CYU01M16SCCU
MoBL3™
PRELIMINARY
16-Mbit (1M x 16) Pseudo Static RAM
portable applications such as cellular telephones. The device
can be put into standby mode when deselected (CE1 HIGH or
CE2 LOW or both BHE and BLE are HIGH). The input/output
pins (I/O0 through I/O15) are placed in a high-impedance state
when: deselected (CE1 HIGH or CE2 LOW), outputs are
disabled (OE HIGH), both Byte High Enable and Byte Low
Enable are disabled (BHE, BLE HIGH), or during a write
operation (CE1 LOW and CE2 HIGH and WE LOW).
Features
• Wide voltage range: 2.2V–3.6V
• Access Time: 70 ns
• Ultra-low active power
— Typical active current: 3 mA @ f = 1 MHz
— Typical active current: 18 mA @ f = fmax
• Ultra low standby power
Writing to the device is accomplished by taking Chip Enable
(CE1 LOW and CE2 HIGH) and Write Enable (WE) input LOW.
If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O0
through I/O7), is written into the location specified on the
address pins (A0 through A19). If Byte High Enable (BHE) is
LOW, then data from I/O pins (I/O8 through I/O15) is written into
the location specified on the address pins (A0 through A19).
• 16-word Page Mode
• Automatic power-down when deselected
• CMOS for optimum speed/power
• Offered in a 48-ball BGA Package
• Operating Temperature: –40°C to +85°C
Reading from the device is accomplished by taking Chip
Enables (CE1 LOW and CE2 HIGH) and Output Enable (OE)
LOW while forcing the Write Enable (WE) HIGH. If Byte Low
Enable (BLE) is LOW, then data from the memory location
Functional Description[1]
The CYU01M16SCCU is a high-performance CMOS Pseudo
Static RAM organized as 1M words by 16 bits that supports an
asynchronous memory interface. This device features
advanced circuit design to provide ultra-low active current.
This is ideal for providing More Battery Life™ (MoBL®) in
specified by the address pins will appear on I/O0 to I/O7. If Byte
High Enable (BHE) is LOW, then data from memory will appear
on I/O8 to I/O15. Refer to the truth table for a complete
description of read and write modes.
Logic Block Diagram
DATA IN DRIVERS
A
8
9
A
A
A
A
A
10
11
12
13
14
1M x 16
RAM Array
I/O –I/O
0
7
A
A
A
A
15
16
17
18
I/O –I/O
8
15
A
A
19
COLUMN DECODER
BHE
WE
CE
2
CE
1
OE
BLE
CE
CE
2
Power -Down
Circuit
1
BHE
BLE
Note:
1. For best-practice recommendations, please refer to the Cypress application note “System Design Guidelines” on http://www.cypress.com.
Cypress Semiconductor Corporation
Document #: 38-05601 Rev. *B
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised January 25, 2006