
335  
67  
Max  
Unit  
mA  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 1 Gbps (full  
duplex) mode and USB Super  
Speed mode  
IVCC33  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 100 Mbps  
full duplex mode and USB Super  
Speed mode  
189  
41  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 10 Mbps  
half duplex mode and USB Super  
Speed mode  
151  
48  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 1 Gbps  
(full duplex) mode and USB High  
Speed mode  
228  
79  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 100 Mbps  
full duplex mode and USB High  
Speed mode  
85  
50  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 10 Mbps  
half duplex mode and USB High  
Speed mode  
48  
53  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 1 Gbps  
(full duplex) mode and USB Full  
Speed mode  
216  
63  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 100 Mbps  
full duplex mode and USB Full  
Speed mode  
77  
40  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 10 Mbps  
half duplex mode and USB Full  
Speed mode  
42  
46  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Ethernet unlink (Disable  
AutoDetach) and USB Super  
Speed mode  
151  
29  
mA  
mA  
IVCC12  
IVCC33  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Ethernet unlink (Enable  
AutoDetach)  
23  
12  
mA  
mA  
mA  
mA  
USB Suspend and Ethernet is  
1 Gbps: enable Remote WakeUp  
and disable WOLLP (WOL Low  
Power)  
200  
47  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
USB Suspend and enable  
Remote WakeUp and enable  
WOLLP to 10Mbps  
25  
13  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Suspend and disable Remote  
WakeUp (Refer to below  
1.5  
1.7  
mA  
mA  
ISYSTEM(Suspend) item for total  
power consumption at Suspend  
mode)  
IDLE Power Consumption for Etherent Linked in EEE / non-EEE  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 1 Gbps  
mode and USB Super Speed  
mode (Ethernet linked in EEE)  
177  
32  
mA  
mA  
Document Number: 001-94768 Rev. *C  
Page 25 of 35  
CYUSB3610  
Table 17. Power Consumption (continued)  
Symbol  
IVCC12  
Description  
Conditions  
Min  
Typ  
320  
66  
Max  
Unit  
mA  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 1 Gbps  
mode and USB Super Speed  
mode (Ethernet linked in  
non-EEE)  
IVCC33  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
USB Suspend and enable  
RemoteWakeUp(Ethernetlinked  
in EEE 1Gbps mode)  
56  
mA  
mA  
0.4  
Green Ethernet Cable-Length Power Saving (GEPS)  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 1 Gbps  
mode @ 1.5 meters and USB  
Super Speed mode (Enable  
GEPS)  
320  
66  
mA  
mA  
IVCC12  
IVCC33  
Current Consumption at 1.2 V  
Current Consumption at 3.3 V  
Operating at Ethernet 1 Gbps  
mode @ 1.5 meters and USB  
Super Speed mode (Disable  
GEPS)  
328  
69  
mA  
mA  
IDEVICE  
1.2V/3.3Vpowerconsumptionat 1.2 V (Operating at Super  
335  
67  
mA  
mA  
mA  
full loading (chip only)  
Speed/1 Gbps mode)  
3.3 V (Operating at Super  
Speed/1 Gbps mode)  
ISYSTEM  
Total power consumption at full VBUS of 5.0 V ((Operating at  
161  
loading (demo board)  
Super Speed/1 Gbps mode),  
(Using Switching regulator with  
dual VOUT 3.3/1.2 V))  
ISYSTEM(Suspend) Total power consumption at  
Suspend mode (demo board)  
VBUS of 5.0 V ((Disable Remote  
WakeUp), (Using Switching  
regulator with dual VOUT  
3.3/1.2 V))  
1.92  
mA  
Document Number: 001-94768 Rev. *C  
Page 26 of 35  
CYUSB3610  
Power-up Sequence  
At power-up, the GX3 requires the A3V3/CVDDQ/VIO/E33VDDQ/E33VCC power supply to rise to nominal operating voltage within  
Trise3 and the VCC12 (Note) power supply to rise to nominal operating voltage within Trise2.  
Trise3  
3.3 V  
A3V3/CVDDQ/VIO/  
E33VDDQ/E33VCC  
0 V  
Tdelay32  
Trise2  
1.2 V  
VCC12  
0 V  
Trst_pu  
RESET#  
Tclk  
XTALIN/  
XTALOUT  
Note: The VCC12 includes VCCK, E12VCC, and E12VDDQ/TX/RX.  
Table 18. Power-up Sequence Parameters  
Symbol  
Trise3  
Parameter  
Condition  
From 0 V to 3.3 V  
From 0 V to 1.2 V  
Min  
Typ  
Max  
10  
10  
5
Unit  
ms  
ms  
ms  
ms  
3.3 V power supply rise time  
1.2 V power supply rise time  
3.3 V rise to 1.2 V rise time delay  
Trise2  
Tdelay32  
–5  
1 [14]  
25 MHz crystal oscillator stable FromVCC3IO= 3.3V to stableclock  
time period of XTALIN or XTALOUT  
Tclk  
RESET# low level interval time From VCC12 = 1.2 V and  
from power-up VCC3IO = 3.3 V to RESET# going  
high  
0 [13]  
10  
ms  
Trst_pu  
Notes  
13. When the VCC12 power-up, the internal power-on-reset circuit will generate a few us (micro second) of hardware reset to chip and will start operation after the  
XTALIN/N 25 MHz clock signals are stable.  
14. The Tclk timing is depended on the 25 MHz crystal circuit. The 1 ms Tclk timing is reference timing based on the GX3 reference 25 MHz crystal circuit. Please refer  
to GX3 reference schematic for details.  
Document Number: 001-94768 Rev. *C  
Page 27 of 35  
CYUSB3610  
AC Timing Characteristics  
Notice that the following AC timing specifications for output pins are based on CL (Output load) equal to 50 pF.  
Clock Timing  
Table 19. Clock Timing Parameters  
Symbol  
TP_XTALIN  
TH_XTALIN  
TL_XTALIN  
Parameter  
XTALIN clock cycle time  
XTALIN clock high time  
XTALIN clock low time  
Condition  
Min  
Typ  
40.0  
20.0  
20.0  
Max  
Unit  
ns  
ns  
ns  
Reset Timing  
XTALIN  
RESET#  
Trst  
Table 20. Reset Timing Parameters  
Symbol  
Trst  
Description  
Min  
Typ  
Max  
Unit  
Reset pulse width after XTALIN is  
running  
125  
250000 XTALIN clock cycle [15]  
Note  
15. If the system applications require using hardware reset pin, RESET#, to reset GX3 during device initialization or normal operation after VBUS pin is asserted, the  
above timing spec (Min = 5 μs, Max =10 ms) of RESET# should be met.  
Document Number: 001-94768 Rev. *C  
Page 28 of 35  
CYUSB3610  
Serial EEPROM Timing  
Table 21. Serial EEPROM Timing Parameters  
Symbol  
Tclk  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK clock cycle time  
5120  
Tch  
Tcl  
SCK clock high time  
2560  
SCK clock low time  
2560  
Tdv  
Tod  
Tscs  
Thcs  
Tlcs  
Ts  
SDA output valid to SCK rising edge time  
SCK rising edge to SDA output delay time  
CS output valid to SCK rising edge time  
SCK falling edge to CS invalid time  
Minimum CS low time  
2560  
2562  
2560  
7680  
23039  
20  
SDA input setup time  
Th  
SDA input hold time  
0
Document Number: 001-94768 Rev. *C  
Page 29 of 35  
CYUSB3610  
Package Information  
68-pin QFN 8 × 8 package  
Figure 2. 68-pin QFN (8 × 8 × 0.85 mm) LT68D 6.2 × 6.2 mm E-Pad (Sawn Type) Package Outline, 001-96836  
001-96836 **  
Document Number: 001-94768 Rev. *C  
Page 30 of 35  
CYUSB3610  
Recommended PCB Footprint for 68-pin QFN 8x8 package  
Table 22. Details  
Symbol  
Description  
Typical Dimension  
0.40 mm  
e
b
Lead pitch  
Pad width  
0.23 mm  
L
Pad length  
0.80 mm  
U
V
W
6.30 mm  
6.63 mm  
7.20 mm  
Document Number: 001-94768 Rev. *C  
Page 31 of 35  
CYUSB3610  
Ordering Information  
Table 23. Ordering Information  
Part Number  
Description  
CYUSB3610-68LTXC  
68 PIN, QFN Package, Commercial Grade Temperature Range 0 °C to +70 °C (Green, Lead-Free)  
Document Number: 001-94768 Rev. *C  
Page 32 of 35  
CYUSB3610  
Acronyms  
Document Conventions  
Units of measure  
Acronym  
Description  
Checksum Offload Engine  
Energy Efficient Ethernet  
COE  
EEE  
Symbol  
°C  
Unit of measure  
degree Celsius  
gigabits per second  
kilohm  
GPIO  
MDI  
General Purpose Input Output  
Medium Dependent Interface  
No Connection  
Gbps  
kΩ  
NC  
Mbps  
MHz  
µW  
mA  
mm  
ms  
megabits per second  
megahertz  
RISC  
USB  
UTP  
Reduced Instruction Set Computer  
Universal Serial Bus  
microwatt  
Unshielded Twisted Pair  
Virtual Local Area Network  
Wake-On LAN  
milliampere  
millimeter  
VLAN  
W-LAN  
millisecond  
nanosecond  
picofarad  
ns  
pF  
ppm  
V
parts per million  
volt  
Document Number: 001-94768 Rev. *C  
Page 33 of 35  
CYUSB3610  
Document History Page  
Document Title: CYUSB3610, EZ-USB GX3: SuperSpeed USB to Gigabit Ethernet Bridge Controller  
Document Number: 001-94768  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
4703075  
4870097  
5713474  
6192311  
RAJV  
MDDD  
05/29/2015 New data sheet.  
*A  
*B  
*C  
08/03/2015 Changed status from Preliminary to Final.  
04/26/2017 Updated logo and Copyright.  
AESATMP8  
MDDD  
05/31/2018 Updated to new template.  
Completing Sunset Review.  
Document Number: 001-94768 Rev. *C  
Page 34 of 35  
CYUSB3610  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2015-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-94768 Rev. *C  
Revised May 31, 2018  
Page 35 of 35  
厂商 型号 描述 页数 下载

CYPRESS

CYU001M16OFFA-85BVI [ Pseudo Static RAM, 1MX16, 85ns, CMOS, PBGA48, 6 X 8 MM, 1 MM HEIGHT, BGA-48 ] 14 页

CYPRESS

CYU01M16SCCU 16兆位( 1M ×16 )伪静态RAM[ 16-Mbit (1M x 16) Pseudo Static RAM ] 12 页

CYPRESS

CYU01M16SCCU-70BVXI 16兆位( 1M ×16 )伪静态RAM[ 16-Mbit (1M x 16) Pseudo Static RAM ] 12 页

CYPRESS

CYU01M16SCE 16兆位( 1M ×16 )伪静态RAM[ 16-Mbit (1M x 16) Pseudo Static RAM ] 11 页

CYPRESS

CYU01M16SCEU-70BVXI 16兆位( 1M ×16 )伪静态RAM[ 16-Mbit (1M x 16) Pseudo Static RAM ] 11 页

CYPRESS

CYU01M16SCEU-70BVXIT [ Pseudo Static RAM, 1MX16, 70ns, CMOS, PBGA48, 6 X 8 MM, 1 MM HEIGHT, LEAD FREE, VFBGA-48 ] 11 页

CYPRESS

CYU01M16SCG 16兆位( 1M ×16 )伪静态RAM[ 16-Mbit (1M x 16) Pseudo Static RAM ] 11 页

CYPRESS

CYU01M16SCG-70BVXI 16兆位( 1M ×16 )伪静态RAM[ 16-Mbit (1M x 16) Pseudo Static RAM ] 11 页

CYPRESS

CYU01M16SFCU 16兆位( 1M ×16 )伪静态RAM[ 16-Mbit (1M x 16) Pseudo Static RAM ] 12 页

CYPRESS

CYU01M16SFCU-70BVXI 16兆位( 1M ×16 )伪静态RAM[ 16-Mbit (1M x 16) Pseudo Static RAM ] 12 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.227962s