找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

8V43FS92432PRGI

型号:

8V43FS92432PRGI

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

27 页

PDF大小:

392 K

1360MHz Dual Output LVPECL  
Clock Synthesizer  
8V43FS92432  
DATA SHEET  
General Description  
Features  
The 8V43FS92432 is a 3.3V-compatible, PLL based clock  
synthesizer targeted for high performance clock generation in  
mid-range to high-performance telecom, networking, and computing  
applications. With output frequencies from 21.25MHz to 1360MHz  
and the support of two differential PECL output signals, the device  
meets the needs of the most demanding clock applications.  
21.25MHz to 1360MHz synthesized clock output signal  
Two differential, LVPECL-compatible high-frequency outputs  
Output frequency programmable through 2-wire I2C bus or  
parallel interface  
On-chip crystal oscillator for reference frequency generation  
Alternative LVCMOS compatible reference clock input  
Synchronous clock stop functionality for both outputs  
LOCK indicator output (LVCMOS)  
LVCMOS compatible control inputs  
Fully integrated PLL  
3.3-V power supply  
48-lead LQFP  
48-lead Pb-free package available  
SiGe Technology  
Ambient temperature range: –40°C to +85°C  
The 8V43FS92432 is a programmable high-frequency clock source  
(clock synthesizer). The internal PLL generates a high-frequency  
output signal based on a low-frequency reference signal. The  
frequency of the output signal is programmable and can be changed  
on the fly for frequency margining purpose.  
The internal crystal oscillator uses the external quartz crystal as the  
basis of its frequency reference. Alternatively, a LVCMOS compatible  
clock signal can be used as a PLL reference signal. The frequency of  
the internal crystal oscillator is divided by a selectable divider and  
then multiplied by the PLL. Its output is scaled by a divider that is  
configured by either the I2C or parallel interfaces. The crystal  
oscillator frequency fXTAL, the PLL pre-divider P, the feedback-divider  
M, and the PLL post-divider N determine the output frequency. The  
feedback path of the PLL is internal.  
Applications  
The PLL post-divider N is configured through either the I2C or the  
parallel interfaces, and can provide one of six division ratios (2, 4, 8,  
16, 32, 64). This divider extends the performance of the part while  
providing a 50% duty cycle. The high-frequency outputs, QA and QB,  
are differential and are capable of driving a pair of transmission lines  
terminated 50to VCC – 2.0 V. The second high-frequency output,  
QB, can be configured to run at either 1x or 1/2x of the clock  
frequency or the first output (QA). The positive supply voltage for the  
internal PLL is separated from the power supply for the core logic  
and output drivers to minimize noise induced jitter.  
Programmable clock source for server, computing, and  
telecommunication systems  
Frequency margining  
Oscillator replacement  
The configuration logic has two sections: I2C and parallel. The  
parallel interface uses the values at the M[9:0], NA[2:0], NB, and P  
parallel inputs to configure the internal PLL dividers. The parallel  
programming interface has priority over the serial I2C interface. The  
serial interface is I2C compatible and provides read and write access  
to the internal PLL configuration registers. The lock state of the PLL  
is indicated by the LVCMOS-compatible LOCK output.  
8V43FS92432 REVISION 1 10/28/15  
1
©2015 INTEGRATED DEVICE TECHNOLOGY, INC.  
8V43FS92432 DATA SHEET  
Block Diagram  
f
QA  
QA  
QB  
÷NA  
f
VCO  
REF_CLK  
XTAL1  
PLL  
÷M  
÷P  
f
REF  
OSC  
f
XTAL2  
REF_SEL  
TEST_EN  
QB  
÷NB  
SDA  
SCL  
PLL  
Configuration  
Registers  
ADR[1:0]  
nPLOAD  
LOCK  
I
2C Control  
M[9:0]  
NA[2:0]  
NB  
P
nCLK_STOP[A:B]  
nBYPASS  
nMR  
Pin Assignment  
It is recommended to use an external RC filter for the analog  
VCC_PLL supply pin. Please see the application section for details.  
36 35 34 33 32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
M9  
GND  
NA2  
M8  
M7  
M6  
M5  
GND  
M4  
M3  
M2  
M1  
M0  
VCC  
NA1  
NA0  
nPLOAD  
VCC  
nMR  
SDA  
SCL  
ADR1  
ADR0  
P
1
2
3
4
5
6
7
8
9
10 11 12  
48-pin, 7mm x 7mm LQFP Package  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
2
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
Pin Description and Characteristic Tables  
Table 1. Pin Description Table  
Type1  
Number  
Name  
VCC  
Description  
1
2
3
4
Power  
Input  
Positive supply for I/O and core.  
Selects the static circuit bypass mode.  
Power supply ground.  
nBYPASS  
GND  
Pullup  
Power  
Power  
VCC  
Positive supply for I/O and core.  
Positive power supply for the PLL (analog power supply). It is recommended  
to use an external RC filter for the analog power supply pin VCC_PLL.  
5
VCC_PLL  
Power  
6
7
REF_SEL  
REF_CLK  
Input  
Input  
Power  
Input  
Input  
Pullup  
Selects the reference clock input.  
Pulldown  
PLL external single-ended reference input. LVCMOS/LVTTL interface levels.  
Power supply ground.  
8
GND  
9
nCLK_STOPA  
nCLK_STOPB  
Pullup  
Pullup  
Output Qx disable in logic low state.  
10  
Output Qx disable in logic low state.  
Crystal  
Input  
11  
12  
XTAL1  
XTAL2  
Crystal input.  
Crystal  
Output  
Crystal output.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VCC  
M0  
M1  
M2  
M3  
M4  
GND  
M5  
M6  
M7  
M8  
M9  
Power  
Input  
Input  
Input  
Input  
Input  
Power  
Input  
Input  
Input  
Input  
Input  
Positive supply for I/O and core.  
PLL feedback divider configuration.  
PLL feedback divider configuration.  
PLL feedback divider configuration.  
PLL feedback divider configuration.  
PLL feedback divider configuration.  
Power supply ground.  
Pulldown  
Pulldown  
Pullup  
Pulldown  
Pullup  
Pullup  
Pullup  
PLL feedback divider configuration.  
PLL feedback divider configuration.  
PLL feedback divider configuration.  
PLL feedback divider configuration.  
PLL feedback divider configuration.  
Pullup  
Pullup  
Pulldown  
Factory test mode enable. This input must be set to logic low level in all  
applications of the device.  
25  
TEST_EN  
Input  
Pulldown  
LVCMOS  
26  
27  
28  
29  
30  
31  
32  
33  
LOCK  
GND  
nQB  
QB  
Output  
Power  
Output  
Output  
Power  
Power  
Output  
Output  
PLL lock indicator.  
Power supply ground.  
LVPECL  
LVPECL  
High frequency clock output.  
High frequency clock output.  
Positive supply for I/O and core.  
Power supply ground.  
VCC  
GND  
nQA  
QA  
LVPECL  
LVPECL  
High frequency clock output.  
High frequency clock output.  
REVISION 1 10/28/15  
3
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Table 1. Pin Description Table  
Type1  
Number  
34  
Name  
VCC  
Description  
Power  
Input  
Power  
Power  
Input  
Input  
Input  
Input  
Power  
Input  
I/O  
Positive supply for I/O and core.  
PLL post-divider configuration for output QB.  
Positive supply for I/O and core.  
Power supply ground.  
35  
NB  
Pulldown  
36  
VCC  
37  
GND  
NA2  
38  
Pulldown  
Pullup  
PLL post-divider configuration for output QA.  
PLL post-divider configuration for output QA.  
PLL post-divider configuration for output QA.  
Selects the programming interface.  
Positive supply for I/O and core.  
Device master reset.  
39  
NA1  
40  
NA0  
Pulldown  
Pulldown  
41  
nPLOAD  
VCC  
42  
43  
nMR  
SDA  
SCL  
Pullup  
Pullup  
44  
I2C data.  
45  
Input  
Input  
Input  
Input  
Pullup  
I2C clock.  
46  
ADR1  
ADR0  
P
Pulldown  
Pulldown  
Pullup  
Selectable two bits of the I2C slave address.  
Selectable two bits of the I2C slave address.  
PLL pre-divider configuration.  
47  
48  
NOTE 1. Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics table  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
2
RPULLUP  
75  
75  
k  
RPULLDOWN Input Pulldown Resistor  
k  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
4
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
Table 3. Function Table  
Control  
Default1  
0
1
Inputs  
REF_SEL  
1
Selects REF_CLK input as PLL reference clock Selects the XTAL interface as PLL reference clock  
PLL feedback divider (10-bit) parallel programming interface  
PLL post-divider parallel programming interface. See Table 10  
PLL post-divider parallel programming interface. See Table 11  
PLL pre-divider parallel programming interface. See Table 9  
Selects the parallel programming interface. The  
M[9:0]  
NA[2:0]  
NB  
01 1111 0100b2  
010  
0
P
1
internal PLL divider settings (M, NA, NB and P)  
Selects the serial (I2C) programming interface. The  
are equal to the setting of the hardware pins.  
internal PLL divider settings (M, NA, NB and P) are  
Leaving the M, NA, NB and P pins open (floating)  
set and read through the serial interface.  
nPLOAD  
0
results in a default PLL configuration with fOUT  
=
250MHz. See application/programming section.  
ADR[1:0]  
00  
Address Bit = 0  
Address Bit = 1  
SDA, SCL  
See Programming the 8V43FS92432  
PLL function bypassed  
QA = fREF ÷ NA and  
fQB = fREF÷ (NA · NB)  
PLL function enabled:  
fQA = (fREF ÷ P) · M ÷ NA and  
fQB = (fREF ÷ P) · M ÷ (NA · NB)  
nBYPASS  
1
0
1
f
TEST_EN  
Application Mode. Test mode disabled.  
Factory test mode is enabled  
Output Qx is disabled in logic low state.  
Synchronous disable is only guaranteed if  
NB = 0.  
nCLK_STOP[A:B]  
Output Qx is synchronously enabled  
The device is reset. The output frequency is zero  
and the outputs are asynchronously forced to  
logic low state.  
After releasing reset (upon the rising edge of  
nMR and independent on the state of nPLOAD),  
the 8V43FS92432 reads the parallel interface (M,  
NA, NB and P) to acquire a valid startup  
frequency configuration.  
The PLL attempts to lock to the reference signal.  
The tLOCK specification applies.  
nMR  
See application/programming section.  
Outputs  
LOCK  
PLL is not locked  
PLL is frequency locked  
NOTE 1. Default states are set by internal input pull-up or pull-down resistors of 75k  
NOTE 2. If fREF = 16MHz, the default configuration will result in a output frequency of 250MHz.  
REVISION 1 10/28/15  
5
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress  
specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC  
Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.  
Table 4. Absolute Maximum Ratings  
Symbol  
VCC  
VIN  
Characteristics  
Min  
-0.3  
-0.3  
0
Max  
3.6  
Unit  
V
Supply Voltage  
DC Input Voltage  
VCC + 0.3  
2
V
VI  
Crystal Input Voltage  
DC Output Voltage  
V
VOUT  
IIN  
IOUT  
TS  
TFUNC  
TJ  
-0.3  
VCC + 0.3  
20  
V
DC Input Current  
mA  
mA  
°C  
°C  
°C  
V
DC Output Current  
50  
Storage Temperature  
Functional Temperature Range  
Operating Junction Temperature  
ESD Human Body Model1  
ESD Charged Device Model1  
-65  
125  
TA = -40  
TA = +85  
125  
HBM  
CDM  
2000  
500  
V
NOTE 1. According to JEDEC/JS-001-2012/JESD22-C101E.  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
6
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
Table 5. DC Characteristics, VCC = 3.3 V 5%, GND = 0V, TJ = –40°C to +85°C  
Symbol Parameter Condition  
LVCMOS Control Inputs (M[9:0], N[2:0], ADDR[1:0], NB, P, nCLK_STOP[A:B], nBYPASS, nMR, REF_SEL, TEST_EN, nPLOAD)  
Minimum  
Typical  
Maximum  
Unit  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
Input Current1  
LVCMOS  
LVCMOS  
2.0  
VCC + 0.3  
0.8  
V
V
VIN = VCC or GND  
I2C Inputs (SCL, SDA)  
LVCMOS  
200  
µA  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
Input Current  
2.0  
VCC + 0.3  
0.8  
V
V
LVCMOS  
VIN = VCC  
10  
µA  
µA  
VIN = GND  
-150  
LVCMOS Output (LOCK)  
IOH = –4mA  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
2.4  
V
V
IOL = 4mA  
0.4  
0.4  
I2C Open Drain Output (SDA)  
VOL  
Input Low Voltage  
IOL = 4mA  
V
Differential Clock Output QA, QB2  
VOH  
Output High Voltage  
LVPECL  
LVPECL  
VCC – 1.02  
VCC – 1.95  
0.5  
VCC – 0.74  
VCC – 1.5  
1.0  
V
V
V
VOL  
Output Low Voltage  
VO(P-P)  
Output Peak-to-Peak Voltage  
Supply Current  
VCC_PLL Pins, Output Unloaded  
All VCC Pins, Output Unloaded  
ICC_PLL  
ICC  
PLL Supply Current  
27  
mA  
mA  
Power Supply Current  
138  
NOTE 1. Inputs have pull-down resistors affecting the input current.  
NOTE 2. Outputs terminated 50to VTT = VCC – 2V.  
Table 6. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
15  
5
20  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Load Capacitance (CL)  
pF  
10  
pF  
REVISION 1 10/28/15  
7
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Table 7. AC Characteristics, VCC = 3.3 V 5%, GND = 0V, TJ = –40°C to +85°C)1 2  
Symbol Parameter  
Condition  
Minimum  
Typical  
Maximum  
Unit  
fXTAL  
fREF  
fVCO  
Crystal Interface Frequency Range  
15  
16  
20  
MHz  
FREF_EXT  
Reference Frequency Range  
15  
20  
MHz  
VCO Frequency Range3  
1360  
680  
340  
170  
85  
2720  
1360  
680  
340  
170  
85  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
N = ÷2  
N = ÷4  
N = ÷8  
fOUT  
Output Frequency4  
N = ÷16  
N = ÷32  
N = ÷64  
42.5  
21.25  
0
42.5  
0.4  
fSCL  
tP,MIN  
DC  
Serial Interface (I2C) Clock Frequency  
Minimum Pulse Width (nPLOAD)  
Output Duty Cycle5  
50  
45  
50  
55  
38  
%
NB = 0 (fQA = fQB  
)
ps  
tSK(O)  
Output-to-Output Skew5  
NB = 1 (fQA = 2 · fQB  
)
96  
ps  
tr, tf  
tr, tf  
Output Rise/Fall Time (QA, QB)5  
Output Rise/Fall Time (SDA)  
20% to 80%  
0.05  
0.3  
250  
ns  
CL = 400pF  
ns  
Output Enable Time   
(nCLK_STOP[A:B] to QA, QB)  
tP_EN  
tP_DIS  
T
Qx = Output Period  
3.0 · TQx  
3.0 · TQx  
ns  
ns  
Output Disable Time  
(nCLK_STOP[A:B] to QA, QB)  
TQx = Output Period  
N = ÷2  
N = ÷4  
27  
23  
21  
28  
32  
42  
51  
38  
41  
44  
50  
57  
49  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
N = ÷8  
NB = 0   
(F_QA = F_QB)  
N = ÷16  
N = ÷32  
N = ÷64  
N = ÷2  
Cycle-to-Cycle  
tJIT(CC)  
Jitter (RMS 1)6  
N = ÷4  
N = ÷8  
NB = 1   
(F_QA = 2 * F_QB)  
N = ÷16  
N = ÷32  
N = ÷64  
N = ÷128, QB only  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
Table 7. AC Characteristics, VCC = 3.3 V 5%, GND = 0V, TJ = –40°C to +85°C)1 2  
Symbol Parameter  
Condition  
N = ÷2  
Minimum  
Typical  
Maximum  
Unit  
ps  
6
5
N = ÷4  
ps  
N = ÷8  
4
ps  
NB = 0   
(F_QA = F_QB)  
N = ÷16  
N = ÷32  
N = ÷64  
N = ÷2  
5
ps  
6
ps  
8
ps  
Period Jitter  
tJIT(PER)  
16  
12  
14  
12  
12  
14  
13  
ps  
(RMS 1)7  
N = ÷4  
ps  
N = ÷8  
ps  
NB = 1   
(F_QA = 2 * F_QB)  
N = ÷16  
N = ÷32  
N = ÷64  
N = ÷128, QB only  
P = ÷2  
ps  
ps  
ps  
ps  
150  
100  
10  
kHz  
kHz  
ms  
BW  
PLL Closed Loop Bandwidth8  
Maximum PLL Lock Time  
P = ÷4  
tLOCK  
NOTE 1. AC characteristics apply for parallel output termination of 50to VTT = VCC – 2V.  
NOTE 2. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device  
is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
NOTE 3. The input frequency fXTAL, the PLL divider M and P must match the VCO frequency range: fVCO = fXTAL · M ÷ P. The feedback divider  
M is limited to 170 M 340 (for P = 2) and 340 M 680 (for P = 4) for stable PLL operation.  
NOTE 4. Output frequency for QA, QB if NB = 0. With NB = 1 the QB output frequency is half of the QA output frequency.  
NOTE 5. Unless specify otherwise, electrical characterization is performed with the below output frequencies: 21.875, 30.626, 39.375, 45, 62.5,  
80, 92.5, 127.5, 162.5, 190, 260, 330, 390, 530, 670 800, 1080, 1360MHz and fREF = 16MHz.  
NOTE 6. Maximum cycle jitter measured at the lowest VCO frequency.  
NOTE 7. Maximum cycle period measured at the lowest VCO frequency.  
NOTE 8. –3 dB point of PLL transfer characteristics.  
REVISION 1 10/28/15  
9
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Output Frequency Configuration  
Example Output Frequency Configuration  
The 8V43FS92432 is a programmable frequency source  
(synthesizer) and supports an output frequency range of   
21.25MHz – 1360MHz. The output frequency fOUT is a function of the  
reference frequency fREF and the three internal PLL dividers P, M,  
and N. fOUT can be represented by this formula:  
If a reference frequency of 16MHz is available, an output frequency  
at QA of 250MHz and a small frequency granularity is desired, the  
following steps would be taken to identify the appropriate P, M, and N  
configuration:  
1. Use Table 8 to select the output divider, NA, that matches the  
fOUT = (fREF ÷ P) · M ÷ (NA, B)  
(1)  
desired output frequency or frequency range. According to  
Table 8, a target output frequency of 250MHz falls in the fOUT  
range of 170MHz – 340MHz and requires to set NA = 8.  
The M, N and P dividers require a configuration by the user to achieve  
the desired output frequency. The output divider, NA determines the  
achievable output frequency range (see Table 8). The PLL  
feedback-divider M is the frequency multiplication factor and the main  
variable for frequency synthesis. For a given reference frequency  
fREF, the PLL feedback-divider M must be configured to match the  
specified VCO frequency range in order to achieve a valid PLL  
configuration:  
2. Calculate the VCO frequency fVCO = fOUT · NA, which is  
2000MHz in this example.  
3. Determine the PLL feedback divider: M = fVCO ÷ P.  
The smallest possible output granularity in this example  
calculation is 500kHz (set P = 4). M calculates to a value of  
2000 ÷ 4 = 500.  
fVCO = (fREF ÷ P) · M and  
(2)  
(3)  
1360 fVCO2720  
4. Configure the 8V43FS92432 with the obtained settings:  
M[9:0] = 0111110100b(binary number for M = 500)  
The output frequency may be changed at any time by changing the  
value of the PLL feedback divider M. The smallest possible output  
frequency change is the synthesizer granularity G (difference in fOUT  
when incrementing or decrementing M). At a given reference  
frequency, G is a function of the PLL pre-divider P and post-divider N:  
NA[2:0] = 010(÷8 divider, see Table 10)  
P = 1  
(÷4 divider, see Table 9)  
(fOUT, QB = fOUT, QA  
NB = 0  
)
G = fREF ÷ (P · NA,B  
)
(4)  
5. Use either parallel or serial interface to apply the setting. The  
I2C configuration byte for this examples are:  
The NB divider configuration determines if the output QB generates a  
1:1 or 2:1 frequency copy of the QA output signal. The purpose of the  
PLL pre-divider P is to situated the PLL into the specified VCO  
frequency range fVCO (in combination with M). For a given output  
frequency, P = 4 results in a smaller output frequency granularity G,  
P = 2 results a larger output frequency granularity G and also  
increases the PLL bandwidth compared to the P = 2 setting.  
PLL_H = 01010010b and PLL_L = 11110100b.  
See Table 15 and Table 16 for register maps.  
PLL Divider Configuration  
Table 9. Pre-PLL Divider P  
The following example illustrates the output frequency range of the  
8V43FS92432 using a 16MHz reference frequency.  
P
0
1
Value  
fREF ÷ 2  
fREF ÷ 4  
Table 8. Frequency Ranges (fREF = 16 MHz)  
f
OUT (QA)  
[MHz]  
NA  
M
P
2
4
2
4
2
4
2
4
2
4
2
4
G [MHz]  
4
170 – 340  
340 – 680  
170 – 340  
340 – 680  
170 – 340  
340 – 680  
170 – 340  
340 – 680  
170 – 340  
340 – 680  
170 – 340  
340 – 680  
Table 10. Post-PLL Divider NA  
680 – 1360  
340 – 680  
170 – 340  
85 – 170  
NA = 2  
2
NA0  
NA1  
NA2  
fOUT (QA)  
VCO ÷ 2  
2
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
f
NA = 4  
NA = 8  
1
fVCO ÷ 4  
fVCO ÷ 8  
1
fVCO ÷ 16  
fVCO ÷ 32  
fVCO ÷ 64  
0.5  
0.5  
NA = 16  
NA = 32  
0.25  
0.25  
0.125  
0.125  
0.0625  
Table 11. Post-PLL Divider NB  
NB  
42.5 – 85  
Value  
0
1
fOUT, QB = fOUT, QA  
21.25 – 42.5 NA = 64  
fOUT, QB = fOUT, QA ÷ 2  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
10  
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
Programming the 8V43FS92432  
nPLOAD = 0 disables the I2C-write-access to the configuration  
registers and any data written into the register is ignored. However,  
the 8V43FS92432 is still visible at the I2C interface and I2C transfers  
are acknowledged by the device. Read-access to the internal  
registers during nPLOAD = 0 (parallel programming mode) is  
supported.  
The 8V43FS92432 has a parallel and a serial configuration  
interface. The purpose of the parallel interface is to directly configure  
the PLL dividers through hardware pins without the overhead of a  
serial protocol. At device startup, the device always obtains an initial  
PLL frequency configuration through the parallel interface. The  
parallel interface does not support reading the PLL configuration.  
Note that the device automatically obtains a configuration using the  
parallel interface upon the release of the device reset (rising edge of  
nMR) and independent on the state of nPLOAD. Changing the state  
of the nPLOAD input is not supported when the device performs any  
transactions on the I2C interface.  
The serial interface is I2C compatible. It allows reading and writing  
devices settings by accessing internal device registers. The serial  
interface is designed for host-controller access to the synthesizer  
frequency settings for instance in frequency-margining applications.  
Programming Model and Register Set  
Using the Parallel Interface  
The synthesizer contains two fully accessible configuration registers  
(PLL_L and PLL_H) and a write-only command register (CMD).  
Programming the synthesizer frequency through the I2C interface  
requires two steps: 1) writing a valid PLL configuration to the  
configuration registers and 2) loading the registers into the PLL by  
an I2C command. The PLL frequency is affected as a result of the  
second step. This two-step procedure can be performed by a single  
I2C transaction or by multiple, independent I2C transactions. An  
alternative way to achieve small PLL frequency changes is to use  
the increment or decrement commands of the synthesizer, which  
have an immediate effect on the PLL frequency.  
The parallel interface supports write-access to the PLL frequency  
setting directly through 15 configuration pins (P, M[9:0], NA[2:0], and  
NB). The parallel interface must be enabled by setting nPLOAD to  
logic low level. During nPLOAD = 0, any change of the logical state  
of the P, M[9:0], NA[2:0], and NB pins will immediately affect the  
internal PLL divider settings, resulting in a change of the internal  
VCO-frequency and the output frequency. The parallel interface  
mode disables the I2C write-access to the internal registers;  
however, I2C read-access to the internal configuration registers is  
enabled.  
Upon startup, when the device reset signal is released (rising edge  
of the nMR signal), the device reads its startup configuration through  
the parallel interface and independent on the state of nPLOAD. It is  
recommended to provide a valid PLL configuration for startup. If the  
parallel interface pins are left open, a default PLL configuration will  
be loaded. After the low-to-high transition of nPLOAD, the  
Synthesizer – PLL  
Configuration Latches  
P
N
M
LOAD/GET  
configuration pins have no more effect and the configuration  
registers are made accessible through the serial interface.  
I2C Registers  
I2C Access  
PLL_L (R/W) PLL_H (R/W) CMD (W)  
0x00 0x01 0xF0  
Table 12. PLL Feedback-Divider Configuration (M)  
Feedback  
Figure 1. . I2C Mode Register Set  
Divider M  
9
8
7
6
5
4
3
2
1
0
Figure 1. illustrates the synthesizer register set. PLL_L and PLL_H  
store a PLL configuration and are fully accessible (Read/Write) by  
the I2C bus. CMD (Write only) accepts commands (LOAD, GET, INC,  
DEC) to update registers and for direct PLL frequency changes.  
Pin  
M9 M8 M7 M6 M5 M4 M3 M2 M1 M0  
Default  
0
1
1
1
1
1
0
1
0
0
Set the synthesizer frequency:  
Table 13. PLL Pre/Post-Divider Configuration (N, P)  
1) Write the PLL_L and PLL_H registers with a new configura-  
tion (see Table 15 and Table 16 for register maps)  
Post-Div  
NA  
Post-Div  
NB  
Pre-Div  
P
2
1
0
NB  
NB  
0
P
P
1
2) Write the LOAD command to update the PLL dividers by the  
current PLL_L, PLL_H content.  
Pin  
NA2 NA1 NA0  
Pin  
Pin  
Read the synthesizer frequency:  
Default  
0
1
0
Default  
Default  
1) Write the GET commands to update the PLL_L, PLL_H reg-  
isters by the PLL divider setting  
Using the I2C Interface  
nPLOAD = 1 enables the programming and monitoring of the  
2) Read the PLL_L, PLL_H registers through I2C  
internal registers through the I2C interface. Device register access  
(write and read) is possible through the 2-wire interface using SDA  
(configuration data) and SCL (configuration clock) signals. The  
8V43FS92432 acts as a slave device at the I2C bus. For further  
information on I2C it is recommended to refer to the I2C bus  
specification (version 2.1).  
Change the synthesizer frequency in small steps:  
1) Write the INC or DEC command to change the PLL frequen-  
cy immediately. Repeat at any time if desired.  
REVISION 1 10/28/15  
11  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
LOAD and GET are inverse command to each other. LOAD updates  
the PLL dividers and GET updates the configuration registers. A fast  
and convenient way to change the PLL frequency is to use the INC  
(increment M) and DEC (decrement M) commands of the  
synthesizer. INC (DEC) directly increments (decrements) the  
PLL-feedback divider M and immediately changes the PLL  
frequency by the smallest step G (see Table 8 for the frequency  
granularity G). The INC and DEC commands are designed for  
multiple and rapid PLL frequency changes as required in frequency  
margining applications. INC and DEC do not require the user to  
update the PLL dividers by the LOAD command, INC and DEC do  
not update the PLL_L and PLL_H registers either (use LOAD for an  
initial PLL divider setting and, if desired, use GET to read the PLL  
configuration). Note that the synthesizer does not check any  
boundary conditions such as the VCO frequency range. Applying  
the INC and DEC commands could result in invalid VCO frequencies  
(VCO frequency beyond lock range).  
Register 0xF0 (CMD) is a write-only command register.  
The purpose of CMD is to provide a fast way to increase or decrease  
the PLL frequency and to update the registers. The register accepts  
four commands, INC (increment M), DEC (decrement M), LOAD and  
GET (update registers). It is recommended to write the INC, DEC  
commands only after a valid PLL configuration is achieved. INC and  
DEC only affect the M-divider of the PLL (PLL feedback). Applying  
INC and DEC commands can result in a PLL configuration beyond  
the specified lock range and the PLL may loose lock. The  
8V43FS92432 does not verify the validity of any commands such as  
LOAD, INC, and DEC. The INC and DEC commands change the  
PLL feedback divider without updating PLL_L and PLL_H.  
Table 17. CMD (0xF0): PLL Command (Write-Only)  
Command  
Op-Code  
Description  
INC  
xxxx0001b  
(0x01)  
Increase internal PLL frequency  
M= M+1  
Register Maps  
DEC  
LOAD  
GET  
xxxx0010b  
(0x02)  
Decrease internal PLL frequency  
M= M-1  
Table 14. Configuration Registers  
Address Name  
Content  
Access  
R/W  
xxxx0100b  
(0x04)  
Update the PLL divider config.  
PLL divider M, N, P= PLL_L, PLL_H  
0x00  
0x01  
PLL_L  
Least significant 8 bits of M  
PLL_H Most significant 2 bits of M, P, NA,  
NB, and lock state  
R/W  
xxxx1000b  
(0x08)  
Update the configuration registers  
PLL_L, PLL_H= PLL divider M, N, P  
0xF0  
CMD  
Command register (write only)  
W only  
I2C — Register Access in Parallel Mode  
Register 0x00 (PLL_L) contains the least significant bits of the PLL  
feedback divider M.  
The 8V43FS92432 supports the configuration of the synthesizer  
through the parallel interlace (nPLOAD = 0) and serial interface  
(nPLOAD = 1). Register contents and the divider configurations are  
not changed when the user switches from parallel mode to serial  
mode. However, when switching from serial mode to parallel mode,  
the PLL dividers immediately reflect the logical state of the hardware  
pins M[9:0], NA[2:0], NB, and P.  
Table 15. PLL_L (0x00, R/W) Register  
Bit  
7
6
5
4
3
2
1
0
Name M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
Register content:  
Applications using the parallel interface to obtain a PLL configuration  
can use the serial interface to verify the divider settings. In parallel  
mode (nPLOAD = 0), the 8V43FS92432 allows read-access to  
PLL_L and PLL_H through I2C (if nPLOAD = 0, the current PLL  
configuration is stored in PLL_L, PLL_H. The GET command is not  
necessary and also not supported in parallel mode). After changing  
from parallel to serial mode (nPLOAD = 1), the last PLL  
configuration is still stored in PLL_L, PLL_H. The user now has full  
write and read access to both configuration registers through the I2C  
bus and can change the configuration at any time.  
M[7:0]  
PLL feedback-divider M, bits [7–0]  
Register 0x01 (PLL_H) contains the two most significant bits of the  
PLL feedback divider M, four bits to control the PLL post-dividers N  
and the PLL pre-divider P. The bit 0 in PLL_H register indicates the  
lock condition of the PLL and is set by the synthesizer automatically.  
The LOCK state is a copy of the PLL lock signal output (LOCK). A  
write-access to LOCK has no effect.  
Table 16. PLL_H (0x01, R/W) Register  
Bit  
7
6
5
4
3
2
1
0
Table 18. PLL Configuration in Parallel and Serial Modes  
Name M9  
M8  
NA2 NA1 NA0  
NB  
P
LOCK  
PLL  
Configuration  
Serial (Registers  
PLL_L, PLL_H)  
Register content:  
M[9:8]  
Parallel  
Set pins M9–M0  
Set pins NA2...NA0  
Set pin NB  
PLL feedback-divider M, bits 9–8  
M[9:0]  
NA[2:0]  
NB  
M[9:0] (R/W)  
NA[2:0] (R/W)  
NB (R/W)  
NA[2:0] PLL post-divider NA, see Table 10   
NB  
PLL post-divider NB, see Table 11  
PLL pre-divider P, see Table 9  
P
P
Set pin P  
P (R/W)  
LOCK  
Copy of LOCK output signal (read-only)  
LOCK status  
LOCK pin 26  
LOCK (Read only)  
Note that the LOAD command is required to update the PLL dividers  
by the content of both PLL_L and PLL_H registers.  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
12  
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
2
Programming the I C Interface  
Write Mode (R/W = 0)  
Table 19. I2C Slave Address  
The configuration registers are written by the bus controller by the  
initiation of a write transfer with the 8V43FS92432 slave address  
(first byte), followed by the address of the configuration register  
(second byte: 0x00, 0x01 or 0xF0), and the configuration data byte  
(third byte). This transfer may be followed by writing more registers  
by sending the configuration register address followed by one data  
byte. Each byte sent by the bus controller is acknowledged by the  
8V43FS92432. The transfer ends by a stop bit sent by the bus  
controller. The number of configuration data bytes and the write  
sequence are not restricted.  
Bit  
7
6
5
4
3
2
1
0
Pin  
Pin  
Value  
1
0
1
1
0
R/W  
ADR1 ADR0  
The 7-bit I2C slave address of the 8V43FS92432 synthesizer is a  
combination of a 5-bit fixed addresses and two variable bits which  
are set by the hardware pins ADR[1:0]. Bit 0 of the 8V43FS92432  
slave address is used by the bus controller to select either the read  
or write mode0’ indicates a transmission (I2C-WRITE) to the  
8V43FS92432 1’ indicates a request for data (I2C-READ) from the  
synthesizer. The hardware pins ADR1 and ADR0 and should be  
individually set by the user to avoid address conflicts of multiple  
8V43FS92432 devices on the same I2C bus.  
Table 20. Complete Configuration Register Write Transfer  
1 bit  
7 bits  
1 bit 1 bit  
8 bits  
1 bit  
8 bits  
1 bit  
8 bits  
1 bit  
ACK  
8 bits  
1 bit 1 bit  
Start Slave Address R/W ACK &PLL_H ACK Config-Byte 1 ACK &PLL_L  
Config-Byte 2 ACK Stop  
10110xx1  
Master  
0
0x01  
Data  
0x00  
Data  
Master  
Master Slave  
Master  
Slave  
Master  
Slave  
Master  
Slave  
Master  
Slave Master  
NOTE 1. xx = state of ADR1, ADR0 pins  
Read Mode (R/W = 1)  
The configuration registers are read by the bus controller by the  
initiation of a read transfer. The 8V43FS92432 supports read  
transfers immediately after the first byte without a change in the  
transfer direction. Immediately after the bus controller sends the  
slave address, the 8V43FS92432 acknowledges and then sends  
both configuration register PLL_L and PLL_H (back-to-back) to the  
bus controller. The CMD register cannot be read. In order to read the  
two synthesizer registers and the current PLL configuration setting,  
the user can 1) read PLL_L, PLL_H, write the GET command (loads  
the current configuration into PLL_L, PLL_H) and read PLL_L,  
PLL_H again. Note that the PLL_L, PLL_H registers and divider  
settings may not be equivalent after the following cases:  
a. Writing the INC command  
b. Writing the DEC command  
c. Writing PLL_L, PLL_H registers with a new configuration  
and not writing the LOAD command.  
Table 21. Configuration Register Read Transfer  
1 bit  
7 bits  
Slave Address  
10110xx1  
1 bit  
R/W  
1
1 bit  
ACK  
8 bits  
PLL_L  
Data  
1 bit  
ACK  
8 bits  
PLL_H  
Data  
1 bit  
ACK  
1 bit  
Stop  
Start  
Master  
Master  
Master  
Slave  
Slave  
Master  
Slave  
Master  
Slave  
NOTE 1. xx = state of ADR1, ADR0 pins  
REVISION 1 10/28/15  
13  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Device Startup  
Set nPLOAD = 1, nCLK_STOP[A:B] = L and leave the parallel  
interface pins (M[9:0], NA[2:0], N, and P) open. The PLL dividers are  
configured by the default configuration at the low-to-high transition  
of nMR. This initial PLL configuration can be re-programmed to the  
final VCO frequency at any time through the serial interface. After  
the PLL achieved lock at the desired VCO frequency, enable the  
outputs by setting nCLK_STOP[A:B] = H. PLL lock and re-lock (after  
any configuration change through M or P) is indicated by LOCK  
being asserted.  
General Device Configuration  
It is recommended to reset the 8V43FS92432 during or immediately  
after the system powers up (nMR = 0). The device acquires an initial  
PLL divider configuration through the parallel interface pins M[9:0],  
NA[2:0], N, and P1 with the low-to-high transition of nMR2. PLL  
frequency lock is achieved within the specified lock time (tLOCK) and  
is indicated by an assertion of the LOCK signal which completes the  
startup procedure. It is recommended to disable the outputs  
(nCLK_STOP[A:B] = 0) until PLL lock is achieved to suppress output  
frequency transitions. The output frequency can be reconfigured at  
any time through either the parallel or the serial interface.  
LOCK Detect  
The LOCK detect circuitry indicates the frequency-lock status of the  
PLL by setting and resetting the pin LOCK and register bit LOCK  
simultaneously. The LOCK status is asserted after the PLL acquired  
frequency lock during the startup and is immediately de-asserted  
when the PLL lost lock, for instance when the reference clock is  
removed. The PLL may also loose lock when the PLL  
Note that a PLL configuration obtained by the parallel interface can  
be read through I2C independent on the current programming mode  
(parallel or serial). Refer to I2C — Register Access in Parallel Mode  
for additional information on how to read a PLL startup configuration  
through the I2C interface.  
feedback-divider M or pre-divider P is changed or the DEC/INC  
command is issued. The PLL may not loose lock as a result of slow  
reference frequency changes. In any case of loosing LOCK, the PLL  
attempts to re-lock to the reference frequency. LOCK and re-lock of  
the PLL is indicated by the LOCK signal after a delay of TBD cycles  
to prevent signaling temporary PLL locks during frequency  
transitions.  
Starting-Up Using the Parallel Interface  
The simplest way to use the 8V43FS92432 is through the parallel  
interface. The serial interface pins (SDA, SDL, and ADDR[1:0]) can  
be left open and nPLOAD is set to logic low. After the release of nMR  
and at any other time the PLL/output frequency configuration is  
directly set to through the M[9:0], NA[2:0], NB, and P pins.  
Start-Up Using the Serial (I2C) Interface  
Output Clock Stop  
VCC  
Asserting nCLK_STOP[A:B] will stop the respective output clock in  
logic low state. The nCLK_STOP[A:B] control is internally  
nMR  
synchronized to the output clock signal, therefore, enabling  
and disabling outputs does not produce runt pulses. See Figure 3..  
The clock stop controls of the QA and QB outputs are independent  
on each other. If the QB runs at half of the QA output frequency and  
both outputs are enabled at the same time, the first clock pulse of  
QA may not appear at the same time of the first QB output. (See  
Figure 4..) Coincident rising edges of QA and QB stay synchronous  
after the assertion and de-assertion of the nCLK_STOP[A:B]  
controls. Asserting nMR always resets the output divider to a logic  
low output state, with the risk of producing an output runt pulse.  
Stable & Valid  
P, M, N  
Selects I2C  
PLL Lock  
nPLOAD  
Acquiring Lock  
LOCK  
nCLK_STOP[A:B]  
QA, QB  
Disabled (Low)  
tPLH  
Active  
Figure 2. Start-Up Using I2C Interface  
(Disable)  
(Enable)  
nCLK_STOP[A:B]  
Qx  
(Enable)  
tP_EN  
tP_DIS  
Figure 3. Clock Stop Timing for NB = 0 (fQA = fQB  
)
1. The parallel interface pins M[9:0], NA[2:0], N, and P may be left open (floating). In this case the initial PLL configuration will have the default setting of  
M = 500, P = 1, NA[2:0] = 010, NB = 0, resulting in an internal VCO frequency of 2000MHz (fref = 16 MHz) and an output frequency of 250 MHz.  
2. The initial PLL configuration is independent on the selected programming mode (nPLOAD low or high).  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
14  
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
nCLK_STOP[A:B]  
(Disable)  
(Enable)  
(Enable)  
QA  
QB  
Figure 4. Clock Stop Timing for NB = 1 (fQA = 2 fQB  
)
Frequency Operating Range  
Table 22. 8V43FS92432 Frequency Operating Range for P = 2  
fVCO [MHz] (Parameter: fREF in MHz)  
Output Frequency for fXTAL = 16MHz (Parameter N)  
M
M[9:0]  
15  
16  
18  
20  
2
4
8
16  
32  
64  
170 0010101010  
180 0010110100  
190 0010111110  
200 0011001000  
210 0011010010  
220 0011011100  
230 0011100110  
240 0011110000  
250 0011111010  
260 0100000100  
270 0100001110  
280 0100011000  
290 0100100010  
300 0100101100  
310 0100110110  
320 0101000000  
330 0101001010  
340 0101010100  
1360  
1440  
1520  
1600  
1680  
1760  
1840  
1920  
2000  
2080  
2160  
2240  
2320  
2400  
2480  
2560  
2640  
2720  
1530  
1620  
1710  
1800  
1890  
1980  
2070  
2160  
2250  
2340  
2430  
2520  
2610  
2700  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
680  
340  
360  
380  
400  
420  
440  
460  
480  
500  
520  
540  
560  
580  
600  
620  
640  
660  
680  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
85  
42.50  
45.00  
47.50  
50.00  
52.50  
55.00  
57.50  
60.00  
62.50  
65.00  
67.50  
70.00  
72.50  
75.00  
77.50  
80.00  
82.50  
85.00  
21.25  
22.50  
23.75  
25.00  
26.25  
27.50  
28.75  
30.00  
31.25  
32.50  
33.75  
35.00  
36.25  
37.50  
38.75  
40.00  
41.25  
42.50  
720  
90  
1425  
1500  
1575  
1650  
1725  
1800  
1875  
1950  
2025  
2100  
2175  
2250  
2325  
2400  
2475  
2550  
760  
95  
800  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
155  
160  
165  
170  
840  
880  
920  
960  
1000  
1040  
1080  
1120  
1160  
1200  
1240  
1280  
1320  
1360  
REVISION 1 10/28/15  
15  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Table 23. 8V43FS92432 Frequency Operating Range for P = 4  
fVCO [MHz] (Parameter: fREF in MHz)  
Output Frequency for fXTAL = 16 MHz (Parameter N)  
M
M[9:0]  
15  
16  
18  
20  
2
4
8
16  
32  
64  
340 0101010100  
350 0101011110  
360 0101101000  
370 0101110010  
380 0101111100  
390 0110000110  
400 0110010000  
410 0110110010  
420 0110100100  
430 0110101110  
440 0110111000  
450 0111000010  
460 0111001100  
470 0111010110  
480 0111100000  
490 0111101010  
500 0111110100  
510 0111111110  
520 1000001000  
530 1000010010  
540 1000011100  
550 1000100110  
560 1000110000  
570 1000111010  
580 1001000100  
590 1001001110  
600 1001011000  
610 1001100010  
620 1001101100  
630 1001110110  
640 1010000000  
650 1010001010  
660 1010010100  
670 1010011110  
680 1010101000  
1360  
1400  
1440  
1480  
1520  
1560  
1600  
1640  
1680  
1720  
1760  
1800  
1840  
1880  
1920  
1960  
2000  
2040  
2080  
2120  
2160  
2200  
2240  
2280  
2320  
2360  
2400  
2440  
2480  
2520  
2560  
2600  
2640  
2680  
2720  
1530  
1575  
1620  
1665  
1710  
1755  
1800  
1845  
1890  
1935  
1980  
2025  
2070  
2115  
2160  
2205  
2250  
2295  
2340  
2475  
2520  
2565  
2610  
2700  
1700  
1750  
1800  
1850  
1900  
1950  
2000  
2050  
2100  
2150  
2200  
2250  
2300  
2350  
2400  
2450  
2500  
2550  
2600  
2650  
2700  
680  
340  
350  
360  
370  
380  
390  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
510  
520  
530  
540  
550  
560  
570  
580  
590  
600  
610  
620  
630  
640  
650  
660  
670  
680  
170  
175  
180  
185  
190  
195  
200  
205  
210  
215  
220  
225  
230  
235  
240  
245  
250  
255  
260  
265  
270  
285  
280  
285  
290  
295  
300  
305  
310  
315  
320  
325  
330  
335  
340  
85.0  
42.50  
43.75  
45.00  
46.25  
47.50  
48.75  
50.00  
51.25  
52.50  
53.75  
55.00  
56.25  
57.50  
58.75  
60.00  
61.25  
62.50  
63.75  
65.00  
66.25  
67.50  
68.75  
70.00  
71.25  
72.50  
73.75  
75.00  
76.25  
77.50  
78.75^  
80.00  
81.25  
82.5  
21.25  
21.875  
22.50  
23.125  
23.75  
24.375  
25.00  
25.625  
26.25  
26.875  
27.50  
28.125  
28.75  
29.375  
30.00  
30.626  
31.25  
31.875  
32.50  
33.125  
33.75  
34.375  
35.00  
35.625  
36.25  
36.875  
37.50  
38.125  
38.75  
39.375  
40.00  
40.625  
41.25  
41.875  
42.50  
700  
87.5  
720  
90.0  
1387.5  
1425.0  
1462.5  
1500.0  
1537.5  
1575.0  
1612.5  
1650.0  
1687.5  
1725.0  
1762.5  
1800.0  
1837.5  
1875.0  
1912.5  
1950.0  
1987.5  
2025.0  
2062.5  
2100.0  
2137.5  
2175.0  
2212.5  
2250.0  
2287.5  
2325.0  
2362.5  
2400.0  
2437.5  
2475.0  
2512.5  
2550.0  
740  
92.5  
760  
95.0  
780  
97.5  
800  
100.0  
102.5  
105.0  
107.5  
110.0  
112.5  
115.0  
117.5  
120.0  
122.5  
125.0  
127.5  
130.0  
132.5  
135.0  
137.5  
140.0  
142.5  
145.0  
147.5  
150.0  
152.5  
155.0  
157.5  
160.0  
162.5  
165  
820  
840  
860  
880  
900  
920  
940  
960  
980  
1000  
1020  
1040  
1060  
1080  
1100  
1120  
1140  
1160  
1180  
1200  
1220  
1240  
1260  
1280  
1300  
1320  
1340  
1360  
167.5  
170  
83.75  
85.00  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
16  
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVPECL Outputs  
All control pins have internal pullup or pulldown resistors; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
Crystal Inputs  
For applications not requiring the use of the crystal oscillator input,  
both XTAL1 and XTAL2 can be left floating. Though not required, but  
for additional protection, a 1kresistor can be tied from XTAL_IN to  
ground.  
REVISION 1 10/28/15  
17  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Overdriving the XTAL Interface  
The XTAL_IN input can be overdriven by an LVCMOS driver or by one  
side of a differential driver through an AC coupling capacitor. The  
XTAL_OUT pin can be left floating. The amplitude of the input signal  
should be between 500mV and 1.8V and the slew rate should not be  
less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be  
reduced from full swing to at least half the swing in order to prevent  
signal interference with the power rail and to reduce internal noise.  
Figure 5A shows an example of the interface diagram for a high  
speed 3.3V LVCMOS driver. This configuration requires that the sum  
of the output impedance of the driver (Ro) and the series resistance  
(Rs) equals the transmission line impedance. In addition, matched  
termination at the crystal input will attenuate the signal in half. This  
can be done in one of two ways. First, R1 and R2 in parallel should  
equal the transmission line impedance. For most 50applications,  
R1 and R2 can be 100. This can also be accomplished by removing  
R1 and changing R2 to 50. The values of the resistors can be  
increased to reduce the loading for a slower and weaker LVCMOS  
driver. Figure 5B shows an example of the interface diagram for an  
LVPECL driver. This is a standard LVPECL termination with one side  
of the driver feeding the XTAL_IN input. It is recommended that all  
components in the schematics be placed in the layout. Though some  
components might not be used, they can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a quartz crystal as the input.  
VDD  
XTAL_OUT  
R1  
100  
Zo = 50 ohms  
C1  
Ro  
Rs  
XTAL_IN  
.1uf  
R2  
100  
Zo = Ro + Rs  
LVCMOS Driver  
Figure 5A. General Diagram for LVCMOS Driver to XTAL Input Interface  
XTAL_OU T  
C2  
Zo = 50 ohms  
XTAL_I N  
.1uf  
Zo = 50 ohms  
R1  
50  
R2  
50  
LVPECL Driver  
R3  
50  
Figure 5B. General Diagram for LVPECL Driver to XTAL Input Interface  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
18  
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figure 6A and Figure 6B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50  
3.3V  
R3  
R4  
125  
125  
3.3V  
3.3V  
Zo = 50  
+
_
Input  
Zo = 50  
R1  
84  
R2  
84  
Figure 6A. 3.3V LVPECL Output Termination  
Figure 6B. 3.3V LVPECL Output Termination  
REVISION 1 10/28/15  
19  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Schematic Example  
Figure 7 shows an example of 8V43FS92432 application schematic.  
In this example, the device is operated at VCC = VCC_PLL = 3.3V.  
The schematic example focuses on functional connections and is not  
configuration specific. Refer to the pin description and functional  
tables in the datasheet to ensure that the logic control inputs are  
properly set.  
As with any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The 8V43FS92432 provides  
separate power supplies to isolate any high switching noise from  
coupling into the internal PLL.  
In order to achieve the best possible filtering, it is recommended that  
the placement of the filter components be on the device side of the  
PCB as close to the power pins as possible. If space is limited, the  
0.1uF capacitor in each power pin filter should be placed on the  
device side. The other components can be on the opposite side of the  
PCB. Power supply filter recommendations are a general guideline  
to be used for reducing external noise from coupling into the devices.  
The filter performance is designed for a wide range of noise  
frequencies. This low-pass filter starts to attenuate noise at  
approximately 10kHz. If a specific frequency noise component is  
known, such as switching power supplies frequencies, it is  
recommended that component values be adjusted and if required,  
additional filtering be added. Additionally, good general design  
practices for power plane voltage stability suggests adding bulk  
capacitance in the local area of all devices.  
A 12pF parallel resonant 20MHz crystal is used. For this device, the  
crystal load capacitors are required for proper operation. The load  
capacitance, C1 = C2 = 2pF, are recommended for frequency  
accuracy. Depending on the variation of the parasitic stray capacity  
of the printed circuit board traces between the crystal and the  
XTAL_IN and XTAL_OUT pins, the values of C1 and C2 might require  
a slight adjustment to optimize the frequency accuracy. Crystals with  
other load capacitance specifications can be used, but this will  
require adjusting C1 and C2. When designing the circuit board,  
return the capacitors to ground though a single point contact close to  
the package.  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
20  
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
Figure 7. Signal I/O and Power Filters  
REVISION 1 10/28/15  
21  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Power Considerations  
This section provides information on power dissipation and junction temperature for the 8V43FS92432.   
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the 8V43FS92432 is the sum of the core power plus the power dissipated due to the load.   
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
The maximum current is: ICC_max = 165mA  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.465V * 165mA = 571.7mW  
Power (outputs)MAX = 33.65mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 33.65mW = 67.3mW  
Total Power_MAX (3.465V, with all outputs switching) = 571.7mW + 67.3mW = 639mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming 1m/s air flow  
and a multi-layer board, the appropriate value is 60.4°C/W per Table 24 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.639W * 60.4°C/W = 123.6°C. This is within the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 24. Thermal Resistance for 48-Lead LQFP, Forced Convection  
JA  
JA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
70.2°C/W  
60.4°C/W  
56.9°C/W  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
22  
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pairs.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 8. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.74V  
(VCC_MAX – VOH_MAX) = 0.74V  
For logic low, VOUT = VOL_MAX = VCC_MAX 1.5V  
(VCC_MAX – VOL_MAX) = 1.5V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.74V)/50] * 0.74V = 18.65mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.5V)/50] * 1.5V = 15mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 33.65mW  
REVISION 1 10/28/15  
23  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Reliability Information  
Table 25. JA vs. Air Flow Table for a 48-Lead LQFP  
JA Vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
70.2°C/W  
60.4°C/W  
56.9°C/W  
Transistor Count  
The transistor count for 8V43FS92432 is: 12,972  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
24  
REVISION 1 10/28/15  
8V43FS92432 DATA SHEET  
PACKAGE DIMENSIONS  
4X  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5m, 1994.  
0.200 AB T-U  
Z
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLAN AB IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND Z TO BE DETERMINED AT  
DATAUM PLANE AB.  
DETAILY  
P
9
A
A1  
48  
37  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
36  
1
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350.  
T
U
B
V
AE  
AE  
B1  
V1  
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076.  
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
12  
25  
13  
MILLIMETERS  
24  
DIM MIN  
MAX  
7.000 BSC  
3.500 BSC  
Z
A
A1  
B
B1  
C
S1  
7.000 BSC  
3.500 BSC  
T, U, Z  
1.400  
1.600  
0.270  
1.450  
0.230  
S
D
E
F
0.170  
1.350  
0.170  
DETAILY  
4X  
0.200 AC T-U  
Z
G
H
J
K
L
M
N
P
0.500 BSC  
0.050  
0.090  
0.500  
0˚  
0.150  
0.200  
0.700  
7˚  
0.080 AC  
12˚ REF  
G
AB  
AC  
0.090  
0.150  
0.160  
0.250 BSC  
R
0.250  
S
S1  
V
V1  
W
AA  
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
AD  
M˚  
BASE METAL  
TOP & BOTTOM  
R
N
J
E
C
F
D
M
0.080  
AC T- U Z  
SECTION AE-AE  
W
H
L˚  
K
DETAIL AD  
AA  
CASE 932-03  
ISSUE F  
48-LEAD LQFP PACKAGE  
REVISION 1 10/28/15  
25  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
8V43FS92432 DATA SHEET  
Ordering Information  
Table 24. Ordering Information  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
Tube  
Temperature  
–40°C to +85°C  
–40°C to +85°C  
8V43FS92432PRGI  
8V43FS92432PRGI8  
IDT8V43FS92432PRGI  
IDT8V43FS92432PRGI  
48 Lead LQFP, Lead-Free  
48 Lead LQFP, Lead-Free  
Tape & Reel  
1360MHZ DUAL OUTPUT LVPECL CLOCK SYNTHESIZER  
26  
REVISION 1 10/28/15  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
Sales  
Tech Support  
email: clocks@idt.com  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in  
this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether  
express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This  
document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or  
other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as  
those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any  
circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected  
names, logos and designs, are the property of IDT or their respective third party owners.  
Copyright ©2015 Integrated Device Technology, Inc. All rights reserved.  
厂商 型号 描述 页数 下载

IDT

8V41N010I [ Clock Generator for Cavium Processors ] 26 页

IDT

8V41N010NLGI [ Clock Generator for Cavium Processors ] 26 页

IDT

8V41N010NLGI8 [ Clock Generator for Cavium Processors ] 26 页

IDT

8V41N012 [ Clock Generator for Cavium Processors ] 31 页

IDT

8V41N012NLGI [ Clock Generator for Cavium Processors ] 31 页

IDT

8V41N012NLGI8 [ Clock Generator for Cavium Processors ] 31 页

IDT

8V41NS0412 [ NG Ultra Low Jitter HCSL Clock Generator ] 51 页

IDT

8V41NS0412NLGI [ NG Ultra Low Jitter HCSL Clock Generator ] 51 页

IDT

8V41NS0412NLGI8 [ NG Ultra Low Jitter HCSL Clock Generator ] 51 页

IDT

8V43042 [ FemtoClock Crystal-to-3 .3V LVPECL Frequency Synthesizer ] 19 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.240031s