CYV15G0104TRB
reclocker logic is also powered down. The deserialization logic
and parallel outputs will remain enabled. A device reset
(RESET sampled LOW) disables all output drivers.
the device configuration interface. When RXPLLPDA = 0, the
receive PLL and analog circuitry of the channel is disabled.
The transmit channel is controlled by the TOE1B and the
TOE2B latches via the device configuration interface. The
reclocker function is controlled by the ROE1A and the ROE2A
latches via the device configuration interface. When a driver is
disabled via the configuration interface, it is internally powered
down to reduce device power. If both serial drivers for a
channel are in this disabled state, the associated internal logic
for that channel is also powered down. When the reclocker
serial drivers are disabled, the reclocker function will be
disabled, but the deserialization logic and parallel outputs will
remain enabled.
Note. When the disabled reclocker function (i.e., both outputs
disabled) is re-enabled, the data on the reclocker serial
outputs may not meet all timing specifications for up to 250 μs.
Output Bus
The receive channel presents a 10-bit data signal (and a BIST
status signal when RXBISTA[1:0] = 10).
Receive BIST Operation
The receiver channel contains an internal pattern checker that
can be used to validate both device and link operation. These
pattern checkers are enabled by the RXBISTA[1:0] latch via
the device configuration interface. When enabled, a register in
the receive channel becomes a signature pattern generator
and checker by logically converting to a Linear Feedback Shift
Register (LFSR). This LFSR generates a 511-character
sequence. This provides a predictable yet pseudo-random
sequence that can be matched to an identical LFSR in the
attached Transmitter(s). When synchronized with the received
data stream, the Receiver checks each character from the
deserializer with each character generated by the LFSR and
indicates compare errors and BIST status at the RXDA[1:0]
and BISTSTA bits of the Output Register.
Device Reset State
When the CYV15G0104TRB is reset by assertion of RESET,
all state machines, counters, and configuration latches in the
device are initialized to a reset state. Additionally, the JTAG
controller must also be reset for valid operation (even if JTAG
testing is not performed). See “JTAG Support” on page 16 for
JTAG state machine initialization. See Table 4 on page 14 for
the initialize values of the configuration latches.
Following a device reset, it is necessary to enable the transmit
and receive channels used for normal operation. This can be
done by sequencing the appropriate values on the device
configuration interface.[5]
The BIST status bus {BISTSTA, RXDA[0], RXDA[1]} indicates
010b or 100b for one character period per BIST loop to
indicate loop completion. This status can be used to check test
pattern progress.
Device Configuration and Control Interface
The CYV15G0104TRB is highly configurable via the configu-
ration interface. The configuration interface allows the trans-
mitter and reclocker to be configured independently. Table 4
lists the configuration latches within the device including the
initialization value of the latches upon the assertion of RESET.
Table 5 on page 15 shows how the latches are mapped in the
device. Each row in the Table 5 maps to a 7-bit latch bank.
There are 6 such write-only latch banks. When WREN = 0, the
logic value in the DATA[6:0] is latched to the latch bank
specified by the values in ADDR[2:0]. The second column of
Table 5 specifies the channels associated with the corre-
sponding latch bank. For example, the first three latch banks
(0,1 and 2) consist of configuration bits for the reclocker
channel A.
The specific status reported by the BIST state machine is listed
in Table 6. These same codes are reported on the receive
status outputs.
If the number of invalid characters received ever exceeds the
number of valid characters by 16, the receive BIST state
machine aborts the compare operations and resets the LFSR
to look for the start of the BIST sequence again.
A device reset (RESET sampled LOW) presets the BIST
Enable Latches to disable BIST on all channels.
BIST Status State Machine
When a receive path is enabled to look for and compare the
received data stream with the BIST pattern, the {BISTSTA,
RXDA[1:0]} bits identify the present state of the BIST compare
operation.
Latch Types
There are two types of latch banks: static (S) and dynamic (D).
Each channel is configured by 2 static and 1 dynamic latch
banks. The S type contain those settings that normally do not
change for a given application, whereas the D type controls
the settings that could change during the application's lifetime.
The first and second rows of each channel (address numbers
0, 1, 5, and 6) are the static control latches. The third row of
latches for each channel (address numbers 2 and 7) are the
dynamic control latches that are associated with enabling
dynamic functions within the device. Address numbers 3 and
4 are internal test registers.
The BIST state machine has multiple states, as shown in
Figure 2 and Table 6. When the receive PLL detects an
out-of-lock condition, the BIST state is forced to the
Start-of-BIST state, regardless of the present state of the BIST
state machine. If the number of detected errors ever exceeds
the number of valid matches by greater than 16, the state
machine is forced to the WAIT_FOR_BIST state where it
monitors the receive path for the first character of the next
BIST sequence.
Static Latch Values
Power Control
There are some latches in the table that have a static value
(i.e. 1, 0, or X). The latches that have a ‘1’ or ‘0’ must be
configured with their corresponding value each time that their
The CYV15G0104TRB supports user control of the powered
up or down state of each transmit and receive channel. The
receive channels are controlled by the RXPLLPDA latch via
Document #: 38-02100 Rev. *C
Page 13 of 28
[+] Feedback