找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYI9531OXCT

型号:

CYI9531OXCT

描述:

PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ]

品牌:

CYPRESS[ CYPRESS ]

页数:

10 页

PDF大小:

234 K

C9531  
PCIX I/O System Clock Generator with EMI  
Control Features  
Table 1. Test Mode Logic Table[1]  
Features  
Input Pins  
S1  
Output Pins  
• Dedicated clock buffer power pins for reduced noise,  
crosstalk and jitter  
OE  
S0  
LOW  
HIGH  
LOW  
HIGH  
X
CLK  
XIN  
2 * XIN  
3 * XIN  
4 * XIN  
REF  
XIN  
XIN  
XIN  
XIN  
• Input clock frequency of 25 MHz to 33 MHz  
• Output frequencies of XINx1, XINx2, XINx3 and XINx4  
• One output bank of five clocks  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
HIGH  
HIGH  
X
• One REF XIN clock output  
• SMBus clock control interface for individual clock  
Three-state Three-state  
disabling and SSCG control  
• Output clock duty cycle is 50% (± 5%)  
• < 250 ps skew between output clocks within a bank  
• Output jitter <175 ps  
• Spread Spectrum feature for reduced electromagnetic  
interference (EMI)  
• OE pin for entire output bank enable control and  
testability  
• 28-pin SSOP and TSSOP packages  
Block Diagram  
Pin Configuration  
28  
REF  
VDD  
1
2
3
4
5
6
7
8
SDATA  
SCLK  
VSS  
27  
26  
25  
SSCG  
CLK0  
SSCG#  
Logic  
XIN  
XOUT  
VSS  
CLK1  
CLK2  
/N  
VDDP  
CLK0  
CLK1  
CLK2  
VSS  
VDDP  
CLK3  
CLK4  
VDDA  
VSS  
1
0
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CLK3  
S0  
S1  
GOOD#  
VSS  
IA0  
IA1  
IA2  
VDDA  
OE  
CLK4  
XIN  
OE  
GOOD#  
XOUT  
9
REF  
10  
11  
12  
13  
14  
SDATA  
SCLK  
IA(0:2)  
I2C  
Control  
Logic  
SSCG#  
S(0,1)  
Note:  
1. XIN is the frequency of the clock on the device’s XIN pin.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-07034 Rev. *E  
Revised August 30, 2004  
C9531  
Pin Description[3]  
Pin[2]  
Name  
PWR[4]  
I/O  
Description  
3
XIN  
VDDA  
I
Crystal Buffer Input Pin. Connects to a crystal, or an external clock  
source. Serves as input clock TCLK, in Test mode.  
4
XOUT  
VDDA  
VDD  
O
O
I
Crystal Buffer Output Pin. Connects to a crystal only. When a Can  
Oscillator is used or in test mode, this pin is kept unconnected.  
1
REF  
OE  
Buffered inverted outputs of the signal applied at Xin, typically  
33.33 or 25.0 MHz.  
14*  
VDD  
Output Enable for Clock Bank. Causes the CLK (0:4) output clocks  
to be in a three-state condition when driven to a logic low level.  
24, 23, 22, 19, 18 CLK(0:4)  
VDDP  
VDD  
O
O
A bank of five XINx1, XINx2, XINx3 and XINx4 output clocks.  
When his output signal is a logic low level, it indicates that the output  
clocks of the bank are locked to the input reference clock. This  
output is latched.  
8
GOOD#  
6*, 7*  
S(0,1)  
VDD  
I
Clock Bank Selection Bits. These control the clock frequency that will  
be present on the outputs of the bank of buffers. See table on page  
one for frequency codes and selection values.  
20, 25  
10*, 11*, 12*  
15*  
VDDP  
IA(0:2)  
SSCG#  
PWR 3.3V common power supply pin for all PCI clocks CLK (0:4).  
VDD  
VDD  
I
SMBus Address Selection Input Pins. See Table 3 on page 3.  
I
Spread Spectrum Clock Generator. Enables Spread Spectrum clock  
modulation when at a logic low level, see Spread Spectrum Clocking  
on page 6.  
28  
27  
13, 17  
SDATA  
SCLK  
VDDA  
VDD  
VDD  
I/O  
I
I
Data for the Internal SMBus Circuitry. See Table 3 on page 3.  
Clock for the Internal SMBus Circuitry. See Table 3 on page 3.  
Power for Internal Analog Circuitry. This supply should have a  
separately decoupled current source from VDD.  
2
VDD  
VSS  
PWR Power supply for internal core logic.  
PWR Ground pins for the device.  
5, 9, 16, 21, 26  
Notes:  
2. Pin numbers ending with * indicate that they contain device internal pull-up resistors that will insure that they are sensed as a logic 1 if no external circuitry is  
connected to them.  
3. A bypass capacitor (0.1µF) should be placed as close as possible to each V pin. If these bypass capacitors are not close to the pins their high frequency filtering  
DD  
characteristic will be cancelled by the lead inductance of the trace.  
4. PWR = Power connection, I = Input, O = Output and I/O = both input and output functionality of the pin(s).  
Document #: 38-07034 Rev. *E  
Page 2 of 10  
C9531  
Serial Data Interface  
Data Protocol  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initializes to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required.  
The clock driver serial protocol accepts block write a opera-  
tions from the controller. The bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. The C9531 does not support the Block Read  
function.  
The block write protocol is outlined in Table 2. The addresses  
are listed in Table 3.  
Table 2. Block Read and Block Write Protocol  
Block Write Protocol  
Bit  
1
Description  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bits  
'00000000' stands for block operation  
19  
20:27  
28  
29:36  
37  
38:45  
46  
....  
Acknowledge from slave  
Byte Count – 8 bits  
Acknowledge from slave  
Data byte 1 – 8 bits  
Acknowledge from slave  
Data byte 2 – 8 bits  
Acknowledge from slave  
......................  
....  
....  
....  
....  
Data Byte (N–1) – 8 bits  
Acknowledge from slave  
Data Byte N – 8 bits  
Acknowledge from slave  
Stop  
....  
Table 3. SMBus Address Selection Table  
SMBus Address of the Device  
IA0 Bit (Pin 10)  
IA1 Bit (Pin 11)  
IA2 Bit (Pin 12)  
DE  
DC  
DA  
D8  
D6  
D4  
D0  
D2  
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
Document #: 38-07034 Rev. *E  
Page 3 of 10  
C9531  
Serial Control Registers  
Byte 0: Output Register  
Bit  
@Pup  
Name  
Description  
7
1
TESTEN  
Test Mode Enable.  
1 = Normal operation, 0 = Test mode  
6
0
SSEN  
Spread Spectrum modulation control bit (effective only when Bit 0 of this register is  
set to a 0) 0 = OFF, 1= ON  
5
4
1
0
SSSEL  
S1  
SSCG Spread width select. 1 = 0.5%, 0 = 1.0% See Table 4 below for clarification  
S1 Bank MSB frequency control bit (effective only when Bit 0 of this register is set  
to a 0)  
3
0
S0  
S0 Bank LSB frequency control bit (effective only when Bit 0 of this register is set  
to a 0)  
2
1
0
0
0
1
Not used  
Not used  
HWSEL  
Hardware/SMBus frequency control. 1 = Hardware (pins 6, 7, and 15), 0 = SMBus  
Byte 0 bits 3, 4, & 6  
Table 4. Clarification Table for Byte0, bit 5  
Byte0, bit6  
Byte0, bit5  
Description  
Frequency generated from second PLL  
Frequency generated from XIN  
Spread @ –1.0%  
0
0
1
1
0
1
0
1
Spread @ –0.5%  
Table 5. Test Table  
Outputs  
Test Function Clock  
CLK  
REF  
Note  
Frequency  
XIN/4  
XIN  
XIN is the frequency of the clock that is present on the  
XIN input during test mode.  
Byte 1: CPU Register  
Bit  
7
6
@Pup  
Name  
Description  
1
1
1
Reserved  
Reserved  
5
REFEN  
REF Output Enable  
0 = Disable, 1= Enable  
4
3
2
1
0
1
1
1
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 2: PCI Register  
Bit  
7
6
5
4
@Pup  
Name  
Description  
1
1
1
1
Reserved  
Reserved  
Reserved  
18  
CLK4 Output Enable  
0 = Disable, 1= Enable  
Document #: 38-07034 Rev. *E  
Page 4 of 10  
C9531  
Byte 2: PCI Register (continued)  
Bit  
@Pup  
Name  
Description  
3
1
19  
CLK3 Output Enable  
0 = Disable, 1= Enable  
2
1
0
1
1
1
22  
23  
24  
CLK2Output Enable  
0 = Disable, 1= Enable  
CLK1 Output Enable  
0 = Disable, 1= Enable  
CLK0 Output Enable  
0 = Disable, 1= Enable  
control signals is determined by the SMBus register Byte 0 bit  
0. At initial power up this bit is set of a logic 1 state and thus  
the frequency selections are controlled by the logic levels  
present on the device’s S(0,1) pins. If the application does not  
use an SMBus interface then hardware frequency selection  
S(0,1) must be used. If it is desired to control the output clocks  
using an SMBus interface, then this bit (B0b0) must first be set  
to a low state. After this is done the device will use the contents  
of the internal SMBus register Bytes 0 bits 3 and 4 to control  
the output clock’s frequency.  
The following formula and schematic may be used to under-  
stand and calculate either the loading specification of a crystal  
for a design or the additional discrete load capacitance that  
must be used to provide the correct load to a known load rated  
crystal.  
Output Clock Three-state Control  
All of the clocks in the Bank may be placed in a three-state  
condition by bringing their relevant OE pins to a logic low state.  
This transition to and from a three-state and active condition  
is a totally asynchronous event and clock glitching may occur  
during the transitioning states. This function is intended as a  
board level testing feature. When output clocks are being  
enabled and disabled in active environments the SMBus  
control register bits are the preferred mechanism to control  
these signals in an orderly and predictable manner.  
The output enable pin contains an internal pull-up resistor that  
will insure that a logic 1 is maintained and sensed by the  
device if no external circuitry is connected to this pin.  
Output Clock Frequency Control  
All of the output clocks have their frequency selected by the  
logic state of the S0 and S1 control bits. The source of these  
(CXINPCB + CXINFTG + CXINDISC) x (CXOUTPCB) + CXOUTFTG) + CXOUTDISC  
)
C =  
L
(CXINPCB + CXINFTG + CXINDISC) + (CXOUTPCB) + CXOUTFTG) + CXOUTDISC  
)
where:  
CXTAL  
= The load rating of the crystal.  
CXINFTG = The clock generators XIN pin effective device internal capacitance to ground.  
CXOUTFTG = The clock generators XOUT pin effective device internal capacitance to ground.  
CXINPCB = The effective capacitance to ground of the crystal to device PCB trace.  
CXOUTPCB = The effective capacitance to ground of the crystal to device PCB trace.  
CXINDISC = Any discrete capacitance that is placed between the XIn pin and ground.  
CXOUTDISC = Any discrete capacitance that is placed between the XIn pin and ground.  
XIN  
CXINPCB  
CXINDISC  
CXINFTG  
CXOUTPCB  
CXOUTDISC  
CXOUTFTG  
XOUT  
Clock Generator  
Document #: 38-07034 Rev. *E  
Page 5 of 10  
C9531  
As an example and using this formula for this data sheet’s  
device, a design that has no discrete loading capacitors  
(CDISC) and each of the crystal device PCB traces has a  
capacitance (CPCB) to ground of 4 pF (typical value) would  
calculate as:  
(4 pF + 36 pF + 0 pF) x (4 pF + 36 pF + 0 pF)  
(4 pF + 36 pF + 0 pF) x (4 pF + 36 pF + 0 pF)  
1600  
80  
40 x 40  
40 x 40  
C =  
=
=
= 20 pF.  
L
Therefore, to obtain output frequencies that are as close to this  
data sheets specified values as possible, in this design  
example, you should specify a parallel cut crystal that is  
designed to work into a load of 20 pF.  
In this device Spread Spectrum is enabled externally through  
pin 15 (SSCG#) or internally via SMBus Byte 0 Bit 0 and 6.  
Spread spectrum is enabled externally when the SSCG# pin  
is low. This pin has an internal device pull up resistor, which  
causes its state to default to a HIGH (spread spectrum  
modulation disabled) unless externally forced to a low. It may  
also be enabled by programming SMBus Byte 0 Bit 0 LOW (to  
enable SMBus control of the function) and then programming  
SMBus byte 0 bit 6 low to set the feature active.  
Spread Spectrum Clocking  
Down Spread Description  
Spread Spectrum is a modulation technique for distributing  
clock period over a certain bandwidth (called Spread  
Bandwidth). This technique allows the distribution of the  
undesirable electromagnetic energy (EMI) over a wide range  
of frequencies therefore reducing the average radiated energy  
present at any frequency over a given time period. As the  
spread is specified as a percentage of the resting (non-spread)  
frequency value, it is effective at the fundamental and, to a  
greater extent, at all of its harmonics.  
S p r e a d o ff  
S p r e a d o n  
C e n te r F r e q u e n c y ,  
S p r e a d o ff  
C e n te r F r e q u e n c y ,  
S p r e a d o n  
Figure 1. Spread Spectrum  
Table 6. Spectrum Spreading Selection Table[5]  
% of Frequency Spreading  
SMBus Byte 0 Bit 5 = 0 SMBus Byte 0 Bit 5 = 1  
Output Clock Frequency  
33.3 MHz (XIN)  
Mode  
1.0% (–1.0% + 0%)  
1.0% (–1.0% + 0%)  
1.0% (–1.0% + 0%)  
1.0% (–1.0% + 0%)  
0.5% (–0.5% + 0%)  
0.5% (–0.5% + 0%)  
0.5% (–0.5% + 0%)  
0.5% (–0.5% + 0%)  
Down Spread  
Down Spread  
Down Spread  
Down Spread  
66.6 MHz (XIN*2)  
100.0 MHz (XIN*3)  
133.3 MHz (XIN*4)  
Note:  
5. When SSCG is enabled, the device will down spread the clock over a range that is 1% of its resting frequency. This means that for a 100-MHz output clock  
frequency will sweep through a spectral range from 99 to 100 MHz.  
Document #: 38-07034 Rev. *E  
Page 6 of 10  
C9531  
Absolute Maximum Conditions  
Parameter  
DD,VDDP  
VDDA  
VIN  
TS  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
4.6  
4.6  
VDD + 0.5  
+150  
70  
Unit  
V
V
VDC  
°C  
°C  
V
Analog Supply Voltage  
Input Voltage  
Temperature, Storage  
Temperature, Operating Ambient  
Temperature, Junction  
Relative to V SS  
Non-functional  
Functional  
TA  
TJ  
Functional  
150  
°C  
ESDHBM  
ØJC  
ØJA  
UL–94  
MSL  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
2000  
V
°C/W  
°C/W  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Flammability Rating  
Mil-Spec 883E Method 1012.1  
JEDEC (JESD 51)  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
V
DD, VDDP, 3.3V Operating Voltage  
3.3V ± 5%  
3.135  
3.465  
V
VDDA  
VILI2C  
VIHI2C  
VIL  
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
SDATA, SCLK  
SDATA, SCLK  
2.2  
VSS–0.5  
2.0  
1
0.8  
V
V
V
µA  
VIH  
IIL  
VDD+0. 5  
5
except Pull-ups or Pull-downs  
0 < VIN < VDD  
–5  
VOL  
VOH  
IOZ  
CIN  
COUT  
LIN  
Output Low Voltage  
Output High Voltage  
High-Impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
IOL = 1 mA  
IOH = –1 mA  
2.4  
–10  
2
3
0.4  
10  
5
6
7
V
V
µA  
pF  
pF  
nH  
pF  
CXTAL  
Crystal Pin Capacitance  
From XIN and XOUT pins to  
ground  
32  
38  
VXIH  
VXIL  
IDD  
Xin High Voltage  
Xin Low Voltage  
Dynamic Supply Current  
0.7VDD  
VDD  
0.3VDD  
300  
V
V
mA  
0
At 133 MHz and all outputs  
loaded per Table 7  
IPD  
Power-down Supply Current  
PD# Asserted  
1
mA  
AC Electrical Specifications  
Parameter  
Description  
Condition  
Min. Max. Unit  
Crystal  
TDC  
XIN Duty Cycle  
The device will operate reliably with input duty  
cycles up to 30/70%  
45  
55  
%
XINFREQ  
TR / TF  
TCCJ  
XIN Frequency  
When Xin is driven from an external clock source  
Measured between 0.3VDD and 0.7VDD  
As an average over 1µs duration  
Over 150 ms  
25  
33.3 MHz  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Long Term Accuracy  
10.0  
500  
ns  
ps  
LACC  
300 ppm  
Document #: 38-07034 Rev. *E  
Page 7 of 10  
C9531  
AC Electrical Specifications (continued)  
Parameter  
CLK  
TDC  
TPERIOD33  
TPERIOD66  
TPERIOD100  
TPERIOD133  
TR / TF  
Description  
Condition  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measured between 0.4V and 2.4V  
Min. Max. Unit  
CLK Duty Cycle  
45  
29.5  
14.5  
9.5  
7.0  
0.5  
55  
30.5  
15.5  
10.5  
8.0  
2.0  
250  
175  
%
ns  
ns  
ns  
ns  
ns  
ps  
ps  
33-MHz CLK Period  
66-MHz CLK Period  
100-MHz CLK Period  
133-MHz CLK Period  
CLK Rise and Fall Times  
TSKEW  
TCCJ  
Any CLK to Any CLK Clock Skew Measurement at 1.5V  
CLK Cycle to Cycle Jitter  
Measurement at 1.5V  
REF  
TDC  
REF Duty Cycle  
REF Rise and Fall Times  
REF Cycle to Cycle Jitter  
Measurement at 1.5V  
Measured between 0.4V and 2.4V  
Measurement at 1.5V  
45  
1.0  
55  
4.0  
750  
%
ns  
ps  
TR / TF  
TCCJ  
ENABLE/DISABLE and SET-UP  
tpZL,tpZH  
tpLZ,tpZH  
TSTABLE  
Output Enable Delay (all outputs)  
10.0  
10.0  
3.0  
ns  
ns  
ms  
Output Disable Delay (all outputs)  
Clock Stabilization from Power-up  
Test and Measurement Set-up  
3 .3 V S ig n a ls  
tD C  
-
-
Output under Test  
Probe  
3 .3 V  
2 .4 V  
1 .5 V  
Load Cap  
0 .4 V  
0 V  
T r  
T f  
LVTTL Signaling  
Figure 2. Test and Measurement Set-up  
Lumped Load  
Table 7. Loading  
Output Name  
CLK  
Max Load (in pF)  
30  
20  
REF  
Ordering Information  
Part Number  
IMIC9531CY  
IMIC9531CYT  
IMIC9531CT  
IMIC9531CTT  
Lead Free  
Package Type  
28-Pin SSOP  
28-Pin SSOP – Tape and Reel  
28-Pin TSSOP  
Product Flow  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
28-Pin TSSOP – Tape and Reel  
CYI9531OXC  
CYI9531OXCT  
CYI9531ZXC  
28-Pin SSOP  
28-Pin SSOP – Tape and Reel  
28-Pin TSSOP  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
CYI9531ZXCT  
28-Pin TSSOP – Tape and Reel  
Document #: 38-07034 Rev. *E  
Page 8 of 10  
C9531  
Package Drawing and Dimension  
28-lead (5.3 mm) Shrunk Small Outline Package O28  
51-85079-*C  
28-Lead Thin Shrunk Small Outline Package (4.40-mm Body) Z28.173  
PIN 1 ID  
DIMENSIONS IN MM[INCHES] MIN.  
1
MAX.  
REFERENCE JEDEC MO-153  
PACKAGE WEIGHT 0.16 gms  
6.25[0.246]  
6.50[0.256]  
PART #  
4.30[0.169]  
4.50[0.177]  
Z28.173 STANDARD PKG.  
ZZ28.173 LEAD FREE PKG.  
28  
0.65[0.025]  
BSC.  
1.10[0.043] MAX.  
0.25[0.010]  
BSC  
0.19[0.007]  
0.30[0.012]  
GAUGE  
PLANE  
0°-8°  
0.076[0.003]  
0.50[0.020]  
0.70[0.027]  
0.05[0.002]  
0.15[0.006]  
0.85[0.033]  
0.95[0.037]  
0.09[[0.003]  
0.20[0.008]  
SEATING  
PLANE  
9.60[0.378]  
9.80[0.386]  
51-85120-*A  
All product and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-07034 Rev. *E  
Page 9 of 10  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
C9531  
Document History Page  
Document Title: C9531 PCIX I/O System Clock Generator with EMI Control Features  
Document #: 38-07034  
Orig. of  
REV. ECN NO. Issue Date Change  
Description of Change  
**  
106962  
06/12/02  
IKA  
Convert from IMI to Cypress  
*A  
114504  
08/15/02  
DMG  
Converted from Word to Frame  
Corrected Ordering Information by adding tape and reel option IMIC9531CYT and  
IMIC9531CTT to match the Devmaster  
*B  
120839  
11/25/02 RGL/ DMG Corrected the Package Drawing and Dimension from 28 TSOP to 28 TSSOP  
Removed the read function in the SMBus Area  
*C  
*D  
122727  
126597  
12/14/02  
05/14/03  
RBI  
RGL  
Added power up requirements to maximum ratings information  
Fixed DC and AC table to match characteristic data  
Added 25-MHz Operation  
*E  
259012  
See ECN  
RGL  
Added Lead Free Devices  
Document #: 38-07034 Rev. *E  
Page 10 of 10  
厂商 型号 描述 页数 下载

CYPRESS

CYI9530ZXC PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 11 页

CYPRESS

CYI9530ZXCT PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 11 页

CYPRESS

CYI9531OXC PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 10 页

CYPRESS

CYI9531ZXC PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 10 页

CYPRESS

CYI9531ZXCT PCIX I / O系统时钟发生器,带有EMI控制功能[ PCIX I/O System Clock Generator with EMI Control Features ] 10 页

CYPRESS

CYIA2SC0300AA-BQE 1/3“ VGA格式CMOS图像传感器[ 1/3” VGA-Format CMOS Image Sensor ] 18 页

CYPRESS

CYIFS741BSXBT [ Clock Generator, 68MHz, CMOS, PDSO8, SOIC-8 ] 19 页

CYPRESS

CYIFS781BSXC 低EMI的扩频时钟[ Low EMI Spectrum Spread Clock ] 12 页

CYPRESS

CYIFS781BSXCT 低EMI的扩频时钟[ Low EMI Spectrum Spread Clock ] 12 页

CYPRESS

CYIFS781BZXC 低EMI的扩频时钟[ Low EMI Spectrum Spread Clock ] 12 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.185429s