找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

8P791208_18

型号:

8P791208_18

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

31 页

PDF大小:

534 K

Low Additive Jitter 2:8 Buffer with  
CMOS / Differential Outputs  
8P791208  
Datasheet  
Description  
Features  
Accepts input frequencies ranging from 1PPS (1Hz) to 700MHz  
The 8P791208 is a low additive jitter 2:8 buffer with CMOS/  
differential outputs The device takes one or two reference clocks,  
selects between them using a pin selection, and generates up to  
eight outputs that are the same as the reference frequency.  
Two differential inputs support LVPECL, LVDS, LVHSTL,  
HCSL, or LVCMOS reference clocks  
Generates 8 differential or 16 LVCMOS outputs  
Outputs arranged in two banks of four outputs each  
The 8P791208 supports two output banks, each with its own  
power supply. All outputs in one bank would generate the same  
output frequency, but each output can be individually controlled for  
output type or output enable.  
Select pins control which input drives which of two output  
banks  
Controlled by 3-level input pins that are 3.3V tolerant for all  
The device can operate over the -40°C to 85°C temperature  
range.  
core voltages  
Output type may be selected from LVPEC, LVDS or  
2xLVCMOS  
Each bank supports a separate power supply of 3.3V, 2.5V,  
or 1.8V  
LVCMOS outputs are limited to 125MHz maximum and support  
swings of 3.3V, 2.5V, 1.8V, and 1.5V  
Individual output enables and output type selection supported  
Output noise floor of –158dBc/Hz at 156.25MHz  
Core voltage supply of 3.3V, 2.5V, or 1.8V  
–40°C to 85°C ambient operating temperature  
Lead-free (RoHS 6) QFN-32 (5 x 5mm) packaging  
Block Diagram  
8P791208 transistor count: 9,703  
©2018 Integrated Device Technology, Inc  
1
May 8, 2018  
 
 
8P791208 Datasheet  
Contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Principles of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Input Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Output Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
LVCMOS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Output Enable Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Supply Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Recommendations for Unused Input and Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Wiring the Differential Input to Accept Single-ended Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3V Differential Clock Input Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.5V Differential Clock Input Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
LVDS Driver Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Termination for 3.3V LVPECL Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Termination for 2.5V LVPECL Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power Dissipation and Thermal Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power Consumption Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Current Consumption Data and Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Example Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LVPECL Power Considerations (700MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LVDS Power Considerations (700MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
LVCMOS Power Considerations (125MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Dynamic Power Dissipation at fOUT(max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package Outline Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Marking Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
©2018 Integrated Device Technology, Inc  
2
May 8, 2018  
8P791208 Datasheet  
Pin Assignments  
Figure 1. Pin Assignment for 5mm × 5mm VFQFN Package Top V ie w  
31 30 29 28 27 26 25  
32  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
OEB1  
QB0  
OEA1  
QA0  
nQB0  
QB1  
nQA0  
QA1  
nQA1  
VCCOA  
QA2  
nQB1  
VCCOB  
QB2  
nQA2  
nQB2  
10 11 12 13 14 15 16  
9
Pin Descriptions  
Table 1. Pin Description  
[a]  
Number  
Name  
Type  
Description  
1
2
OEA1  
QA0  
Input (PU)  
Output  
Controls output enable functions for Bank A. LVCMOS/LVTTL input levels.  
Positive differential clock output. Included in Bank A. Refer to Output Drivers for  
additional details.  
3
4
5
nQA0  
QA1  
Output  
Output  
Output  
Negative differential clock output. Included in Bank A. Refer to Output Drivers for  
additional details.  
Positive differential clock output. Included in Bank A. Refer to Output Drivers for  
additional details.  
nQA1  
Negative differential clock output. Included in Bank A. Refer to Output Drivers for  
additional details.  
6
7
V
Power  
Output  
Output voltage supply for output Bank A.  
CCOA  
QA2  
nQA2  
QA3  
Positive differential clock output. Included in Bank A. Refer to Output Drivers for  
additional details.  
8
9
Output  
Output  
Output  
Negative differential clock output. Included in Bank A. Refer to Output Drivers for  
additional details.  
Positive differential clock output. Included in Bank A. Refer to Output Drivers for  
additional details.  
10  
nQA3  
Negative differential clock output. Included in Bank A. Refer to Output Drivers for  
additional details.  
©2018 Integrated Device Technology, Inc  
3
May 8, 2018  
8P791208 Datasheet  
Table 1. Pin Description (Cont.)  
[a]  
Number  
Name  
Type  
Description  
11  
12  
13  
IOA  
Input (PU/PD)  
Power  
Controls output mode functions for Bank A. 3-level input.  
Core Logic voltage supply.  
V
CC  
CLK_SEL  
Input (PU/PD)  
Input Clock Selection Control pin. 3-level input. This pin’s function is described in the  
Input Selection section.  
14  
15  
IOB  
Input (PU/PD)  
Output  
Controls output mode functions for Bank B. 3-level input.  
nQB3  
Negative differential clock output. Included in Bank B. Refer to Output Drivers for  
additional details.  
16  
17  
18  
QB3  
nQB2  
QB2  
Output  
Output  
Output  
Positive differential clock output. Included in Bank B. Refer to Output Drivers for  
additional details.  
Negative differential clock output. Included in Bank B. Refer to Output Drivers for  
additional details.  
Positive differential clock output. Included in Bank B. Refer to Output Drivers for  
additional details.  
19  
20  
V
Power  
Output  
Output voltage supply for Output Bank B.  
CCOB  
nQB1  
Negative differential clock output. Included in Bank B. Refer to Output Drivers for  
additional details.  
21  
22  
23  
QB1  
Output  
Output  
Output  
Positive differential clock output. Included in Bank B. Refer to Output Drivers for  
additional details.  
nQB0  
QB0  
Negative differential clock output. Included in Bank B. Refer to Output Drivers for  
additional details.  
Positive differential clock output. Included in Bank B. Refer to Output Drivers for  
additional details.  
24  
25  
26  
OEB1  
CLK1  
Input (PU)  
Input (PD)  
Controls output enable functions for Bank B. LVCMOS/LVTTL input levels.  
Non-inverting differential clock input.  
nCLK1  
Input (PU/PD)  
Inverting differential clock input. V /2 when left floating (set by the internal pull-up and  
CC  
pulldown resistors).  
27  
28  
29  
30  
31  
V
Power  
Input (PU)  
Input (PU)  
Power  
Core Logic voltage supply.  
CC  
OEB0  
OEA0  
Controls output enable functions for Bank B. LVCMOS/LVTTL input levels.  
Controls output enable functions for Bank A. LVCMOS/LVTTL input levels.  
Core Logic voltage supply.  
V
CC  
nCLK0  
Input (PU/PD)  
Inverting differential clock input. V /2 when left floating (set by the internal pull-up and  
CC  
pull-down resistors).  
32  
CLK0  
Input (PD)  
Ground  
Non-inverting differential clock input.  
Must be connected to GND.  
EP  
Exposed Pad  
[a] Pull-up (PU) and pull-down (PD) resistors are indicated in parentheses. Pull-up and pull-down refers to internal input resistors.  
See Table 10, DC Input Characteristics, for typical values.  
©2018 Integrated Device Technology, Inc  
4
May 8, 2018  
8P791208 Datasheet  
Principles of Operation  
Input Selection  
The 8P791208 supports two input references: CLK0 and CLK1 that may be driven with differential or single-ended clock signals. Either  
may be used as the source frequency for either or both output banks under control of the CLK_SEL input pin.  
Table 2. Input Selection Control  
CLK_SEL  
Description  
High  
Banks A and B both driven from CLK1  
[a]  
Middle  
Bank A driven from CLK0 & Bank B driven from CLK1  
Banks A and B both driven from CLK0  
Low  
[a] A ‘middle’ voltage level is defined in Table 11. Leaving the input pin open will also  
generate this level via a weak internal resistor network.  
Output Drivers  
The QA[0:3] and QB[0:3] clock outputs are provided with pin-controlled output drivers. The following table shows how each bank can be  
controlled. Each bank is separately controlled and all outputs within a single bank will behave the same way.  
Table 3. Output Mode Control  
IOx  
Output Bank Mode Function  
All outputs in the bank are LVDS  
High  
Middle  
Low  
All outputs in the bank are LVPECL  
All outputs in the bank are LVCMOS  
The operating voltage ranges of each output is determined by its independent output power pin (VCCOA or VCCOB) and thus each can  
have different output voltage levels. Output voltage levels of 1.8V, 2.5V or 3.3V are supported for differential operation and LVCMOS  
operation. In addition, LVCMOS output operation supports 1.5V VCCO.  
LVCMOS Operation  
When a given output is configured to provide LVCMOS levels, then both the Q and nQ outputs will toggle at the selected output  
frequency. All the previously described configuration and control apply equally to both outputs. Frequency, voltage levels and enable /  
disable status apply to both the Q and nQ pins. When configured as LVCMOS, the Q & nQ outputs are in-phase relative to one another.  
©2018 Integrated Device Technology, Inc  
5
May 8, 2018  
8P791208 Datasheet  
Output Enable Control  
The 8P791208 has separate pins that control the output enable behavior for each bank as shown in the following table.  
Table 4. Output Enable Control  
Output Enable Function  
OEx1  
OEx0  
Qx3  
Qx2  
Qx1  
Qx0  
High  
High  
Low  
Low  
High  
Low  
High  
Low  
On  
Hi-Z  
On  
On  
Hi-Z  
On  
On  
On  
On  
On  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Absolute Maximum Ratings  
NOTE: The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to  
the device. Functional operation of the 8P79208 at absolute maximum ratings is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 5. Absolute Maximum Ratings  
Item  
Rating  
[a]  
Supply Voltage, V  
to GND  
3.63V  
CCX  
Inputs OEA[1:0], OEB[1:0], IOA, IOB, CLK_SEL, CLK0, nCLK0,  
CLK1, nCLK1  
–0.5V to V 0.5V  
CC  
Outputs, I QA[0:3], nQA[0:3]; QB[0:3], nQB[0:3]  
O
Continuous Current  
Surge Current  
40mA  
60mA  
[b]  
Outputs, V QA[0:3], nQA[0:3]; QB[0:3], nQB[0:3]  
–0.5V to V  
125°C  
0.5V  
O
CCOx  
Maximum Junction Temperature  
Storage Temperature, T  
–65°C to 150°C  
STG  
Lead Temperature (Soldering, 10s)  
260°C  
[a] VCCX denotes VCC, VCCOA, or VCCOB.  
[b] VCCOX denotes VCCOA or VCCOB.  
©2018 Integrated Device Technology, Inc  
6
May 8, 2018  
8P791208 Datasheet  
Supply Voltage Characteristics  
Table 6. Power Supply Characteristics, VCC = VCCOA = VCCOB = 3.3V ±5%, VEE = 0V, TA = 40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
Core supply voltage  
Output supply voltage  
3.135  
3.135  
3.3  
3.3  
3.465  
V
V
CC  
V
V
CC  
CCOA,  
V
CCOB  
I
Core supply current  
Device configured for LVDS logic levels  
22  
25  
153  
mA  
mA  
CC  
[a]  
I
Output supply current  
All outputs configured for LVDS logic levels;  
outputs unloaded  
136  
CCOX  
[a] Internal dynamic switching current at maximum fOUT is included.  
Table 7. Power Supply Characteristics, VCC = VCCOA = VCCOB = 2.5V ±5%, VEE = 0V, TA = 40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
Core supply voltage  
Output supply voltage  
2.375  
2.375  
2.5  
2.5  
2.625  
V
V
CC  
V
V
CC  
CCOA,  
V
CCOB  
I
Core supply current  
Device configured for LVDS logic levels  
21  
24  
151  
mA  
mA  
CC  
[a]  
I
Output supply current  
All outputs configured for LVDS logic levels;  
outputs unloaded  
135  
CCOX  
[a] Internal dynamic switching current at maximum fOUT is included.  
Table 8. Power Supply Characteristics, VCC = VCCOA = VCCOB = 1.8V ±5%, VEE = 0V, TA = 40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
Core supply voltage  
Output supply voltage  
1.71  
1.71  
1.8  
1.8  
1.89  
V
V
CC  
V
V
CC  
CCOA,  
V
CCOB  
I
Core supply current  
Device configured for LVDS logic levels  
18  
20  
137  
mA  
mA  
CC  
[a]  
I
Output supply current  
All outputs configured for LVDS logic levels;  
outputs unloaded  
122  
CCOX  
[a] Internal dynamic switching current at maximum fOUT is included.  
©2018 Integrated Device Technology, Inc  
7
May 8, 2018  
 
8P791208 Datasheet  
Table 9. Typical Output Supply Current, VCCOA = VCCOB = 3.3V±5%, 2.5V±5% or 1.8V±5%, VEE = 0V,  
TA = 40°C to 85°C  
[c]  
[c]  
[c]  
V
= 3.3V 5%  
V
[c] = 2.5V 5%  
V
= 1.8V 5%  
V
CCOx  
= 1.5V 5%  
CCOx  
CCOx  
CCOx  
I
I
Bank B All outputs  
77  
52  
37  
23  
52  
37  
23  
46  
41  
40  
46  
41  
40  
76  
49  
36  
76  
49  
36  
51  
34  
19  
51  
34  
19  
27  
25  
21  
27  
25  
21  
69  
46  
32  
32  
46  
32  
32  
25  
20  
20  
25  
20  
20  
21  
17  
17  
21  
17  
17  
mA  
mA  
mA  
mA  
mA  
mA  
CCOB  
output  
supply  
current  
enabled  
2 outputs  
enabled  
49  
42  
77  
49  
42  
49  
28  
69  
49  
28  
No outputs  
enabled  
Bank A All outputs  
CCOA  
output  
supply  
current  
enabled  
2 outputs  
enabled  
No outputs  
enabled  
[a] Internal dynamic switching current at maximum fOUT is included.  
[b] Tested with outputs unloaded.  
[c] VCCOx denotes VCCOA, VCCOB  
.
©2018 Integrated Device Technology, Inc  
8
May 8, 2018  
 
 
8P791208 Datasheet  
DC Electrical Characteristics  
Table 10. Pin Characteristics  
[a]  
Symbol  
Parameter  
Input capacitance  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
C
2
pF  
k  
k  
IN  
R
Input pull-up resistor  
51  
51  
PULLUP  
R
Input pull-down resistor  
PULLDOWN  
LVCMOS output type selected  
= 3.3V +5%  
24  
15  
25  
48  
V
CCOx  
LVCMOS output type selected  
= 2.5V +5%  
QA[3:0],  
nQA[3:0],  
QB[3:0],  
nQB[3:0]  
V
CCOx  
Output  
impedance  
R
OUT  
LVCMOS output type selected  
= 1.8V +5%  
V
CCOx  
LVCMOS output type selected  
V
V
= 1.5V +5%  
CCOx  
CCOx  
LVPECL  
LVDS  
4.2  
5.8  
4.7  
5.2  
pF  
pF  
pF  
pF  
= 3.465V or 2.625V  
Power dissipation  
capacitance  
(per output pair)  
LVCMOS  
LVPECL  
LVDS  
C
PD  
QA[3:0], nQA[3:0],  
QB[3:0], nQB[3:0]  
V
V
= 1.89V  
CCOx  
CCOx  
LVCMOS  
= 1.89V or 1.545V  
[a] VCCOx refers to VCCOA for QA[3:0], nQA[3:0], or VCCOB for QB[3:0], nQB[3:0].  
Table 11. LVCMOS/LVTTL Control / Status Signals DC Characteristics for 3-level Pins, VEE = 0V,  
TA = 40°C to 85°C  
Symbol Parameter  
Signals  
Test Conditions  
= 3.3V  
Minimum  
Typical  
Maximum  
Units  
V
Input  
IOA, IOB,  
CLK_SEL  
V
V
V
V
V
V
V
V
V
0.85 V  
0.85 V  
0.85 V  
0.45 V  
0.45 V  
0.45 V  
–0.3  
3.63  
2.625  
1.89  
V
V
V
V
V
V
V
V
V
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
high voltage  
= 2.5V  
= 1.8V  
= 3.3V  
= 2.5V  
= 1.8V  
= 3.3V  
= 2.5V  
= 1.8V  
V
Input  
IOA, IOB,  
CLK_SEL  
0.55 V  
0.55 V  
0.55 V  
0.15 V  
0.15 V  
0.15 V  
IM  
CC  
CC  
CC  
CC  
CC  
CC  
middle  
voltage  
[a]  
V
Input  
OEA[1:0], OEB[1:0]  
IOA, IOB, CLK_SEL  
IL  
low voltage  
–0.3  
–0.3  
©2018 Integrated Device Technology, Inc  
9
May 8, 2018  
 
8P791208 Datasheet  
Table 11. LVCMOS/LVTTL Control / Status Signals DC Characteristics for 3-level Pins, VEE = 0V,  
TA = 40°C to 85°C  
Symbol Parameter  
Signals  
Test Conditions  
= V = 3.465V or 2.625V or  
Minimum  
Typical  
Maximum  
Units  
I
Input  
IOA, IOB,  
CLK_SEL  
V
150  
A  
IH  
CC  
IN  
high current  
1.89V  
I
Input  
middle current  
IOA, IOB,  
CLK_SEL  
V
V
= 3.465V or 2.625V or 1.89V,  
A  
A  
IM  
CC  
IN  
= V /2  
CC  
I
Input  
low current  
OEA[1:0], OEB[1:0]  
IOA, IOB, CLK_SEL  
V
V
= 3.465V or 2.625V or 1.89V,  
= 0V  
–150  
IL  
CC  
IN  
[a] For 3-level input pins, a mid-level voltage is used to select the 3rd state. This voltage will be maintained by a weak internal pull-up / pull-down  
network for each pin to select this state if the pin is left open. It is recommended that any external resistor networks used to select a middle-level  
input voltage be terminated to the device’s core VCC voltage level.  
Table 12. LVCMOS/LVTTL Control / Status Signals DC Characteristics for 2-Level Pins, VEE = 0V,  
TA = 40°C to 85°C  
Symbol Parameter  
Signals  
Test Conditions  
= 3.3V  
Minimum  
Typical  
Maximum  
Units  
V
Input  
OEA[1:0], OEB[1:0]  
V
V
V
V
V
V
V
2
3.63  
2.625  
1.89  
0.8  
V
V
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
high voltage  
= 2.5V  
= 1.8V  
= 3.3V  
= 2.5V  
= 1.8V  
1.7  
0.65 V  
–0.3  
V
CC  
V
Input  
OEA[1:0], OEB[1:0]  
V
IL  
low voltage  
–0.3  
0.7  
V
–0.3  
0.35 V  
V
CC  
I
Input  
OEA[1:0], OEB[1:0]  
OEA[1:0], OEB[1:0]  
= V = 3.465V or 2.625V or  
150  
A  
IH  
IN  
high current  
1.89V  
I
Input  
V
= V = 3.465V or 2.625V or  
–150  
A  
IL  
CC  
IN  
low current  
1.89V  
©2018 Integrated Device Technology, Inc  
10  
May 8, 2018  
8P791208 Datasheet  
Table 13. Differential Input DC Characteristics, VCC = 3.3V±5%, 2.5V±5% or 1.8V±5%, VEE = 0V,  
TA = 40°C to 85°C  
Symbol Parameter  
Test Conditions  
= V = 3.465V or 2.625V  
Minimum  
Typical  
Maximum  
Units  
[a]  
I
Input high current  
Input low current  
CLKx, nCLKx  
[a]  
V
V
V
150  
A  
A  
A  
V
IH  
CC  
CC  
CC  
IN  
I
CLKx  
= 3.465V or 2.625V, V = 0V  
–5  
IL  
IN  
[a]  
nCLKx  
= 3.465V or 2.625V, V = 0V  
–150  
0.15  
IN  
[b]  
V
Peak-to-peak voltage  
1.3  
PP  
[b], [c]  
V
Common mode input voltage  
V
V – 1.2  
CC  
V
CMR  
EE  
[a] CLKx denotes CLK0, CLK1. nCLKx denotes nCLK0, nCLK1.  
[b] VIL should not be less than –0.3V. VIH should not be higher than VCC  
[c] Common mode voltage is defined as the cross-point.  
.
Table 14. LVPECL DC Characteristics, VCC = 3.3V ±5%, 2.5V ±5% or 1.8V ±5%, VEE = 0V, TA = -40°C to  
+85°C  
Symbol  
Parameter  
Test Conditions  
Min  
- 1.3  
Typ  
Max  
V - 0.8  
CCOX  
Unit  
V
Output High Voltage  
Qx, nQx  
Qx, nQx  
V
mV  
OH  
CCOX  
V
Output Low Voltage  
V
- 2.05  
V - 1.75  
CCOX  
mV  
OL  
CCOX  
[a]  
Table 15. LVDS DC Characteristics, VCC = 3.3V ±5%, 2.5V ±5% or 1.8V ±5%, VCCOx  
= 3.3V ±5%,  
VEE = 0V, TA = 40°C to 85°C  
Symbol Parameter  
Differential output voltage  
magnitude change  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
[b]  
[b]  
[b]  
[b]  
V
Qx, nQx  
Qx, nQx  
Qx, nQx  
Qx, nQx  
Terminated 100across  
Qx and nQx  
247  
465  
50  
mV  
mV  
V
OD  
V  
V
OD  
OD  
V
Offset voltage  
magnitude change  
1.1  
1.375  
50  
OS  
V  
V
mV  
OS  
OS  
[a] VCCOx denotes VCCOA, VCCOB  
.
[b] Qx denotes QA0, QA1, QA2, QA3, QB0, QB1, QB2, QB3.  
nQx denotes nQA0, nQA1, nQA2, nQA3, nQB0, nQB1, nQB2, nQB3.  
[a]  
Table 16. LVDS DC Characteristics, VCC = 3.3V ±5%, 2.5V ±5% or 1.8V ±5%, VCCOx  
= 2.5V ±5%,  
VEE = 0V, TA = 40°C to 85°C  
Symbol Parameter  
Differential output voltage  
magnitude change  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
[b]  
[b]  
[b]  
[b]  
V
Qx, nQx  
Qx, nQx  
Qx, nQx  
Qx, nQx  
Terminated 100across  
Qx and nQx  
247  
465  
50  
mV  
mV  
V
OD  
V  
V
OD  
OD  
V
Offset voltage  
magnitude change  
1.1  
1.375  
50  
OS  
V  
V
mV  
OS  
OS  
[a] VCCOx denotes VCCOA, VCCOB  
.
[b] Qx denotes QA0, QA1, QA2, QA3, QB0, QB1, QB2, QB3.  
nQx denotes nQA0, nQA1, nQA2, nQA3, nQB0, nQB1, nQB2, nQB3.  
©2018 Integrated Device Technology, Inc  
11  
May 8, 2018  
 
 
 
 
 
8P791208 Datasheet  
[a]  
Table 17. LVDS DC Characteristics, VCC = 3.3V ±5%, 2.5V ±5% or 1.8V ±5%, VCCOx  
= 1.8V ±5%,  
VEE = 0V, TA = 40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
[b]  
[b]  
[b]  
[b]  
V
Differential output voltage  
Qx, nQx  
Qx, nQx  
Qx, nQx  
Qx, nQx  
Terminated 100  
across  
Qx and nQx  
247  
454  
50  
mV  
mV  
V
OD  
V  
V
magnitude change  
OD  
OD  
V
Offset voltage  
magnitude change  
1.1  
1.375  
50  
OS  
V  
V
mV  
OS  
OS  
[a] VCCOx denotes VCCOA, VCCOB  
.
[b] Qx denotes QA0, QA1, QA2, QA3, QB0, QB1, QB2, QB3.  
nQx denotes nQA0, nQA1, nQA2, nQA3, nQB0, nQB1, nQB2, nQB3.  
[a]  
Table 18. LVCMOS Clock Outputs DC Characteristics, VCCOx  
= 3.3V±5%, 2.5V±5% or 1.8V±5%,  
VEE = 0V, TA = 40°C to 85°C  
[a]  
[a]  
V
3.3V 5%  
=
V
2.5V 5%  
=
CCOx  
CCOx  
[a]  
[a]  
V
= 1.8V 5%  
Typ Max  
V
= 1.5V 5%  
Typ Max  
CCOx  
CCOx  
Test  
Symbol Parameter Conditions Min Typ Max Min Typ Max  
Min  
Min  
Units  
V
Output  
I
= –8mA 2.4  
1.8  
V
0.45  
V
0.38  
V
OH  
OH  
CC  
CC  
high voltage  
[b]  
Qx, nQx  
V
Output  
I
= 8mA  
0.8  
0.6  
0.45  
0.38  
V
OL  
OL  
low voltage  
[b]  
Qx, nQx  
[a] VCCOx denotes VCCOA, VCCOB  
.
[b] Qx denotes QA0, QA1, QA2, QA3, QB0, QB1, QB2, QB3. nQx denotes nQA0, nQA1, nQA2, nQA3, nQB0, nQB1, nQB2, nQB3.  
Table 19. Input Frequency Characteristics, VCC = 3.3V±5%, 2.5V±5% or 1.8V±5%, VEE = 0V,  
TA = 40°C to 85°C  
Symbol Parameter  
Input Frequency  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
[a]  
f
CLKx, nCLKx  
1Hz  
700MHz  
IN  
[b]  
idc  
[a] CLKx denotes CLK0, CLK1. nCLKx denotes nCLK0, nCLK1.  
[b] Any deviation from a 50% / 50% duty cycle on the input may be reflected in the output duty cycle.  
Input duty cycle  
50  
%
©2018 Integrated Device Technology, Inc  
12  
May 8, 2018  
 
 
 
8P791208 Datasheet  
AC Electrical Characteristics  
[a]  
Table 20. AC Characteristics, VCC = 3.3V ±5%, 2.5V ±5% or 1.8V ±5%, VCCOx  
= 3.3V ±5%, 2.5V ±5% or  
1.8V ±5%, VEE = 0V, TA = 40°C to 85°C  
[b]  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
f
f
Output  
frequency  
LVDS, LVPECL  
LVCMOS  
1PPS  
700MHz  
OUT  
OUT  
Output  
1PPS  
125MHz  
frequency  
t
Propagation  
delay  
LVCMOS  
LVDS  
V
= 3.3V ±5%  
DDOx  
1.25  
0.85  
0.85  
125  
150  
175  
200  
250  
200  
300  
200  
2.25  
2.0  
2.0  
700  
550  
575  
600  
775  
915  
950  
1400  
60  
ns  
ns  
ns  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
%
PD  
LVPECL  
t / t  
Output rise and LVPECL  
fall times  
20% to 80%  
R
F
LVDS  
20% to 80%, V  
20% to 80%, V  
20% to 80%, V  
20% to 80%, V  
20% to 80%, V  
20% to 80%, V  
20% to 80%, V  
= 3.3V  
= 2.5V  
= 1.8V  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
CCOx  
CCOx  
CCOx  
CCOx  
CCOx  
CCOx  
CCOx  
LVCMOS  
[c],  
[f]  
t (b)  
Bank skew  
LVPECL,LVDS  
sk  
[d], [e]  
[g]  
LVCMOS  
100  
55  
odc  
Output  
duty cycle  
LVPECL, LVDS  
LVPECL, LVDS  
LVCMOS  
V
V
V
V
V
= 3.3V or 2.5V  
= 1.8V  
45  
43  
45  
43  
40  
CCOx  
CCOx  
CCOx  
CCOx  
CCOx  
[h], [i]  
57  
%
= 3.3V or 2.5V  
= 1.8V  
55  
57  
%
= 1.5V  
60  
MUX  
Mux Isolation  
Noise Floor  
70  
dB  
ISOL  
Offset >10MHz from156.25MHz carrier  
LVPECL, LVDS  
157  
dBc/Hz  
[a] VCCOx denotes VCCOA, VCCOB  
.
[b] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted  
in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been  
reached under these conditions.  
[c] This parameter is guaranteed by characterization. Not tested in production.  
[d] This parameter is defined in accordance with JEDEC Standard 65.  
[e] Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions.  
[f] Measured at the output differential crosspoint.  
[g] Measured at VCCOx/2 of the rising edge.  
[h] Measured using 50% /50% duty cycle on input reference.  
[i] Measurements taken for the following output frequencies:  
LVDS and LVPECL: 50MHz, 100MHz, 156.25MHz, 250MHz, 312.5MHz, 491.52MHz, 700MHz  
LVCMOS: 25MHz, 50MHz, 100MHz, 125MHz.  
©2018 Integrated Device Technology, Inc  
13  
May 8, 2018  
 
8P791208 Datasheet  
[a]  
Table 21. Typical Additive Jitter, VCC = 3.3V ±5%, 2.5V ±5% or 1.8V ±5%, VCCOx  
= 3.3V ±5%, 2.5V ±5%,  
1.8V ±5% or 1.5V ±5% (1.5V only supported for LVCMOS outputs), VEE = 0V, TA = 40°C to 85°C  
[b]  
Symbol  
t (f)  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RMS  
LVPECL  
f
= 156.25MHz,  
V
V
= 3.3V or 2.5V  
= 1.8V  
64  
81  
fs  
fs  
jit  
OUT  
CCOx  
CCOx  
Additive Jitter  
(Random)  
Integration Range:  
12kHz to 20MHz  
LVDS  
f
= 156.25MHz,  
V
V
= 3.3V or 2.5V  
= 1.8V  
70  
fs  
fs  
OUT  
CCOx  
CCOx  
Integration Range:  
12kHz to 20MHz  
114  
LVCMOS  
f
= 125MHz,  
V
V
V
= 3.3V or 2.5V  
= 1.8V  
105  
140  
192  
fs  
fs  
fs  
OUT  
CCOx  
CCOx  
CCOx  
Integration Range:  
12kHz to 20MHz  
= 1.5V  
[a] VCCOx denotes VCCOA, VCCOB  
.
[b] All outputs configured for the specific output type, as shown in the table.  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs  
CLK/nCLK Inputs  
For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
LVCMOS LVTTL Level Control Pins  
All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A  
1kresistor can be used.  
LVCMOS 3-level I/O Control Pins  
These pins are 3-level pins and if left unconnected this is interpreted as a valid input selection option (Middle).  
Outputs  
LVCMOS Outputs  
All unused LVCMOS outputs can be left floating. It is recommended that there is no trace attached.  
LVPECL Outputs  
All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
LVDS Outputs  
All unused LVDS output pairs can be either left floating or terminated with 100across. If they are left floating, there should be no trace  
attached.  
©2018 Integrated Device Technology, Inc  
14  
May 8, 2018  
8P791208 Datasheet  
Wiring the Differential Input to Accept Single-ended Levels  
Figure 2 shows how a differential input can be wired to accept single ended levels. The reference voltage V1 = VCC/2 is generated by the  
bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V1in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VCC = 3.3V, R1 and R2 value should be adjusted to set V1 at 1.25V. The values  
below are for when both the single ended swing and VCC are at the same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half.  
This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50  
applications, R3 and R4 can be 100. The values of the resistors can be increased to reduce the loading for slower and weaker  
LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the  
differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced while maintaining an edge rate  
faster than 1V/ns. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For  
single-ended applications, the swing can be larger, however VIL cannot be less than –0.3V and VIH cannot be more than VCC 0.3V.  
Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for  
debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.  
Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
©2018 Integrated Device Technology, Inc  
15  
May 8, 2018  
 
8P791208 Datasheet  
3.3V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, HCSL and other differential signals. Both VSWING and VOH must meet the VPP and  
CMR input requirements. Figure 3 to Figure 7 show interface examples for the CLK/nCLK input driven by the most common driver types.  
V
The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver  
termination requirements. For example, in Figure 3, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination recommendation.  
Figure 3. CLKx/nCLKx Input Driven by an  
IDT Open Emitter LVHSTL Driver  
Figure 4. CLKx/nCLKx Input Driven by a  
3.3V LVPECL Driver  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
nCLK  
Differential  
Input  
LVHSTL  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
Figure 5. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 6. CLK/nCLK Input Driven by a  
3.3V LVDS Driver  
3.3V  
3.3V  
*R3  
CLK  
nCLK  
Differential  
Input  
*R4  
HCSL  
Figure 7. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
©2018 Integrated Device Technology, Inc  
16  
May 8, 2018  
 
 
8P791208 Datasheet  
2.5V Differential Clock Input Interface  
CLKx/nCLKx accepts LVDS, LVPECL, LVHSTL, HCSL and other differential signals. Both VSWING and VOH must meet the VPP and VCMR  
input requirements. Figure 8 to Figure 12 show interface examples for the CLKx/nCLKx input driven by the most common driver types.  
The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver  
termination requirements. For example, in Figure 8, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination recommendation.  
Figure 8. CLKx/nCLKx Input Driven by an  
IDT Open Emitter LVHSTL Driver  
Figure 9. CLKx/nCLKx Input Driven by a  
2.5V LVPECL Driver  
2.5V  
1.8V  
Zo = 50  
Zo = 50฀  
CLK  
nCLK  
Differential  
Input  
LVHSTL  
R1  
50฀  
R2  
50฀  
IDT Open Emitter  
LVHSTL Driver  
Figure 10. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
Figure 11. CLK/nCLK Input Driven by a  
2.5V LVDS Driver  
Figure 12. CLK/nCLK Input Driven by a  
2.5V HCSL Driver  
2.5V  
2.5V  
Zo = 50  
*R3  
33Ω  
CLK  
Zo = 50Ω  
nCLK  
Differential  
Input  
*R4  
33Ω  
HCSL  
R1  
50Ω  
R2  
50Ω  
*Optional – R3 and R4 can be 0Ω  
©2018 Integrated Device Technology, Inc  
17  
May 8, 2018  
 
 
8P791208 Datasheet  
LVDS Driver Termination  
For a general LVDS interface, the recommended value for the termination impedance (ZT) is between 90and 132. The actual value  
should be selected to match the differential impedance (Z0) of your transmission line. A typical point-to-point LVDS design uses a 100  
parallel resistor at the receiver and a 100differential transmission-line environment. In order to avoid any transmission-line reflection  
issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS  
compliant devices with two types of output structures: current source and voltage source.  
The standard termination schematic as shown in Figure 13 can be used with either type of output structure. Figure 14, which can also be  
used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value  
should be approximately 50pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is  
current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver’s amplitude and  
common-mode input range should be verified for compatibility with the output.  
Figure 13. Standard LVDS Termination  
Figure 14. Optional LVDS Termination  
©2018 Integrated Device Technology, Inc  
18  
May 8, 2018  
 
 
8P791208 Datasheet  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
The differential output is a low impedance follower output that generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50  
transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion.  
Figure 15 and Figure 16 show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist  
and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component  
process variations.  
Figure 15. 3.3V LVPECL Output Termination  
Figure 16. 3.3V LVPECL Output Termination  
3.3V  
R3  
R4  
125  
125฀  
3.3V  
3.3V  
Zo = 50฀  
Zo = 50฀  
+
_
Input  
R1  
84฀  
R2  
84฀  
©2018 Integrated Device Technology, Inc  
19  
May 8, 2018  
 
 
8P791208 Datasheet  
Termination for 2.5V LVPECL Outputs  
Figure 17 and Figure 18 show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50to  
CCO – 2V. For VCCO = 2.5V, the VCCO – 2V is very close to ground level. The R3 in Figure 18 can be eliminated and the termination is  
V
shown in Figure 19.  
Figure 17. 2.5V LVPECL Driver Termination Example  
2.5V  
2.5V  
VCCO = 2.5V  
R1  
R3  
250  
250  
50฀  
50฀  
+
2.5V LVPECL Driver  
R2  
62.5  
R4  
62.5  
Figure 18. 2.5V LVPECL Driver Termination Example  
2.5V  
VCCO = 2.5V  
50฀  
50฀  
+
2.5V LVPECL Driver  
R1  
50  
R2  
50  
Figure 19. 2.5V LVPECL Driver Termination Example  
2.5V  
VCCO = 2.5V  
50฀  
+
50฀  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
R3  
18  
©2018 Integrated Device Technology, Inc  
20  
May 8, 2018  
 
 
 
8P791208 Datasheet  
Power Dissipation and Thermal Considerations  
The 8P791208 is a multi-functional, high speed device that targets a wide variety of clock frequencies and applications. Since this device  
is highly programmable with a broad range of features and functionality, the power consumption will vary as each of these features and  
functions is enabled.  
The 8P791208 device was designed and characterized to operate within the ambient industrial temperature range of TA = -40°C to 85°C.  
The ambient temperature represents the temperature around the device, not the junction temperature. When using the device in extreme  
cases, such as maximum operating frequency and high ambient temperature, external air flow may be required in order to ensure a safe  
and reliable junction temperature. Extreme care must be taken to avoid exceeding 125°C junction temperature.  
The power calculation examples below were generated using a maximum ambient temperature and supply voltage. For many  
applications, the power consumption will be much lower. Please contact IDT technical support for any concerns on calculating the power  
dissipation for your own specific configuration.  
Power Domains  
The 8P791208 device has a number of separate power domains that can be independently enabled and disabled via register accesses  
(all power supply pins must still be connected to a valid supply voltage). Figure 20 indicates the individual domains and the associated  
power pins.  
Figure 20. 8P791208 Power Domains  
Power Consumption Calculation  
Determining total power consumption involves several steps:  
1. Determine the power consumption using maximum current values for core voltage from Table 6 to Table 9 for the appropriate case of  
how many banks or outputs are enabled.  
2. Determine the nominal power consumption of each enabled output path.  
a. This consists of a base amount of power that is independent of operating frequency, as shown in Table 22 to Table 28 (depending  
on the chosen output protocol).  
b. Then there is a variable amount of power that is related to the output frequency. This can be determined by multiplying the output  
frequency by the FQ_Factor shown in Table 22 to Table 28.  
3. All of the above totals are then summed.  
©2018 Integrated Device Technology, Inc  
21  
May 8, 2018  
 
8P791208 Datasheet  
Thermal Considerations  
Once the total power consumption has been determined, it is necessary to calculate the maximum operating junction temperature for the  
device under the environmental conditions it will operate in. Thermal conduction paths, air flow rate and ambient air temperature are  
factors that can affect this. The thermal conduction path refers to whether heat is to be conducted away via a heat-sink, via airflow or via  
conduction into the PCB through the device pads (including the ePAD). Thermal conduction data is provided for typical scenarios in  
Table 30. Please contact IDT for assistance in calculating results under other scenarios.  
Current Consumption Data and Equations  
Table 22. 3.3V LVDS Output Calculation Table  
FQ_Factor  
(mA/MHz)  
LVDS  
Base_Current (mA)  
Bank A  
Bank B  
0.08  
0.08  
25.309  
25.309  
Table 23. 2.5V LVDS Output Calculation Table  
FQ_Factor  
(mA/MHz)  
LVDS  
Base_Current (mA)  
Bank A  
Bank B  
0.05  
0.05  
35.476  
35.476  
Table 24. 1.8V LVDS Output Calculation Table  
FQ_Factor  
(mA/MHz)  
LVDS  
Base_Current (mA)  
Bank A  
Bank B  
0.05  
0.05  
35.330  
35.330  
Table 25. 3.3V LVCMOS Output Calculation Table  
LVCMOS  
Base_Current (mA)  
Bank A  
Bank B  
31.522  
31.522  
Table 26. 2.5V LVCMOS Output Calculation Table  
LVCMOS  
Base_Current (mA)  
Bank A  
Bank B  
18.665  
18.665  
©2018 Integrated Device Technology, Inc  
22  
May 8, 2018  
8P791208 Datasheet  
Table 27. 1.8V LVCMOS Output Calculation Table  
LVCMOS  
Base_Current (mA)  
Bank A  
Bank B  
14.704  
14.704  
Table 28. 1.5V LVCMOS Output Calculation Table  
LVCMOS  
Base_Current (mA)  
Bank A  
Bank B  
12.522  
12.522  
Applying the values to the following equation will yield output current by frequency:  
Qx Current (mA) = FQ_Factor Frequency (MHz) Base_Current  
where:  
Qx Current is the specific output current according to output type and frequency  
FQ_Factor is used for calculating current increase due to output frequency  
Base_Current is the base current for each output path independent of output frequency  
The second step is to multiply the power dissipated by the thermal impedance to determine the maximum power gradient, using the  
following equation:  
TJ = TA (JA Pdtotal  
)
where:  
TJ is the junction temperature (°C)  
TA is the ambient temperature (°C)  
JA is the thermal resistance value from Table 30, dependent on ambient airflow (°C/W).  
Pdtotal is the total power dissipation of the 8P791208 under usage conditions, including power dissipated due to loading (W).  
Note: For LVPECL outputs the power dissipation through the load is assumed to be 27.95mW. When selecting LVCMOS outputs, power  
dissipation through the load will vary based on a variety of factors including termination type and trace length. For these examples, power  
dissipation through loading will be calculated using CPD (located in Table 10) and output frequency:  
2
PdOUT = CPD fOUT VCCO  
where:  
Pdout is the power dissipation of the output (W)  
CPD is the power dissipation capacitance (pF)  
f
OUT is the output frequency of the selected output (MHz)  
VCCO is the voltage supplied to the appropriate output (V)  
©2018 Integrated Device Technology, Inc  
23  
May 8, 2018  
8P791208 Datasheet  
Example Calculations  
Table 29. Example 1 – Common Customer Configuration (3.3V Core Voltage)  
Circuit  
Configuration  
Frequency (MHz)  
V
CCO  
Bank A  
Bank B  
LVDS  
LVDS  
125  
3.3V  
3.3V  
Core supply current, ICC = 25mA (maximum)  
Output supply current, Bank A current = 0.08mA x 125MHz + 30mA = 40mA  
Output supply current, Bank B current = 0.08mA x 125MHz + 30mA = 40mA  
Total device current = 25mA + 40mA + 40mA = 105mA  
Total device power = 3.465V 105mA = 363.825mW or 0.364W  
With an ambient temperature of 85°C and no airflow, the junction temperature is:  
TJ = 85°C + 35.23°C/W 0.364W = 97.82°C  
LVPECL Power Considerations (700MHz)  
This section provides information on power dissipation and junction temperature for the 8P791208.  
Equations and example calculations are also provided.  
4. Power Dissipation.  
The total power dissipation for the 8P791208 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
Note: IEE_MAX @ 85°C is 124mA  
For information on calculating power dissipated in the load, see Calculations and Equations.  
Power (core)MAX = VCC_MAX IEE_MAX = 3.465V 124mA = 429.66mW  
Power (outputs)MAX = 27.95mW/Loaded Output pair  
If all outputs are loaded, the total power is 8 27.95mW = 223.6mW  
Total Power_MAX = 429.66W 223.6mW = 653.26mW  
5. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that  
the bond wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 35.23°C/W per Table 30.  
©2018 Integrated Device Technology, Inc  
24  
May 8, 2018  
8P791208 Datasheet  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C 0.653W 35.23°C/W = 108°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the  
type of board (multi-layer).  
Table 30. Thermal Resistance JA for 32-Lead VFQFN, Forced Convection  
by Velocity  
0
JA  
Meters per Second  
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
35.23°C/W  
31.6°C/W  
30.0°C/W  
6. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair. LVPECL output driver circuit and termination  
are shown in Figure 21.  
Figure 21. LVPECL Driver Circuit and Termination  
VCCO  
Q1  
VOUT  
RL  
50  
VCCO - 2V  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX 0.8V  
(VCCO_MAX VOH_MAX) = 0.8V  
For logic low, VOUT = VOL_MAX = VCCO_MAX 1.75V  
(VCCO_MAX VOL_MAX) = 1.75V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
©2018 Integrated Device Technology, Inc  
25  
May 8, 2018  
 
 
8P791208 Datasheet  
Pd_H = [(VOH_MAX (VCCO_MAX 2V))/RL] (VCCO_MAX VOH_MAX) = [(2V (VCCO_MAX VOH_MAX))/RL] (VCCO_MAX VOH_MAX) =  
[(2V – 0.8V)/50] * 0.8V = 19.2mW  
Pd_L = [(VOL_MAX (VCCO_MAX 2V))/RL] (VCCO_MAX VOL_MAX) = [(2V (VCCO_MAX VOL_MAX))/RL] (VCCO_MAX VOL_MAX) =  
[(2V – 1.75V)/50] 1.75V = 8.75mW  
Total Power Dissipation per output pair = Pd_H Pd_L = 27.95mW  
LVDS Power Considerations (700MHz)  
This section provides information on power dissipation and junction temperature for the 8P791208.  
Equations and example calculations are also provided.  
7. Power Dissipation.  
The total power dissipation for the 8P791208 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
Power (core)MAX = VCC_MAX ICC_MAX = 3.465V 25mA = 86.625mW  
Power (outputs)MAX = VCCOx_MAX ICCO_MAX = 3.465V 153mA = 530.145mW  
Total Power_MAX = 86.625W 530.145mW = 616.77mW  
8. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that  
the bond wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 35.23°C/W per Table 30.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C 0.617W 35.23°C/W = 107°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the  
type of board (multi-layer).  
©2018 Integrated Device Technology, Inc  
26  
May 8, 2018  
8P791208 Datasheet  
LVCMOS Power Considerations (125MHz)  
This section provides information on power dissipation and junction temperature for the 8P791208.  
Equations and example calculations are also provided.  
9. Power Dissipation.  
The total power dissipation for the 8P791208 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
Power (core)MAX = VCC_MAX ICC_MAX = 3.465V 63mA = 217.81mW  
Dynamic Power Dissipation at fOUT(max)  
Total Power:  
Total Power (FOUT_MAX) = [(CPD N) Frequency (VCCO)2] = [(0.58pF 2) 125MHz (3.456V)2] = 13.92722mW per  
output  
N = number of outputs  
Dynamic Power Dissipation:  
= Static Power Dynamic Power Dissipation  
= 217.81mW 13.927mW  
= 231.737mW  
10. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that  
the bond wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 35.23°C/W per Table 30.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C 0.232W 35.23°C/W = 93.27°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the  
type of board (multi-layer).  
Package Outline Draw ings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information  
is the most current data available.  
www.idt.com/document/psc/32-vfqfpn-package-outline-drawing-50-x-50-x-090-mm-body-epad-315-x-315-mm-nlg32p1  
©2018 Integrated Device Technology, Inc  
27  
May 8, 2018  
 
8P791208 Datasheet  
Marking Diagram  
1. IDT  
2. Line 2 and line 3 indicates the part number.  
3. Line 3:  
“#” indicates stepping.  
“YYWW” indicates the date code (YY are the last two digits of the year, and  
“WW” is a work week number that the part was assembled.  
“$” indicates the mark code.  
Ordering Information  
Orderable Part Number  
Marking  
Package  
Carrier Type  
Temperature  
8P791208NLGI  
8P791208NLGI8  
IDT8P791208NLGI  
IDT8P791208NLGI  
32-lead VFQFN, Lead Free  
32-lead VFQFN, Lead Free  
Tray  
–40°C to 85°C  
–40°C to 85°C  
Tape and Reel, Pin 1  
Orientation: EIA-481-C  
8P791208NLGI/W  
IDT8P791208NLGI  
32-lead VFQFN, Lead Free  
Tape and Reel, Pin 1  
Orientation: EIA-481-D  
–40°C to 85°C  
Table 31. Pin 1 Orientation in Tape and Reel Packaging  
Part Number Suffix  
Pin 1 Orientation  
Illustration  
NLGI8  
Quadrant 1 (EIA-481-C)  
CARRIER TAPE TOPSIDE  
(Round Sprocket Holes)  
Correct Pin 1 ORIENTATION  
USER DIRECTION OF FEED  
NLGI/W  
Quadrant 2 (EIA-481-D)  
CARRIER TAPE TOPSIDE  
(Round Sprocket Holes)  
Correct Pin 1 ORIENTATION  
USER DIRECTION OF FEED  
©2018 Integrated Device Technology, Inc  
28  
May 8, 2018  
8P791208 Datasheet  
Revision History  
Date  
Description of Change  
Updated the propagation delay minimum and maximum numbers for LVCMOS in Table 20  
Updated the Package Outline Drawings; however, no technical changes  
May 8, 2018  
November 5, 2017  
August 23, 2017  
November 28, 2016  
Added t symbol to Table 20  
PD  
Added Table 14  
Updated the package outline drawings. No mechanical changes.  
Initial release.  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com/go/support  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time,  
without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same  
way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability  
of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not  
convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be rea-  
sonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property  
of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc All rights reserved.  
©2018 Integrated Device Technology, Inc  
29  
May 8, 2018  
32-VFQFPN, Package Outline Drawing  
5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm.  
NLG32P1, PSC-4171-01, Rev 02, Page 1  
‹ꢀ,QWHJUDWHGꢀ'HYLFHꢀ7HFKQRORJ\ꢁꢀ,QFꢂ  
32-VFQFPN, Package Outline Drawing  
5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm.  
NLG32P1, PSC-4171-01, Rev 02, Page 2  
Package Revision History  
Description  
Date Created Rev No.  
April 12, 2018  
Feb 8, 2016  
Rev 02 New Format  
Rev 01 Added "k: Value  
‹ꢀ,QWHJUDWHGꢀ'HYLFHꢀ7HFKQRORJ\ꢁꢀ,QFꢂ  
厂商 型号 描述 页数 下载

IDT

8P73S674 [ Clock signal division and distribution ] 15 页

IDT

8P73S674NLGI [ 1.8V LVPECL Clock Divider ] 15 页

IDT

8P73S674NLGI8 [ 1.8V LVPECL Clock Divider ] 15 页

IDT

8P73S674_16 [ 1.8V LVPECL Clock Divider ] 15 页

IDT

8P791208 [ Low Additive Jitter 2:8 Buffer with CMOS/ Differential Outputs ] 32 页

IDT

8P791208NLGI [ Low Additive Jitter 2:8 Buffer with CMOS/ Differential Outputs ] 32 页

IDT

8P791208NLGI/W [ Low Additive Jitter 2:8 Buffer with CMOS/ Differential Outputs ] 32 页

IDT

8P791208NLGI8 [ Low Additive Jitter 2:8 Buffer with CMOS/ Differential Outputs ] 32 页

IDT

8P79818 [ Programmable Low Additive Jitter 2:8 Buffer with Dividers and Universal Outputs ] 34 页

IDT

8P79818NLGI [ Programmable Low Additive Jitter 2:8 Buffer with Dividers and Universal Outputs ] 34 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.246558s