找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYI9530ZXCT

型号:

CYI9530ZXCT

描述:

PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ]

品牌:

CYPRESS[ CYPRESS ]

页数:

11 页

PDF大小:

263 K

C9530  
PCIX I/O System Clock Generator with EMI  
Control Features  
Table 1. Test Mode Logic Table[1]  
Features  
Input Pins  
SA1  
Output Pins  
CLKA  
• Dedicated clock buffer power pins for reduced noise,  
crosstalk and jitter  
OEA  
OEB  
SA0  
SB0  
LOW  
HIGH  
LOW  
HIGH  
X
• Input clock frequency of 25 MHz to 33.3 MHz  
• Output frequencies of XINx1, XINx2, XINx3 and XINx4  
• Output grouped in two banks of five clocks each  
• One REF XIN clock output  
SB1  
CLKB  
XIN  
REF  
XIN  
XIN  
XIN  
XIN  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
HIGH  
HIGH  
X
2 * XIN  
3 * XIN  
4 * XIN  
• SMBus clock control interface for individual clock  
disabling and SSCG control and individual back  
frequency selection  
Three-state Three-state  
• Output clock duty cycle is 50% (± 5%)  
• < 250 ps skew between output clocks within a bank  
• Output jitter < 250 psec (175 psec with all outputs at the  
same frequency)  
• Spread Spectrum feature for reduced electromagnetic  
interference (EMI)  
• OE pins for entire output bank enable control and  
testability  
• 48-pin SSOP and TSSOP packages  
Pin Configuration  
Block Diagram  
48  
REF  
VDD  
1
SDATA  
SCLK  
VDD  
2
47  
46  
45  
44  
XIN  
3
AGOOD#  
XOUT  
VSS  
4
VSS  
SSCG  
CLKA0  
5
VDD  
SSCG#  
Logic  
SA0  
6
SB0  
43  
42  
41  
CLKA1  
/N  
1
SA1  
7
SB1  
CLKA2  
0
VSS  
8
VSS  
CLKA3  
CLKA0  
CLKA1  
VDDA  
CLKA2  
VSS  
9
CLKB0  
CLKB1  
VDDB  
CLKB2  
VSS  
40  
39  
38  
37  
CLKA4  
OEA  
XIN  
XOUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CLKB0  
CLKB1  
0
36  
35  
34  
33  
CLKB2  
1
/N  
VDDA  
CLKA3  
CLKA4  
VSS  
VDDB  
CLKB3  
CLKB4  
VSS  
SDATA  
SCLK  
CLKB3  
CLKB4  
OEB  
BGOOD#  
REF  
I2C  
Control  
Logic  
IA(0:2)  
SA(0,1)  
SB(0,1)  
32  
31  
30  
29  
28  
AGOOD#  
VSS  
BGOOD#  
AVDD  
AVDD  
VSS  
IA0  
IA1  
21  
22  
23  
24  
27  
26  
25  
IA2  
SSCG#  
VSS  
AVDD  
OEA  
OEB  
Note:  
1. A and B banks have separate frequency select and output enable controls. XIN is the frequency of the clock on the device’s XIN pin. OEA and OEB will three-state  
REF.  
Cypress Semiconductor Corporation  
Document #: 38-07033 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 31, 2005  
C9530  
Pin Description[3]  
Pin[2]  
Name  
PWR[4] I/O  
Description  
3
4
XIN  
VDDA  
I
Crystal Buffer input pin. Connects to a crystal, or an external clock source. Serves  
as input clock TCLK, in Test mode.  
XOUT  
VDDA  
O
Crystal Buffer output pin. Connects to a crystal only. When a Can Oscillator is used  
or in Test mode, this pin is kept unconnected.  
1
REF  
OEA  
VDD  
VDD  
O
I
Buffered inverted outputs of the signal applied at Xin, typically 33.33 or 25.0 MHz  
24*  
Output Enable for clock bank A. Causes the CLKA output clocks to be in a  
three-state condition when driven to a logic low level.  
25*  
18  
OEB  
VDD  
I
Output Enable for clock bank B. Causes the CLKB output clocks to be in a  
three-state condition when driven to a logic low level.  
AGOOD# VDD  
BGOOD# VDD  
O
O
I
When this output signal is a logic low level, it indicates that the output clocks of the  
A bank are locked to the input reference clock. This output is latched.  
31  
When this output signal is at a logic low level, it indicates that the output clocks of  
the B bank are locked to the input reference clock. This output is latched.  
6*, 7*  
SA(0,1)  
SB(0,1)  
VDD  
VDD  
Clock Bank A selection bits. These control the clock frequency that will be present  
on the outputs of the A bank of buffers. See Table 1 for frequency codes and selection  
values.  
43*, 42*  
I
Clock Bank B selection bits. These control the clock frequency that will be present  
on the outputs of the B bank of buffers. See Table 1 for frequency codes and selection  
values.  
20*, 21*, 22*  
27*  
IA(0:2)  
VDD  
VDD  
I
I
SMBus address selection input pins. See Table 3 SMBus Address table.  
SSCG#  
Enables Spread Spectrum clock modulation when at a logic low level, see Spread  
Spectrum Clocking on page 6.  
48  
SDATA  
SCLK  
VDDA  
VDDB  
VDD  
VDD  
I/O Data for the internal SMBus circuitry.  
Clock for the internal SMBus circuitry.  
47  
VDD  
I
11, 14  
38, 35  
2, 44, 46  
23, 29, 30  
PWR 3.3V common power supply pin for Bank A PCI clocks CLKA.  
PWR 3.3V common power supply pin for Bank B PCI clocks CLKB.  
PWR Power supply for internal Core logic.  
AVDD  
PWR Power for internal analog circuitry. This supply should have a separately  
decoupled current source from VDD.  
9, 10, 12, 15, CLKA (0:4) VDDA  
16  
O
O
A bank of five XINx1, XINx2, XINx3 and XINx4 output clocks.  
A bank of five XINx1, XINx2, XINx3 and XINx4 output clocks.  
Ground pins for the device.  
40, 39, 37, 34, CLKB (0:4) VDDB  
33  
PWR  
5, 8, 13, 17,  
19, 26, 28, 32,  
36, 41, 45  
VSS  
Notes:  
2. Pin numbers ending with * indicate that they contain device internal pull-up resistors that will insure that they are sensed as a logic 1 if no external circuitry is  
connected to them.  
3. A bypass capacitor (0.1 µF) should be placed as close as possible to each V pin. If these bypass capacitors are not close to the pins their high-frequency  
DD  
filtering characteristic will be cancelled by the lead inductance of the trace.  
4. PWR = Power connection, I = Input, O = Output and I/O = both input and output functionality of the pin(s).  
Document #: 38-07033 Rev. *C  
Page 2 of 11  
C9530  
Serial Data Interface  
Table 2. Block Read and Block Write Protocol  
Block Write Protocol  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initialize to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required.  
Bit  
1
Description  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
11:18 Command Code – 8 bits  
‘00000000’ stands for block operation  
Data Protocol  
19  
Acknowledge from slave  
20:27 Byte Count – 8 bits  
28 Acknowledge from slave  
29:36 Data byte 1 – 8 bits  
37 Acknowledge from slave  
38:45 Data byte 2 – 8 bits  
The clock driver serial protocol accepts block write a opera-  
tions from the controller. The bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. The C9530 does not support the Block Read  
function.  
The block write protocol is outlined in Table 2. The addresses  
are listed in Table 3.  
46  
....  
....  
....  
....  
....  
....  
Acknowledge from slave  
......................  
Data Byte (N–1) – 8 bits  
Acknowledge from slave  
Data Byte N – 8 bits  
Acknowledge from slave  
Stop  
Table 3. SMBus Address Selection Table  
SMBus Address of the Device  
IA0 Bit (Pin 10)  
IA1 Bit (Pin 11)  
IA2 Bit (Pin 12)  
DE  
DC  
DA  
D8  
D6  
D4  
D0  
D2  
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
Serial Control Registers  
Byte 0: Function Select Register  
Bit  
@Pup  
Name  
Description  
7
1
TESTEN  
Test Mode Enable.  
1 = Normal operation, 0 = Test mode  
6
0
SSEN  
Spread Spectrum modulation control bit (effective only when Bit 0 of this register is set to  
a 0) 0 = OFF, 1= ON  
5
4
3
2
1
0
0
0
SSSEL  
S1  
SSCG Spread width select. 1 = 0.5%, 0 = 1.0% See Table 4 below for clarification  
SB1 Bank MSB frequency control bit (effective only when Bit 0 of this register is set to a 0)  
SB0 Bank LSB frequency control bit (effective only when Bit 0 of this register is set to a 0)  
SA1 Bank MSB frequency control bit (effective only when Bit 0 of this register is set to a 0)  
S0  
Document #: 38-07033 Rev. *C  
Page 3 of 11  
C9530  
Byte 0: Function Select Register (continued)  
Bit  
1
@Pup  
Name  
Description  
0
1
SA0 Bank LSB frequency control bit (effective only when Bit 0 of this register is set to a 0)  
0
HWSEL  
Hardware/SMBus frequency control. 1 = Hardware (pins 6, 7, 42, 43 and 27), 0 = SMBus  
Byte 0 bits 1-4, & 6  
Table 4. Clarification Table for Byte0, bit 5  
Byte0, bit6  
Byte0, bit5  
Description  
Frequency generated from second PLL  
0
0
1
1
0
1
0
1
Frequency generated from XIN  
Spread @ –1.0%  
Spread @ –0.5%  
Table 5. Test Table  
Outputs  
CLKB  
Test Function Clock  
Frequency  
CLKA  
XIN/6  
REF  
XIN  
XIN/4  
Byte 1: A Bank and REF Clock Control Register  
Bit  
7
@Pup  
Name  
Description  
1
1
1
Reserved  
Reserved  
6
5
REFEN  
REF Output Enable  
0 = Disable, 1= Enable  
4
3
2
1
0
1
1
1
1
1
CLKA4 Output Enable  
0 = Disable, 1= Enable  
CLKA3 Output Enable  
0 = Disable, 1= Enable  
CLKA2 Output Enable  
0 = Disable, 1= Enable  
CLKA1 Output Enable  
0 = Disable, 1= Enable  
CLKA0 Output Enable  
0 = Disable, 1= Enable  
Byte 2: PCI Register  
Bit  
7
@Pup  
Name  
Description  
1
1
1
1
Reserved  
Reserved  
Reserved  
6
5
4
18  
19  
22  
23  
24  
CLKB4 Output Enable  
0 = Disable, 1= Enable  
3
2
1
0
1
1
1
1
CLKB3 Output Enable  
0 = Disable, 1= Enable  
CLKB2 Output Enable  
0 = Disable, 1= Enable  
CLKB1 Output Enable  
0 = Disable, 1= Enable  
CLKB0 Output Enable  
0 = Disable, 1= Enable  
Document #: 38-07033 Rev. *C  
Page 4 of 11  
C9530  
Table 6. Suggested Oscillator Crystal Parameters  
Parameter Description  
Fo  
Conditions  
Min  
33.0  
Typ.  
33.33  
Max.  
33.5  
±100  
±100  
5
Unit  
MHz  
PPM  
PPM  
PPM  
Frequency  
Tolerance  
TC  
TS  
TA  
See Note 5  
Stability (TA –10 to +60C) Note 5  
Aging (first year @ 25C) Note 5  
Parallel Resonant, Note 5  
The crystal’s rated load. Note 5  
Note 6  
Operating Mode  
CXTAL  
RESR  
Load Capacitance  
20  
40  
pF  
Effective Series Resistance (ESR)  
Ohms  
Internal Crystal Oscillator  
Output Clock Frequency Control  
This device will operate in two input reference clock configu-  
rations. In its simplest mode a 33.33-MHz fundamental cut  
parallel resonant crystal is attached to the XIN and XOUT pins.  
All of the output clocks have their frequency selected by the  
logic state of the S0 and S1 control bits. The source of these  
control signals is determined by the SMBus register Byte 0 bit  
0. At initial power-up this bit is set of a logic 1 state and thus  
the frequency selections are controlled by the logic levels  
present on the device’s S(0,1) pins. If the application does not  
use an SMBus interface then hardware frequency selection  
S(0,1) must be used. If it is desired to control the output clocks  
using an SMBus interface, then this bit (B0b0) must first be set  
to a low state. After this is done the device will use the contents  
of the internal SMBus register Bytes 0 Bits 3 and 4 to control  
the output clock’s frequency.  
In the second mode a 33.33-MHz input reference clock is  
driven in on the IN clock from an external source. In this appli-  
cation the XOUT pin must be left disconnected.  
Output Clock Three-state Control  
All of the clocks in Bank A (CLKA) and Bank B (CLKB) may be  
placed in a three-state condition by bringing their relevant OE  
pins (OEA and OEB) to a logic LOW state. This transition to  
and from a state and active condition is a totally asynchronous  
event and clock glitching may occur during the transitioning  
states. This function is intended as a board level testing  
feature. When the output clocks are being enabled and  
disabled in active environments the SMBus control register  
bits are the preferred mechanism to control these signals in an  
orderly and predictable manner.  
The following formula and schematic may be used to under-  
stand and calculate either the loading specification of a crystal  
for a design or the additional discrete load capacitance that  
must be used to provide the correct load to a known load rated  
crystal  
(CXINPCB + CXINFTG + CXINDISC) x (CXOUTPCB) + CXOUTFTG) + CXOUTDISC  
)
C =  
L
(CXINPCB + CXINFTG + CXINDISC) + (CXOUTPCB) + CXOUTFTG) + CXOUTDISC  
)
where:  
CXTAL  
= The load rating of the crystal.  
CXINFTG  
= The clock generators XIN pin effective device internal capacitance to ground.  
CXOUTFTG = The clock generators XOUT pin effective device internal capacitance to ground.  
CXINPCB = The effective capacitance to ground of the crystal to device PCB trace.  
CXOUTPCB = The effective capacitance to ground of the crystal to device PCB trace.  
CXINDISC = Any discrete capacitance that is placed between the XIn pin and ground.  
CXOUTDISC = Any discrete capacitance that is placed between the XIn pin and ground.  
Notes:  
5. For best performance and accurate frequencies from this device, it is recommended but not mandatory that the chosen crystal meets or exceeds these specifi-  
cations.  
6. Larger values may cause this device to exhibit oscillator startup problems.  
Document #: 38-07033 Rev. *C  
Page 5 of 11  
C9530  
Spread Spectrum Clocking  
Down Spread Description  
XIN  
CXINPCB  
CXINDISC  
CXINFTG  
Spread Spectrum is a modulation technique for distributing  
clock period over a certain bandwidth (called Spread  
Bandwidth). This technique allows the distribution of the  
undesirable electromagnetic energy (EMI) over a wide range  
of frequencies therefore reducing the average radiated energy  
present at any frequency over a given time period. As the  
spread is specified as a percentage of the resting (non-spread)  
frequency value, it is effective at the fundamental and, to a  
greater extent, at all it's harmonics.  
CXOUTPCB  
CXOUTDISC  
CXOUTFTG  
XOUT  
Clock Generator  
As an example and using this formula for this data sheet’s  
device, a design that has no discrete loading capacitors  
(CDISC) and each of the crystal device PCB traces has a  
capacitance (CPCB) to ground of 4 pF (typical value) would  
calculate as follows.  
In this device, Spread Spectrum is enabled externally through  
pin 27 (SSCG#) or internally via SMBus Byte 0 Bit 0 and 6.  
Spread spectrum is enabled externally when the SSCG# pin  
is low. This pin has an internal device pull up resistor, which  
causes its state to default to a high (Spread Spectrum  
disabled) unless externally forced to a low. It may also be  
enabled by programming SMBus Byte 0 Bit 0 LOW (to enable  
SMBus control of the function) and then programming SMBus  
Byte 0 Bit 6 LOW to set the feature active.  
Therefore, to obtain output frequencies that are as close to this  
data sheets specified values as possible, in this design  
example, you should specify a parallel cut crystal that is  
designed to work into a load of 20 pF.  
(4 pF + 36 pF + 0 pF) x (4 pF + 36 pF + 0 pF)  
C
=
=
L
(4 pF + 36 pF + 0 pF) x (4 pF + 36 pF + 0 pF)  
40 x 40  
40 x 40  
1600  
80  
=
=
20 pF  
S p r e a d o ff  
S p r e a d o n  
C e n te r F r e q u e n c y ,  
S p r e a d o ff  
C e n te r F r e q u e n c y ,  
S p r e a d o n  
Figure 1. Spread Spectrum  
Table 7. Spectrum Spreading Selection Table[7]  
% of Frequency Spreading  
SMBus Byte 0 Bit 5 = 0 SMBus Byte 0 Bit 5 = 1  
Output Clock Frequency  
33.3 MHz (XIN)  
Mode  
1.0% (–1.0% + 0%)  
1.0% (–1.0% + 0%)  
1.0% (–1.0% + 0%)  
1.0% (–1.0% + 0%)  
0.5% (–0.5% + 0%)  
0.5% (–0.5% + 0%)  
0.5% (–0.5% + 0%)  
0.5% (–0.5% + 0%)  
Down Spread  
Down Spread  
Down Spread  
Down Spread  
66.6 MHz (XIN*2)  
100.0 MHz (XIN*3)  
133.3 MHz (XIN*4)  
Note:  
7. When SSCG is enabled, the device will down spread the clock over a range that is 1% of its resting frequency. This means that for a 100-MHz output clock  
frequency will sweep through a spectral range from 99 to 100 MHz.  
Document #: 38-07033 Rev. *C  
Page 6 of 11  
C9530  
Absolute Maximum Conditions  
Parameter  
DD,VDDP  
VDDA  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
4.6  
Unit  
V
V
Analog Supply Voltage  
Input Voltage  
4.6  
V
VIN  
Relative to V SS  
VDD + 0.5  
+150  
70  
VDC  
°C  
TS  
Temperature, Storage  
Temperature, Operating Ambient  
Temperature, Junction  
Non Functional  
Functional  
TA  
°C  
TJ  
Functional  
150  
°C  
ESDHBM  
ØJC  
ØJA  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
2000  
V
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Flammability Rating  
Mil-Spec 883E Method 1012.1  
JEDEC (JESD 51)  
At 1/8 in.  
15  
45  
°C/W  
°C/W  
UL–94  
MSL  
V – 0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
VDD, VDDA, 3.3 Operating Voltage  
VDDB  
3.3V ± 5%  
3.135  
3.465  
V
VILI2C  
VIHI2C  
VIL  
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
SDATA, SCLK  
2.2  
1.0  
V
SDATA, SCLK  
S(A,B)O, S(A,B)1, OE(A,B)  
VSS – 0.5  
2.0  
0.8  
VDD + 0. 5  
5
V
VIH  
V
IIL  
except pull-ups or pull-downs  
0 < VIN < VDD  
–5  
µA  
VOL  
VOH  
IOZ  
Output Low Voltage  
IOL = 1 mA  
2.4  
–10  
2
0.4  
V
Output High Voltage  
IOH = –1 mA  
V
High-Impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
10  
5
µA  
pF  
pF  
nH  
pF  
CIN  
COUT  
LIN  
3
6
7
CXTAL  
Crystal Pin Capacitance  
From XIN and XOUT pins to  
ground  
32  
38  
VXIH  
VXIL  
IDD  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
300  
V
V
Xin Low Voltage  
0
Dynamic Supply Current  
At 133 MHz and all outputs  
loaded per Table 8  
mA  
IPD  
Power-down Supply Current  
PD# Asserted  
1
mA  
AC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
Crystal  
TDC  
XIN Duty Cycle  
XIN Frequency  
The device will operate  
reliably with input duty cycles  
up to 30/70%.  
45  
55  
%
XINFREQ  
When Xin is driven from an  
external clock source  
25  
33.3  
MHz  
Document #: 38-07033 Rev. *C  
Page 7 of 11  
C9530  
AC Electrical Specifications (continued)  
Parameter  
TR / TF  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Rise and Fall Times  
Measured between 0.3VDD  
and 0.7VDD  
10.0  
ns  
TCCJ  
LACC  
XIN Cycle to Cycle Jitter  
Long-term Accuracy  
As an average over 1µs  
500  
300  
ps  
duration  
Over 150 ms  
ppm  
CLK  
TDC  
CLK Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
29.5  
14.5  
9.5  
55  
%
ns  
ns  
ns  
ns  
ns  
TPERIOD33  
TPERIOD66  
TPERIOD100  
TPERIOD133  
TR / TF  
33MHz CLK Period  
66MHz CLK Period  
100MHz CLK Period  
133MHz CLK Period  
CLK Rise and Fall Times  
30.5  
15.5  
10.5  
8.0  
7.0  
Measured between 0.4V and  
2.4V  
0.5  
2.0  
TSKEW  
TCCJ  
Any CLK to Any CLK Clock Skew  
CLK Cycle to Cycle Jitter  
Measurement at 1.5V  
Measurement at 1.5V  
250  
175  
ps  
ps  
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
45  
55  
%
TR / TF  
REF Rise and Fall Times  
Measured between 0.4V and  
2.4V  
1.0  
4.0  
ns  
TCCJ  
REF Cycle to Cycle Jitter  
Measurement at 1.5V  
750  
ps  
ENABLE/DISABLE and SET-UP  
tpZL,tpZH  
tpLZ,tpZH  
TSTABLE  
Output Enable Delay (all outputs)  
10.0  
10.0  
3.0  
ns  
ns  
Output Disable Delay (all outputs)  
Clock Stabilization from Power-up  
ms  
Test and Measurement Set-up  
3 .3 V S ig n a ls  
tD C  
-
-
Output under Test  
Probe  
3 .3 V  
2 .4 V  
1 .5 V  
Load Cap  
0 .4 V  
0 V  
T r  
T f  
Lumped Load  
LVTTL Signaling  
Figure 2. Test and Measurement Set-up  
Table 8. Loading  
Output Name  
CLK5  
Max Load (in pF)  
30  
20  
REF  
Document #: 38-07033 Rev. *C  
Page 8 of 11  
C9530  
Ordering Information  
Part Number  
IMIC9530CY  
Package Type  
48-Pin SSOP  
Product Flow  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
IMIC9530CYT  
IMIC9530CT  
48-Pin SSOP – Tape and Reel  
48-Pin TSSOP  
IMIC9530CTT  
Lead-free  
48-Pin TSSOP – Tape and Reel  
CYI9530ZXC  
48-Pin TSSOP  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
CYI9530ZXCT  
48-Pin TSSOP – Tape and Reel  
Document #: 38-07033 Rev. *C  
Page 9 of 11  
C9530  
Package Diagrams  
48-lead Shrunk Small Outline Package O48  
51-85061-*C  
48-lead (240-mil) TSSOP II Z4824  
0.500[0.019]  
24  
1
DIMENSIONS IN MM[INCHES] MIN.  
MAX.  
REFERENCE JEDEC MO-153  
PACKAGE WEIGHT 0.33gms  
7.950[0.313]  
8.255[0.325]  
5.994[0.236]  
6.198[0.244]  
PART #  
Z4824 STANDARD PKG.  
ZZ4824 LEAD FREE PKG.  
25  
48  
12.395[0.488]  
12.598[0.496]  
1.100[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.508[0.020]  
0.762[0.030]  
0.500[0.020]  
BSC  
0.051[0.002]  
0.152[0.006]  
0.851[0.033]  
0.950[0.037]  
0°-8°  
0.100[0.003]  
0.200[0.008]  
0.170[0.006]  
0.279[0.011]  
SEATING  
PLANE  
51-85059-*C  
All product and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-07033 Rev. *C  
Page 10 of 11  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
C9530  
Document History Page  
Document Title: C9530 PCIX I/O System Clock Generator with EMI Control Features  
Document #: 38-07033  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
106961  
122726  
126595  
Description of Change  
Convert from IMI to Cypress  
06/12/02  
12/17/02  
05/14/03  
IKA  
RBI  
*A  
Added power-up requirements to maximum ratings information  
*B  
RGL  
Converted from Word to FrameMaker  
Fixed AC and DC tables to match char data  
Added 25-MHz Operation.  
*C  
404563  
See ECN  
RGL  
Added Pb-free devices for TSSOP  
Document #: 38-07033 Rev. *C  
Page 11 of 11  
厂商 型号 描述 页数 下载

CYPRESS

CYI9530ZXC PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 11 页

CYPRESS

CYI9531OXC PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 10 页

CYPRESS

CYI9531OXCT PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 10 页

CYPRESS

CYI9531ZXC PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 10 页

CYPRESS

CYI9531ZXCT PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 10 页

CYPRESS

CYIA2SC0300AA-BQE 1/3“ VGA格式CMOS图像传感器[ 1/3” VGA-Format CMOS Image Sensor ] 18 页

CYPRESS

CYIFS741BSXBT [ Clock Generator, 68MHz, CMOS, PDSO8, SOIC-8 ] 19 页

CYPRESS

CYIFS781BSXC 低EMI的扩频时钟[ Low EMI Spectrum Spread Clock ] 12 页

CYPRESS

CYIFS781BSXCT 低EMI的扩频时钟[ Low EMI Spectrum Spread Clock ] 12 页

CYPRESS

CYIFS781BZXC 低EMI的扩频时钟[ Low EMI Spectrum Spread Clock ] 12 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.209184s