找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYV15G0403TB-BGC

型号:

CYV15G0403TB-BGC

描述:

独立时钟四路的HOTLink II⑩串行[ Independent Clock Quad HOTLink II⑩ Serializer ]

品牌:

CYPRESS[ CYPRESS ]

页数:

21 页

PDF大小:

686 K

CYV15G0403TB  
Independent Clock Quad HOTLink II™  
Serializer  
Features  
Functional Description  
• Second-generation HOTLink® technology  
The CYV15G0403TB Independent Clock Quad HOTLink II™  
Serializer is a point-to-point or point-to-multipoint communica-  
• Compliant to SMPTE 292M and SMPTE 259M video  
standards  
tions building block enabling transfer of data over a variety of  
high-speed serial links including SMPTE 292M and SMPTE  
259M video applications. It supports signaling rates in the  
range of 195 to 1500 Mbps per serial link. All four channels are  
independent and can simultaneously operate at different  
rates. Each channel accepts 10-bit parallel characters in an  
Input Register and converts them to serial data. Figure 1 illus-  
trates typical connections between independent video  
co-processors and corresponding CYV15G0403TB Serializer  
and CYV15G0404RB Reclocking Deserializer chips.  
• Quad channel video serializer  
— 195- to 1500-Mbps serial data signaling rate  
— Simultaneous operation at different signaling rates  
• Supports half-rate and full-rate clocking  
• Internal phase-locked loops (PLLs) with no external PLL  
components  
• Redundant differential PECL-compatible serial outputs per  
channel  
The CYV15G0403TB satisfies the SMPTE-259M and  
SMPTE-292M compliance as per SMPTE EG34-1999 Patho-  
logical Test Requirements.  
— No external bias resistors required  
— Signaling-rate controlled edge-rates  
— Internal source termination  
As  
a
second-generation  
HOTLink  
device,  
the  
CYV15G0403TB extends the HOTLink family with enhanced  
levels of integration and faster data rates, while maintaining  
serial-link compatibility (data and BIST) with other HOTLink  
devices. Each channel of the CYV15G0403TB Quad HOTLink  
II device independently accepts scrambled 10-bit transmission  
characters. These characters are serialized and output from  
dual Positive ECL (PECL) compatible differential trans-  
mission-line drivers at a bit-rate of either 10- or 20-times the  
input reference clock for that channel.  
• Synchronous LVTTL parallel interface  
• JTAG boundary scan  
• Built-In Self-Test (BIST) for at-speed link testing  
• Low-power 2W @ 3.3V typical  
• Single 3.3V supply  
• Thermally enhanced BGA  
• Pb-Free package option available  
• 0.25μ BiCMOS technology  
Each channel contains an independent BIST pattern  
generator. This BIST hardware allows at-speed testing of the  
high-speed serial data paths in each transmit section of this  
device, each receive section of a connected HOTLink II  
device, and across the interconnecting links.  
Figure 1. HOTLink II™ System Connections  
Reclocked  
Outputs  
10  
10  
10  
Independent  
Channel  
CYV15G0404RB  
10  
10  
Independent  
Channel  
CYV15G0403TB  
Serial Links  
10  
10  
Reclocking Deserializer  
Serializer  
10  
Reclocked  
Outputs  
Cypress Semiconductor Corporation  
Document #: 38-02104 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 2, 2007  
[+] Feedback  
CYV15G0403TB  
The CYV15G0403TB is ideal for SMPTE applications where  
different data rates and serial interface standards are  
necessary for each channel. Some applications include  
multi-format routers, switchers, format converters, and  
cameras.  
CYV15G0403TB Serializer Logic Block Diagram  
x10  
x10  
x10  
x10  
Phase  
Align  
Buffer  
Phase  
Align  
Buffer  
Phase  
Align  
Buffer  
Phase  
Align  
Buffer  
Serializer  
Serializer  
TX  
Serializer  
TX  
Serializer  
TX  
TX  
Document #: 38-02104 Rev. *C  
Page 2 of 21  
[+] Feedback  
CYV15G0403TB  
Serializer Path Block Diagram  
Bit-Rate Clock A  
OE[2..1]A  
= Internal Signal  
REFCLKA+  
REFCLKA–  
TXRATEA  
Transmit PLL  
Clock Multiplier A  
SPDSELA  
TXCLKOA  
RESET  
Character-Rate Clock A  
PABRSTA  
TXERRA  
TXCLKA  
OE[2..1]A  
TXBISTA  
0
0
0
1
1
1
TXCKSELA  
OUTA1+  
OUTA1–  
10  
10  
10  
TXDA[9:0]  
10  
10  
10  
OUTA2+  
OUTA2–  
Bit-Rate Clock B  
OE[2..1]B  
REFCLKB+  
REFCLKB–  
Transmit PLL  
TXRATEB  
Clock Multiplier B  
SPDSELB  
TXCLKOB  
Character-Rate Clock B  
PABRSTB  
TXERRB  
TXCLKB  
OE[2..1]B  
TXBISTB  
TXCKSELB  
OUTB1+  
OUTB1–  
10  
10  
10  
TXDB[9:0]  
OUTB2+  
OUTB2–  
Bit-Rate Clock C  
OE[2..1]C  
REFCLKC+  
REFCLKC–  
Transmit PLL  
TXRATEC  
Clock Multiplier C  
SPDSELC  
TXCLKOC  
Character-Rate Clock C  
PABRSTC  
TXERRC  
TXCLKC  
OE[2..1]C  
TXBISTC  
TXCKSELC  
OUTC1+  
OUTC1–  
10  
10  
10  
TXDB[9:0]  
OUTC2+  
OUTC2–  
Bit-Rate Clock D  
OE[2..1]D  
REFCLKD+  
REFCLKD–  
Transmit PLL  
TXRATED  
Clock Multiplier D  
SPDSELD  
TXCLKOD  
Character-Rate Clock D  
PABRSTD  
TXERRD  
TXCLKD  
OE[2..1]D  
TXBISTD  
0
1
TXCKSELD  
OUTD1+  
OUTD1–  
10  
10  
10  
TXDD[9:0]  
10  
OUTD2+  
OUTD2–  
Document #: 38-02104 Rev. *C  
Page 3 of 21  
[+] Feedback  
CYV15G0403TB  
JTAG and Device Configuration and Control Block Diagram  
= Internal Signal  
RESET  
TRST  
TXRATE[A..D]  
TXCKSEL[A..D]  
JTAG  
Boundary  
Scan  
WREN  
TMS  
TCLK  
TDI  
PABRST[A..D]  
TXBIST[A..D]  
OE[2..1][A..D]  
GLEN[11..0]  
FGLEN[2..0]  
Device Configuration  
and Control Interface  
ADDR[3:0]  
DATA[4:0]  
Controller  
TDO  
Document #: 38-02104 Rev. *C  
Page 4 of 21  
[+] Feedback  
CYV15G0403TB  
Pin Configuration (Top View)[1]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
E
OUT  
C1–  
OUT  
C2–  
OUT  
D1–  
OUT  
D2–  
OUT  
A1–  
OUT  
A2–  
OUT  
B1–  
OUT  
B2–  
NC  
NC  
V
NC  
GND GND  
GND  
GND GND  
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
OUT  
C1+  
OUT  
C2+  
OUT  
D1+  
OUT  
D2+  
OUT  
A1+  
OUT  
A2+  
OUT  
B1+  
OUT  
B2+  
V
V
V
V
V
V
GND  
GND  
NC  
NC  
NC  
GND  
GND  
NC  
NC  
V
V
V
NC  
NC  
CC  
CC  
CC  
CC  
CC  
CC  
TDI  
TMS  
DATA  
[3]  
DATA  
[1]  
SPD  
SELD  
TRST  
NC  
TDO  
V
V
V
V
V
V
NC  
NC  
NC  
NC  
NC  
GND  
CC  
CC  
CC  
TCLK RESET  
SPD  
SELC  
DATA  
[4]  
DATA  
[2]  
DATA  
[0]  
SCAN TMEN3  
EN2  
V
GND GND  
GND GND  
NC  
CC  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
F
G
H
TX  
DC[0]  
TX  
CLKOB  
NC  
NC  
NC  
TX  
NC  
NC  
NC  
NC  
NC  
TX  
DC[7]  
WREN  
TX  
SPD  
SELB  
SPD  
SELA  
DC[4] DC[1]  
GND GND GND GND  
GND GND GND GND  
J
K
L
TX  
TX  
TX  
TX  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DC[9] DC[5] DC[2] DC[3]  
REF  
TX  
TX  
NC  
NC  
NC  
CLKC– DC[8] CLKC  
REF  
CLKC+  
TX  
DC[6]  
TX  
DB[6]  
NC  
NC  
NC  
NC  
NC  
TX  
M
N
TX  
ERRC  
REF  
REF  
TX  
NC  
CLKB+ CLKB– ERRB CLKB  
GND GND GND GND  
GND GND GND GND  
P
R
T
TX  
DB[5]  
TX  
DB[4]  
TX  
DB[3]  
TX  
DB[2]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
TX  
CLKOC  
TX  
DB[1]  
TX  
DB[0]  
TX  
DB[9]  
TX  
DB[7]  
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
U
V
TX  
TX  
TX  
TX  
TX  
DA[9]  
ADDR  
[0]  
REF  
CLKD– DA[1]  
TX  
TX  
DA[4]  
TX  
DA[8]  
TX  
DB[8]  
V
V
V
V
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
GND  
V
V
V
V
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
DD[0] DD[1] DD[2] DD[9]  
TX  
TX  
TX  
ADDR  
[2]  
REF TX  
CLKD+ CLKOA  
TX  
DA[3]  
TX  
DA[7]  
NC  
NC  
NC  
GND  
GND  
GND  
NC  
GND  
NC  
DD[3] DD[4] DD[8]  
W
Y
TX  
TX  
ADDR ADDR  
[3]  
TX  
ERRA  
TX  
DA[2]  
TX  
DA[6]  
REF  
CLKA+  
NC  
NC  
NC  
GND  
NC  
TX  
DD[5] DD[7]  
[1]  
TX  
TX  
TX  
CLKOD  
NC  
TX  
CLKA  
TX  
DA[0]  
TX  
DA[5]  
REF  
ERRD CLKA–  
NC  
GND  
DD[6] CLKD  
Note  
1. NC = Do not connect.  
Document #: 38-02104 Rev. *C  
Page 5 of 21  
[+] Feedback  
CYV15G0403TB  
Pin Configuration (Bottom View)[1]  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
OUT  
B2–  
OUT  
B1–  
OUT  
A2–  
OUT  
A1–  
OUT  
D2–  
OUT  
D1–  
OUT  
C2–  
OUT  
C1–  
V
V
V
GND GND  
GND  
GND GND  
NC  
V
NC  
NC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A
B
C
D
E
F
OUT  
B2+  
OUT  
B1+  
OUT  
A2+  
OUT  
A1+  
OUT  
D2+  
OUT  
D1+  
OUT  
C2+  
OUT  
C1+  
NC  
NC  
V
V
V
NC  
NC  
GND  
GND  
NC  
NC  
NC  
GND  
GND  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
TDO  
TRST  
NC  
SPD  
SELD  
DATA  
[1]  
DATA  
[3]  
TMS  
TDI  
GND  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
V
V
CC  
CC  
CC  
TMEN3 SCAN  
EN2  
DATA  
[0]  
DATA  
[2]  
DATA  
[4]  
SPD  
SELC  
RESET TCLK  
NC  
GND GND  
GND GND  
V
CC  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
TX  
CLKOB  
TX  
DC[0]  
NC  
NC  
NC  
NC  
NC  
NC  
TX  
NC  
NC  
SPD  
SELA  
SPD  
SELB  
TX  
WREN  
TX  
DC[7]  
G
H
J
DC[1] DC[4]  
GND GND GND GND  
GND GND GND GND  
TX  
TX  
TX  
TX  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DC[3] DC[2] DC[5] DC[9]  
TX  
TX  
REF  
NC  
NC  
NC  
K
L
CLKC DC[8] CLKC–  
TX  
DB[6]  
TX  
DC[6]  
REF  
CLKC+  
NC  
TX  
NC  
NC  
NC  
NC  
TX  
REF  
REF  
TX  
ERRC  
NC  
M
N
P
R
T
CLKB ERRB CLKB– CLKB+  
GND GND GND GND  
GND GND GND GND  
TX  
DB[2]  
TX  
DB[3]  
TX  
DB[4]  
TX  
DB[5]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
TX  
DB[7]  
TX  
DB[9]  
TX  
DB[0]  
TX  
DB[1]  
TX  
CLKOC  
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
TX  
DB[8]  
TX  
DA[8]  
TX  
DA[4]  
TX  
REF  
ADDR  
[0]  
TX  
DA[9]  
TX  
TX  
TX  
TX  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
GND  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
U
V
W
Y
DA[1] CLKD–  
DD[9] DD[2] DD[1] DD[0]  
TX  
DA[7]  
TX  
DA[3]  
TX  
REF  
ADDR  
[2]  
TX  
TX  
TX  
NC  
GND  
NC  
GND  
GND  
GND  
NC  
NC  
NC  
CLKOA CLKD+  
DD[8] DD[4] DD[3]  
REF  
CLKA+  
TX  
DA[6]  
TX  
DA[2]  
TX  
ERRA  
ADDR ADDR  
[1]  
TX  
TX  
NC  
TX  
GND  
NC  
NC  
NC  
[3]  
DD[7] DD[5]  
REF  
CLKA– ERRD  
TX  
DA[5]  
TX  
DA[0]  
TX  
CLKA  
NC  
TX  
CLKOD  
TX  
TX  
GND  
NC  
CLKD DD[6]  
Document #: 38-02104 Rev. *C  
Page 6 of 21  
[+] Feedback  
CYV15G0403TB  
Pin Definitions  
CYV15G0403TB Quad HOTLink II Serializer  
Name  
I/O Characteristics Signal Description  
Transmit Path Data and Status Signals  
TXDA[9:0]  
TXDB[9:0]  
TXDC[9:0]  
TXDD[9:0]  
LVTTL Input,  
synchronous,  
sampled by the  
associated  
Transmit Data Inputs. TXDx[9:0] data inputs are captured on the rising edge of the  
transmit interface clock. The transmit interface clock is selected by the TXCKSELx latch  
via the device configuration interface.  
TXCLKxor  
REFCLKx[2]  
TXERRA  
TXERRB  
TXERRC  
TXERRD  
LVTTL Output,  
synchronous to  
Transmit Path Error. TXERRx is asserted HIGH to indicate detection of a transmit  
Phase-Align Buffer underflow or overflow. If an underflow or overflow condition is detected,  
TXERRx, for the channel in error, is asserted HIGH and remains asserted until the transmit  
Phase-Align Buffer is re-centered with the PABRSTx latch via the device configuration  
interface. When TXBISTx = 0, the BIST progress is presented on the associated TXERRx  
output. The TXERRx signal pulses HIGH for one transmit-character clock period to  
indicate a pass through the BIST sequence once every 511 character times.  
TXERRx is also asserted HIGH, when any of the following conditions is true:  
• The TXPLL for the associated channel is powered down. This occurs when OE2x and  
OE1x for a given channel are both disabled by setting OE2x = 0 and OE1x = 0.  
REFCLKx[3]  
,
asynchronous to  
transmit channel  
enable / disable,  
asynchronous to  
loss or return of  
REFCLKx±  
• The absence of the REFCLKx± signal.  
Transmit Path Clock Signals  
REFCLKA±  
REFCLKB±  
REFCLKC±  
REFCLKD±  
Differential LVPECL Reference Clock. REFCLKx± clock inputs are used as the timing references for the  
or single-ended  
associated transmit PLL. These input clocks may also be selected to clock the transmit  
parallel interface. When driven by a single-ended LVCMOS or LVTTL clock source,  
connect the clock source to either the true or complement REFCLKx input, and leave the  
alternate REFCLKx input open (floating). When driven by an LVPECL clock source, the  
clock must be a differential clock, using both inputs.  
LVTTL input clock  
TXCLKA  
TXCLKB  
TXCLKC  
TXCLKD  
LVTTL Clock Input, Transmit Path Input Clock. When configuration latch TXCKSELx = 0, the associated  
internal pull-down  
TXCLKx input is selected as the character-rate input clock for the TXDx[9:0] input. In this  
mode, the TXCLKx input must be frequency-coherent to its associated TXCLKOx output  
clock, but may be offset in phase by any amount. Once initialized, TXCLKx is allowed to  
drift in phase as much as ±180 degrees. If the input phase of TXCLKx drifts beyond the  
handling capacity of the Phase Align Buffer, TXERRx is asserted to indicate the loss of  
data, and remains asserted until the Phase Align Buffer is initialized. The phase of the  
TXCLKx input clock relative to its associated REFCLKx± is initialized when the configu-  
ration latch PABRSTx is written as 0. When the associated TXERRx is deasserted, the  
Phase Align Buffer is initialized and input characters are correctly captured.  
TXCLKOA  
TXCLKOB  
TXCLKOC  
TXCLKOD  
LVTTL Output  
Transmit Clock Output. TXCLKOx output clock is synthesized by each channel’s  
transmit PLL and operates synchronous to the internal transmit character clock.  
TXCLKOx operates at either the same frequency as REFCLKx± (TXRATEx = 0), or at  
twice the frequency of REFCLKx± (TXRATEx = 1). The transmit clock outputs have no  
fixed phase relationship to REFCLKx±.  
Device Control Signals  
RESET  
LVTTL Input,  
asynchronous,  
internal pull-up  
Asynchronous Device Reset. RESET initializes all state machines, counters, and  
configuration latches in the device to a known state. RESET must be asserted LOW for  
a minimum pulse width. When the reset is removed, all state machines, counters and  
configuration latches are at an initial state. As per the JTAG specifications the device  
RESET cannot reset the JTAG controller. Therefore, the JTAG controller has to be reset  
separately. Refer to “JTAG Support” on page 12 for the methods to reset the JTAG state  
machine. See Table 2 on page 11 for the initialize values of the device configuration  
latches.  
Notes  
2. When REFCLKx± is configured for half-rate operation, these inputs are sampled relative to both the rising and falling edges of the associated REFCLKx±.  
3. When REFCLKx± is configured for half-rate operation, these outputs are presented relative to both the rising and falling edges of the associated REFCLKx±.  
Document #: 38-02104 Rev. *C  
Page 7 of 21  
[+] Feedback  
CYV15G0403TB  
Pin Definitions (continued)  
CYV15G0403TB Quad HOTLink II Serializer  
Name  
I/O Characteristics Signal Description  
3-Level Select[4]  
Serial Rate Select. The SPDSELx inputs specify the operating signaling-rate range of  
static control input each channel’s PLL.  
SPDSELA  
SPDSELB  
SPDSELC  
SPDSELD  
LOW = 195–400 MBd  
MID = 400–800 MBd  
HIGH = 800–1500 MBd.  
Device Configuration and Control Bus Signals  
WREN  
LVTTL input,  
asynchronous,  
internal pull-up  
Control Write Enable. The WREN input writes the values of the DATA[4:0] bus into the  
latch specified by the address location on the ADDR[3:0] bus.[5]  
ADDR[3:0]  
LVTTL input  
asynchronous,  
internal pull-up  
Control Addressing Bus. The ADDR[3:0] bus is the input address bus used to configure  
the device. The WREN input writes the values of the DATA[4:0] bus into the latch specified  
by the address location on the ADDR[3:0] bus.[5] Table 2 on page 11 lists the configuration  
latches within the device, and the initialization value of the latches upon the assertion of  
RESET. Table 3 on page 12 shows how the latches are mapped in the device.  
DATA[4:0]  
LVTTL input  
asynchronous,  
internal pull-up  
Control Data Bus. The DATA[4:0] bus is the input data bus used to configure the device.  
The WREN input writes the values of the DATA[4:0] bus into the latch specified by address  
location on the ADDR[3:0] bus.[5 ] Table 2 on page 11 lists the configuration latches within  
the device, and the initialization value of the latches upon the assertion of RESET. Table 3  
on page 12 shows how the latches are mapped in the device.  
Internal Device Configuration Latches  
TXCKSEL[A..D] Internal Latch[6]  
TXRATE[A..D] Internal Latch[6]  
Transmit Clock Select.  
Transmit PLL Clock Rate Select.  
Transmit Bist Disabled.  
TXBIST[A..D]  
OE2[A..D]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Differential Serial Output Driver 2 Enable.  
Differential Serial Output Driver 1 Enable.  
Transmit Clock Phase Alignment Buffer Reset.  
Global Latch Enable.  
OE1[A..D]  
PABRST[A..D] Internal Latch[6]  
GLEN[11..0]  
FGLEN[2..0]  
Internal Latch[6]  
Internal Latch[6]  
Force Global Latch Enable.  
Factory Test Modes  
SCANEN2  
LVTTL input,  
internal pull-down  
Factory Test 2. SCANEN2 input is for factory testing only. This input may be left as a NO  
CONNECT, or GND only.  
TMEN3  
LVTTL input,  
internal pull-down  
Factory Test 3. TMEN3 input is for factory testing only. This input may be left as a NO  
CONNECT, or GND only.  
Analog I/O  
OUTA1±  
OUTB1±  
OUTC1±  
OUTD1±  
CML Differential  
Output  
Primary Differential Serial Data Output. The OUTx1± PECL-compatible CML outputs  
(+3.3V referenced) are capable of driving terminated transmission lines or standard  
fiber-optic transmitter modules, and must be AC-coupled for PECL-compatible connec-  
tions.  
OUTA2±  
OUTB2±  
OUTC2±  
OUTD2±  
CML Differential  
Output  
Secondary Differential Serial Data Output. The OUTx2± PECL-compatible CML outputs  
(+3.3V referenced) are capable of driving terminated transmission lines or standard fiber-optic  
transmitter modules, and must be AC-coupled for PECL-compatible connections.  
Notes  
4. 3-Level Select inputs are used for static configuration. These are ternary inputs that make use of logic levels of LOW, MID, and HIGH. The LOW level is usually  
implemented by direct connection to V (ground). The HIGH level is usually implemented by direct connection to V (power). The MID level is usually  
SS  
CC  
implemented by not connecting the input (left floating), which allows it to self bias to the proper level.  
5. See “Device Configuration and Control Interface” on page 10 for detailed information on the operation of the Configuration Interface.  
6. See “Device Configuration and Control Interface” on page 10 for detailed information on the internal latches.  
Document #: 38-02104 Rev. *C  
Page 8 of 21  
[+] Feedback  
CYV15G0403TB  
Pin Definitions (continued)  
CYV15G0403TB Quad HOTLink II Serializer  
Name  
I/O Characteristics Signal Description  
JTAG Interface  
TMS  
LVTTL Input,  
internal pull-up  
Test Mode Select. Used to control access to the JTAG Test Modes. If maintained high for  
5 TCLK cycles, the JTAG test controller is reset.  
TCLK  
TDO  
TDI  
LVTTL Input,  
internal pull-down  
JTAG Test Clock.  
3-State LVTTL  
Output  
Test Data Out. JTAG data output buffer. High-Z while JTAG test mode is not selected.  
Test Data In. JTAG data input port.  
LVTTL Input,  
internal pull-up  
TRST  
LVTTL Input,  
internal pull-up  
JTAG reset signal. When asserted (LOW), this input asynchronously resets the JTAG  
test access port controller.  
Power  
VCC  
+3.3V Power.  
GND  
Signal and Power Ground for all internal circuits.  
reset. While the error remains active, the transmitter for that  
CYV15G0403TB HOTLink II Operation  
channel outputs a continuous “1001111000” character (LSB  
first) to indicate to the remote receiver that an error condition  
is present in the link.  
The CYV15G0403TB is a highly configurable, independent  
clocking, quad-channel serializer designed to support reliable  
transfer of large quantities of digital video data, using  
high-speed serial links from multiple sources to multiple desti-  
nations. This device supports four 10-bit channels.  
Transmit BIST  
Each channel contains an internal pattern generator that can  
be used to validate both the link and device operation. These  
generators are enabled by the associated TXBISTx latch via  
the device configuration interface. When enabled, a register in  
CYV15G0403TB Transmit Data Path  
Input Register  
the associated channel becomes  
a signature pattern  
The parallel input bus TXDx[9:0] can be clocked in using  
TXCLKx (TXCKSELx = 0) or REFCLKx (TXCKSELx = 1).  
generator by logically converting to a Linear Feedback Shift  
Register (LFSR). This LFSR generates a 511-character  
sequence. This provides a predictable yet pseudo-random  
sequence that can be matched to an identical LFSR in the  
attached Receiver(s).  
Phase-Align Buffer  
Data from each Input Register is passed to the associated  
Phase-Align Buffer, when the TXDx[9:0] input registers are  
clocked using TXCLKx (TXCKSELx = 0 and TXRATEx = 0).  
When the TXDx[9:0] input registers are clocked using  
REFCLKx± (TXCKSELx = 1) and REFCLKx± is a full-rate  
clock, the associated Phase Alignment Buffer in the transmit  
path is bypassed. These buffers are used to absorb clock  
phase differences between the TXCLKx input clock and the  
internal character clock for that channel.  
A device reset (RESET sampled LOW) presets the BIST  
Enable Latches to disable BIST on all channels.  
All data present at the associated TXDx[9:0] inputs are ignored  
when BIST is active on that channel.  
Transmit PLL Clock Multiplier  
Each Transmit PLL Clock Multiplier accepts a character-rate  
or half-character-rate external clock at the associated  
REFCLKx± input, and that clock is multiplied by 10 or 20 (as  
selected by TXRATEx) to generate a bit-rate clock for use by  
the transmit shifter. It also provides a character-rate clock used  
by the transmit paths, and outputs this character rate clock as  
TXCLKOx.  
Once initialized, TXCLKx is allowed to drift in phase as much  
as ±180 degrees. If the input phase of TXCLKx drifts beyond  
the handling capacity of the Phase Align Buffer, TXERRx is  
asserted to indicate the loss of data, and remains asserted  
until the Phase Align Buffer is initialized. The phase of the  
TXCLKx relative to its associated internal character rate clock  
is initialized when the configuration latch PABRSTx is written  
as 0. When the associated TXERRx is deasserted, the Phase  
Align Buffer is initialized and input characters are correctly  
captured.  
Each clock multiplier PLL can accept a REFCLKx± input  
between 19.5 MHz and 150 MHz, however, this clock range is  
limited by the operating mode of the CYV15G0403TB clock  
multiplier (TXRATEx) and by the level on the associated  
SPDSELx input.  
SPDSELx are 3-level select[4] inputs that select one of three  
operating ranges for the serial data outputs and inputs of the  
associated channel. The operating serial signaling-rate and  
If the phase offset, between the initialized location of the input  
clock and REFCLKx, exceeds the skew handling capabilities  
of the Phase-Align Buffer, an error is reported on that  
channel’s TXERRx output. This output indicates an error  
continuously until the Phase-Align Buffer for that channel is  
Document #: 38-02104 Rev. *C  
Page 9 of 21  
[+] Feedback  
CYV15G0403TB  
allowable range of REFCLKx± frequencies are listed in  
Table 1.  
Device Configuration and Control Interface  
The CYV15G0403TB is highly configurable via the configu-  
ration interface. This interface allows the device to be  
configured globally or allows each channel to be configured  
independently. Table 2 on page 11 lists the configuration  
latches within the device including the initialization value of the  
latches upon the assertion of RESET. Table 3 on page 12  
shows how the latches are mapped in the device. Each row in  
the Table 3 maps to a 5-bit latch bank. There are 16 such  
write-only latch banks. When WREN = 0, the logic value in  
DATA[4:0] is latched to the latch bank specified by the values  
in ADDR[3:0]. The second column of Table 3 specifies the  
channels associated with the corresponding latch bank. For  
example, the first three latch banks (0,1 and 2) consist of  
configuration bits for channel A. The latch banks 12, 13 and 14  
consist of Global configuration bits and the last latch bank (15)  
is the Mask latch bank that can be configured to perform  
bit-by-bit configuration.  
Table 1. Operating Speed Settings  
REFCLKx±  
Signaling  
SPDSELx  
TXRATEx  
Frequency  
(MHz)  
Rate (Mbps)  
LOW  
1
0
1
0
1
0
reserved  
19.5–40  
20–40  
195–400  
MID (Open)  
HIGH  
400–800  
40–80  
40–75  
800–1500  
80–150  
The REFCLKx± inputs are differential inputs with each input  
internally biased to 1.4V. If the REFCLKx+ input is connected  
to a TTL, LVTTL, or LVCMOS clock source, the input signal is  
recognized when it passes through the internally biased  
reference point. When driven by a single-ended TTL, LVTTL,  
or LVCMOS clock source, connect the clock source to either  
the true or complement REFCLKx input, and leave the  
alternate REFCLKx input open (floating).  
Global Enable Function  
The global enable function, controlled by the GLENx bits, is a  
feature that can be used to reduce the number of write opera-  
tions needed to setup the latch banks. This function is  
beneficial in systems that use a common configuration in  
multiple channels. The GLENx bit is present in bit 0 of latch  
banks 0 through 11 only. Its default value (1) enables the global  
update of the latch bank's contents. Setting the GLENx bit to  
0 disables this functionality.  
When both the REFCLKx+ and REFCLKx– inputs are  
connected, the clock source must be a differential clock. This  
can either be a differential LVPECL clock that is DC-or  
AC-coupled or a differential LVTTL or LVCMOS clock.  
By connecting the REFCLKx– input to an external voltage  
source, it is possible to adjust the reference point of the  
REFCLKx+ input for alternate logic levels. When doing so, it  
is necessary to ensure that the input differential crossing point  
remains within the parametric range supported by the input.  
Latch Banks 12, 13, and 14 are used to load values in the  
related latch banks in a global manner. A write operation to  
latch bank 12 could do a global write to latch banks 0, 3, 6, and  
9 depending on the value of GLENx in these latch banks; latch  
bank 13 could do a global write to latch banks 1, 4, 7 and 10;  
and latch banks 14 could do a global write to latch banks 2, 5,  
8 and 11. The GLENx bit cannot be modified by a global write  
operation.  
Serial Output Drivers  
The serial output interface drivers use differential Current  
Mode Logic (CML) drivers to provide source-matched drivers  
for 50Ω transmission lines. These drivers accept data from the  
Transmit Shifter, which shifts the data out LSB first. These  
drivers have signal swings equivalent to that of standard PECL  
drivers, and are capable of driving AC-coupled optical  
modules or transmission lines.  
Force Global Enable Function  
FGLENx forces the global update of the target latch banks, but  
does not change the contents of the GLENx bits. If FGLENx =  
1 for the associated global channel, FGLENx forces the global  
update of the target latch banks.  
Transmit Channels Enabled  
Each driver can be enabled or disabled separately via the  
device configuration interface.  
Mask Function  
An additional latch bank (15) is used as a global mask vector  
to control the update of the configuration latch banks on a  
bit-by-bit basis. A logic 1 in a bit location allows for the update  
of that same location of the target latch bank(s), whereas a  
logic 0 disables it. The reset value of this latch bank is FFh,  
thereby making its use optional by default. The mask latch  
bank is not maskable. The FGLEN functionality is not affected  
by the bit 0 value of the mask latch bank.  
When a driver is disabled via the configuration interface, it is  
internally powered down to reduce device power. If both serial  
drivers for a channel are in this disabled state, the associated  
internal logic for that channel is also powered down. A device  
reset (RESET sampled LOW) disables all output drivers.  
Note. When a disabled channel (i.e., both outputs disabled) is  
re-enabled:  
• data on the serial outputs may not meet all timing specifi-  
cations for up to 250 μs  
Latch Types  
There are two types of latch banks: static (S) and dynamic (D).  
Each channel is configured by 2 static and 1 dynamic latch  
banks. The S type contain those settings that normally do not  
change for a given application, whereas the D type controls  
the settings that could change during the application's lifetime.  
The first and second rows of each channel (address numbers  
• the state of the phase-align buffer cannot be guaranteed,  
and a phase-align reset is required if the phase-align buffer  
is used  
Document #: 38-02104 Rev. *C  
Page 10 of 21  
[+] Feedback  
CYV15G0403TB  
0, 1, 3, 4, 6, 7, 9, and 10) are the static control latches. The  
third row of latches for each channel (address numbers 2, 5,  
8, and 11) are the dynamic control latches that are associated  
with enabling dynamic functions within the device.  
WREN is left asserted. The signals present in DATA[4:0] effec-  
tively become global control pins, and for the latch banks 2, 5,  
8 and 11.  
Static Latch Values  
Latch Bank 14 is also useful for those users that do not need  
the latch-based programmable feature of the device. This  
latch bank could be used in those applications that do not need  
to modify the default value of the static latch banks, and that  
can afford a global (i.e., not independent) control of the  
dynamic signals. In this case, this feature becomes available  
when ADDR[3:0] is left unchanged with a value of “1110” and  
There are some latches in the table that have a static value  
(i.e. 1, 0, or X). The latches that have a ‘1’ or ‘0’ must be  
configured with their corresponding value each time that their  
associated latch bank is configured. The latches that have an  
‘X’ are don’t cares and can be configured with any value.  
Table 2. Device Configuration and Control Latch Descriptions  
Name  
Signal Description  
TXCKSELA  
TXCKSELB  
TXCKSELC  
TXCKSELD  
Transmit Clock Select. The initialization value of the TXCKSELx latch = 1. TXCKSELx selects the clock  
source used to write data into the Transmit Input Register. When TXCKSELx = 1, the associated input  
register TXDx[9:0] is clocked by REFCLKx↑. In this mode, the phase alignment buffer in the transmit path  
is bypassed. When TXCKSELx = 0, the associated TXCLKxis used to clock in the input register  
TXDx[9:0].  
TXRATEA  
TXRATEB  
TXRATEC  
TXRATED  
Transmit PLL Clock Rate Select. The initialization value of the TXRATEx latch = 0. TXRATEx is used  
to select the clock multiplier for the Transmit PLL. When TXRATEx = 0, each transmit PLL multiples the  
associated REFCLKx± input by 10 to generate the serial bit-rate clock. When TXRATEx = 0, the  
TXCLKOx output clocks are full-rate clocks and follow the frequency and duty cycle of the associated  
REFCLKx± input. When TXRATEx = 1, each Transmit PLL multiplies the associated REFCLKx± input by  
20 to generate the serial bit-rate clock. When TXRATEx = 1, the TXCLKOx output clocks are twice the  
frequency rate of the REFCLKx± input. When TXCLKSELx = 1 and TXRATEx = 1, the Transmit Data  
Inputs are captured using both the rising and falling edges of REFCLKx. TXRATEx = 1 and SPDSELx =  
LOW, is an invalid state and this combination is reserved.  
TXBISTA  
TXBISTB  
TXBISTC  
TXBISTD  
Transmit Bist Disabled. The initialization value of the TXBISTx latch = 1. TXBISTx selects if the transmit  
BIST is disabled or enabled. When TXBISTx = 1, the transmit BIST function is disabled. When  
TXBISTx = 0, the transmit BIST function is enabled.  
OE2A  
OE2B  
OE2C  
OE2D  
Secondary Differential Serial Data Output Driver Enable. The initialization value of the OE2x latch =  
0. OE2x selects if the OUT2x± secondary differential output drivers are enabled or disabled. When OE2x  
= 1, the associated serial data output driver is enabled allowing data to be transmitted from the transmit  
shifter. When OE2x = 0, the associated serial data output driver is disabled. When a driver is disabled via  
the configuration interface, it is internally powered down to reduce device power. If both serial drivers for  
a channel are in this disabled state, the associated internal logic for that channel is also powered down.  
A device reset (RESET sampled LOW) disables all output drivers.  
OE1A  
OE1B  
OE1C  
OE1D  
Primary Differential Serial Data Output Driver Enable. The initialization value of the OE1x latch = 0.  
OE1x selects if the OUT1x± primary differential output drivers are enabled or disabled. When OE1x = 1,  
the associated serial data output driver is enabled allowing data to be transmitted from the transmit shifter.  
When OE1x = 0, the associated serial data output driver is disabled. When a driver is disabled via the  
configuration interface, it is internally powered down to reduce device power. If both serial drivers for a  
channel are in this disabled state, the associated internal logic for that channel is also powered down.  
A device reset (RESET sampled LOW) disables all output drivers.  
PABRSTA  
PABRSTB  
PABRSTC  
PABRSTD  
Transmit Clock Phase Alignment Buffer Reset. The initialization value of the PABRSTx latch = 1. The  
PABRSTx is used to re-center the Transmit Phase Align Buffer. When the configuration latch PABRSTx  
is written as a 0, the phase of the TXCLKx input clock relative to its associated REFCLKx+/- is initialized.  
PABRST is an asynchronous input, but is sampled by each TXCLKxto synchronize it to the internal  
clock domain. PABRSTx is a self clearing latch. This eliminates the requirement of writing a 1 to complete  
the initialization of the Phase Alignment Buffer.  
GLEN[11..0]  
FGLEN[2..0]  
Global Enable. The initialization value of the GLENx latch = 1. The GLENx is used to reconfigure several  
channels simultaneously in applications where several channels may have the same configuration. When  
GLENx = 1 for a given address, that address is allowed to participate in a global configuration. When  
GLENx = 0 for a given address, that address is disabled from participating in a global configuration.  
Force Global Enable. The initialization value of the FGLENx latch is NA. The FGLENx latch forces a  
GLobal ENable no matter what the setting is on the GLENx latch. If FGLENx = 1 for the associated Global  
channel, FGLEN forces the global update of the target latch banks.  
Document #: 38-02104 Rev. *C  
Page 11 of 21  
[+] Feedback  
CYV15G0403TB  
Device Configuration Strategy  
capability is present only on the LVTTL inputs and outputs and  
the REFCLKx± clock input. The high-speed serial inputs and  
outputs are not part of the JTAG test chain. To ensure valid  
device operation after power-up (including non-JTAG  
operation), the JTAG state machine should also be initialized  
to a reset state. This should be done in addition to the device  
reset (using RESET). The JTAG state machine can be  
initialized using TRST (asserting it LOW and deasserting it or  
leaving it asserted), or by asserting TMS HIGH for at least 5  
consecutive TCLK cycles. This is necessary in order to ensure  
that the JTAG controller does not enter any of the test modes  
after device power-up. In this JTAG reset state, the rest of the  
device will be in normal operation.  
The following is a series of ordered events needed to load the  
configuration latches on a per channel basis:  
1. Pulse RESET Low after device power-up. This operation  
resets all four channels. Initialize the JTAG state machine  
to its reset state as detailed in the JTAG Support section.  
2. Set the static latch banks for the target channel. May be  
performed using a global operation, if the application  
permits it.  
3. Set the dynamic bank of latches for the target channel.  
Enable the output drivers. May be performed using a global  
operation, if the application permits it. [Required step.]  
Note: The order of device reset (using RESET) and JTAG  
initialization does not matter.  
4. Reset the Phase Alignment Buffer for the target channel.  
May be performed using a global operation, if the appli-  
cation permits it. [Optional if phase align buffer is  
bypassed.]  
3-Level Select Inputs  
Each 3-Level select inputs reports as two bits in the scan  
register. These bits report the LOW, MID, and HIGH state of  
the associated input as 00, 10, and 11 respectively  
JTAG Support  
The CYV15G0403TB contains a JTAG port to allow system  
level diagnosis of device interconnect. Of the available JTAG  
modes, boundary scan, and bypass are supported. This  
JTAG ID  
The JTAG device ID for the CYV15G0403TB is ‘0C810069’x.  
Table 3. Device Control Latch Configuration Table  
Reset  
Value  
ADDR  
Channel  
Type  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
0
A
S
X
X
0
X
GLEN0  
11111  
(0000b)  
1
A
S
D
S
S
D
S
S
D
S
S
D
S
S
D
D
X
0
TXCKSELA  
TXRATEA  
PABRSTA  
X
GLEN1  
GLEN2  
GLEN3  
GLEN4  
GLEN5  
GLEN6  
GLEN7  
GLEN8  
GLEN9  
GLEN10  
GLEN11  
FGLEN0  
FGLEN1  
FGLEN2  
D0  
01101  
10011  
11111  
01101  
10011  
11111  
01101  
10011  
11111  
01101  
10011  
N/A  
(0001b)  
2
A
TXBISTA  
OE2A  
OE1A  
(0010b)  
3
B
X
X
0
TXCKSELB  
OE1B  
(0011b)  
4
B
X
0
TXRATEB  
PABRSTB  
X
(0100b)  
5
B
TXBISTB  
OE2B  
(0101b)  
6
C
X
X
0
(0110b)  
7
C
X
0
OE2C  
X
TXCKSELC  
OE1C  
TXRATEC  
PABRSTC  
X
(0111b)  
8
C
D
TXBISTC  
(1000b)  
9
X
0
(1001b)  
10  
(1010b)  
D
X
0
TXCKSELD  
OE1D  
TXRATED  
PABRSTD  
X
11  
(1011b)  
D
TXBISTD  
OE2D  
X
12  
(1100b)  
GLOBAL  
GLOBAL  
GLOBAL  
MASK  
X
0
13  
(1101b)  
X
TXBISTGL  
D4  
0
TXCKSELGL  
OE1GL  
D2  
TXRATEGL  
PABRSTGL  
D1  
N/A  
14  
(1110b)  
OE2GL  
D3  
N/A  
15  
(1111b)  
11111  
Document #: 38-02104 Rev. *C  
Page 12 of 21  
[+] Feedback  
CYV15G0403TB  
Static Discharge Voltage..........................................> 2000 V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
Above which the useful life may be impaired. User guidelines  
only, not tested  
Latch-up Current.....................................................> 200 mA  
Power-up Requirements  
Storage Temperature ..................................65°C to +150°C  
The CYV15G0403TB requires one power-supply. The Voltage  
on any input or I/O pin cannot exceed the power pin during  
power-up.  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Supply Voltage to Ground Potential............... –0.5V to +3.8V  
Operating Range  
DC Voltage Applied to LVTTL Outputs  
in High-Z State .......................................–0.5V to VCC + 0.5V  
Range  
Ambient Temperature  
VCC  
Output Current into LVTTL Outputs (LOW)..................60 mA  
DC Input Voltage....................................–0.5V to VCC + 0.5V  
CYV15G0403TB DC Electrical Characteristics  
Commercial  
0°C to +70°C  
+3.3V ±5%  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
LVTTL-compatible Outputs  
VOHT  
VOLT  
IOST  
IOZL  
Output HIGH Voltage  
Output LOW Voltage  
IOH = 4 mA, VCC = Min.  
IOL = 4 mA, VCC = Min.  
VOUT = 0V[7], VCC = 3.3V  
VOUT = 0V, VCC  
2.4  
V
V
0.4  
–100  
20  
Output Short Circuit Current  
–20  
–20  
mA  
µA  
High-Z Output Leakage Current  
LVTTL-compatible Inputs  
VIHT  
VILT  
IIHT  
Input HIGH Voltage  
2.0  
VCC + 0.3  
0.8  
V
Input LOW Voltage  
Input HIGH Current  
–0.5  
V
REFCLKx Input, VIN = VCC  
Other Inputs, VIN = VCC  
REFCLKx Input, VIN = 0.0V  
Other Inputs, VIN = 0.0V  
1.5  
mA  
µA  
mA  
µA  
µA  
µA  
+40  
IILT  
Input LOW Current  
–1.5  
–40  
IIHPDT  
IILPUT  
Input HIGH Current with internal pull-down VIN = VCC  
+200  
–200  
Input LOW Current with internal pull-up  
VIN = 0.0V  
LVDIFF Inputs: REFCLKx±  
[8]  
VDIFF  
Input Differential Voltage  
400  
1.2  
0.0  
1.0  
VCC  
VCC  
mV  
V
VIHHP  
Highest Input HIGH Voltage  
Lowest Input LOW voltage  
Common Mode Range  
VILLP  
VCC/2  
V
[9]  
VCOMREF  
VCC – 1.2V  
V
3-Level Inputs  
VIHH  
VIMM  
VILL  
IIHH  
IIMM  
IILL  
Three-Level Input HIGH Voltage  
Min. VCC Max.  
Min. VCC Max.  
Min. VCC Max.  
VIN = VCC  
0.87 * VCC  
0.47 * VCC  
0.0  
VCC  
0.53 * VCC  
0.13 * VCC  
200  
V
V
Three-Level Input MID Voltage  
Three-Level Input LOW Voltage  
Input HIGH Current  
V
µA  
µA  
µA  
Input MID current  
VIN = VCC/2  
–50  
50  
Input LOW current  
VIN = GND  
–200  
Differential CML Serial Outputs: OUTA1±, OUTA2±, OUTB1±, OUTB2±, OUTC1±, OUTC2±, OUTD1±, OUTD2±  
VOHC  
Output HIGH Voltage  
(Vcc Referenced)  
100Ω differential load  
150Ω differential load  
VCC – 0.5  
VCC – 0.5  
VCC – 0.2  
VCC – 0.2  
V
V
Notes  
7. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle.  
8. This is the minimum difference in voltage between the true and complement inputs required to ensure detection of a logic-1 or logic-0. A logic-1 exists when the  
true (+) input is more positive than the complement () input. A logic-0 exists when the complement () input is more positive than true (+) input.  
9. The common mode range defines the allowable range of REFCLKx+ and REFCLKxwhen REFCLKx+ = REFCLKx. This marks the zero-crossing between  
the true and complement inputs as the signal switches between a logic-1 and a logic-0.  
Document #: 38-02104 Rev. *C  
Page 13 of 21  
[+] Feedback  
CYV15G0403TB  
CYV15G0403TB DC Electrical Characteristics (continued)  
Parameter  
Description  
Test Conditions  
100Ω differential load  
150Ω differential load  
100Ω differential load  
150Ω differential load  
Min.  
Max.  
Unit  
V
VOLC  
Output LOW Voltage  
(VCC Referenced)  
V
V
CC – 1.4 VCC – 0.7  
CC – 1.4  
450  
VCC – 0.7  
900  
V
VODIF  
Output Differential Voltage  
|(OUT+) (OUT)|  
mV  
mV  
560  
1000  
Max.  
820  
Power Supply  
Typ.  
640  
[10,11]  
ICC  
Max Power Supply Current  
REFCLKx= Commercial  
MAX  
mA  
mA  
[10,11]  
ICC  
Typical Power Supply Current  
REFCLKx= Commercial  
125 MHz  
610  
790  
AC Test Loads and Waveforms  
3.3V  
RL = 100Ω  
R
R1  
R2  
L
R1 = 590Ω  
R2 = 435Ω  
CL 7 pF  
(Includes fixture and  
probe capacitance)  
CL  
(Includes fixture and  
probe capacitance)  
[12]  
(b) CML Output Test Load  
(a) LVTTL Output Test Load[12]  
VIHE  
3.0V  
VIHE  
2.0V  
0.8V  
2.0V  
0.8V  
80%  
80%  
Vth = 1.4V  
Vth = 1.4V  
20%  
20%  
VILE  
270 ps  
GND  
VILE  
270 ps  
1 ns  
1 ns  
(c) LVTTL Input Test Waveform[13]  
(d) CML/LVPECL Input Test Waveform  
CYV15G0403TB AC Electrical Characteristics  
Parameter  
Description  
Min.  
Max.  
Unit  
CYV15G0403TB Transmitter LVTTL Switching Characteristics Over the Operating Range  
fTS  
TXCLKx Clock Cycle Frequency  
TXCLKx Period=1/fTS  
19.5  
6.66  
2.2  
150  
MHz  
ns  
tTXCLK  
51.28  
[14]  
tTXCLKH  
TXCLKx HIGH Time  
ns  
[14]  
tTXCLKL  
TXCLKx LOW Time  
2.2  
ns  
[14, 15, 16, 17]  
tTXCLKR  
tTXCLKF  
tTXDS  
TXCLKx Rise Time  
0.2  
1.7  
1.7  
ns  
[14, 15, 16, 17]  
TXCLKx Fall Time  
0.2  
ns  
Transmit Data Set-up Time to TXCLKx(TXCKSELx = 0)  
Transmit Data Hold Time from TXCLKx(TXCKSELx = 0)  
TXCLKOx Clock Frequency = 1x or 2x REFCLKx Frequency  
2.2  
ns  
tTXDH  
1.0  
ns  
fTOS  
19.5  
150  
MHz  
Notes  
10. Maximum I is measured with V = MAX, T = 25°C, with all channels and Serial Line Drivers enabled, sending a continuous alternating 01 pattern, and  
CC  
CC  
A
outputs unloaded.  
11. Typical I is measured under similar conditions except with V = 3.3V, T = 25°C, with all channels enabled and one Serial Line Driver per channel sending  
CC  
CC  
A
a continuous alternating 01 pattern. The redundant outputs on each channel are powered down.  
12. Cypress uses constant current (ATE) load configurations and forcing functions. This figure is for reference only.  
13. The LVTTL switching threshold is 1.4V. All timing references are made relative to where the signal edges cross the threshold voltage.  
14. Tested initially and after any design or process changes that may affect these parameters, but not 100% tested.  
15. The ratio of rise time to falling time must not vary by greater than 2:1.  
16. For a given operating frequency, neither rise or fall specification can be greater than 20% of the clock-cycle period or the data sheet maximum time.  
17. All transmit AC timing parameters measured with 1 ns typical rise time and fall time.  
Document #: 38-02104 Rev. *C  
Page 14 of 21  
[+] Feedback  
CYV15G0403TB  
CYV15G0403TB AC Electrical Characteristics (continued)  
Parameter  
tTXCLKO  
tTXCLKOD  
CYV15G0403TB REFCLKx Switching Characteristics Over the Operating Range  
Description  
Min.  
6.66  
–1.9  
Max.  
51.28  
0
Unit  
ns  
TXCLKOx Period = 1/fTOS  
TXCLKO Duty Cycle centered at 60% HIGH time  
ns  
fREF  
REFCLKx Clock Frequency  
19.5  
6.6  
150  
MHz  
ns  
ns  
ns  
ns  
ns  
%
tREFCLK  
tREFH  
REFCLKx Period = 1/fREF  
51.28  
REFCLKx HIGH Time (TXRATEx = 1)(Half Rate)  
REFCLKx HIGH Time (TXRATEx = 0)(Full Rate)  
REFCLKx LOW Time (TXRATEx = 1)(Half Rate)  
REFCLKx LOW Time (TXRATEx = 0)(Full Rate)  
REFCLKx Duty Cycle  
5.9  
2.9[14]  
tREFL  
5.9  
2.9[14]  
30  
[18]  
tREFD  
70  
2
[14, 15, 16, 17]  
tREFR  
REFCLKx Rise Time (20%–80%)  
ns  
ns  
ns  
[14, 15, 16, 17]  
tREFF  
tTREFDS  
REFCLKx Fall Time (20%–80%)  
2
Transmit Data Set-up Time to REFCLKx - Full Rate  
(TXRATEx = 0, TXCKSELx = 1)  
2.4  
2.3  
1.0  
1.6  
Transmit Data Set-up Time to REFCLKx - Half Rate  
(TXRATEx = 1, TXCKSELx = 1)  
ns  
ns  
ns  
tTREFDH  
Transmit Data Hold Time from REFCLKx - Full Rate  
(TXRATEx = 0, TXCKSELx = 1)  
Transmit Data Hold Time from REFCLKx - Half Rate  
(TXRATEx = 1, TXCKSELx = 1)  
CYV15G0403TB Bus Configuration Write Timing Characteristics Over the Operating Range  
tDATAH  
tDATAS  
tWRENP  
Bus Configuration Data Hold  
0
ns  
ns  
ns  
Bus Configuration Data Setup  
Bus Configuration WREN Pulse Width  
10  
10  
CYV15G0403TB JTAG Test Clock Characteristics Over the Operating Range  
fTCLK  
tTCLK  
JTAG Test Clock Frequency  
JTAG Test Clock Period  
20  
MHz  
ns  
50  
30  
CYV15G0403TB Device RESET Characteristics Over the Operating Range  
tRST Device RESET Pulse Width  
CYV15G0403TB Transmit Serial Outputs and TX PLL Characteristics Over the Operating Range  
ns  
Parameter  
Description  
Condition  
Min.  
660  
50  
Max.  
5128  
270  
Unit  
ps  
tB  
tRISE  
Bit Time  
[14]  
CML Output Rise Time 2080% (CML Test Load)  
SPDSELx = HIGH  
SPDSELx = MID  
SPDSELx =LOW  
SPDSELx = HIGH  
SPDSELx = MID  
SPDSELx =LOW  
ps  
100  
180  
50  
500  
ps  
1000  
270  
ps  
[14]  
tFALL  
CML Output Fall Time 8020% (CML Test Load)  
ps  
100  
180  
500  
ps  
1000  
ps  
Note  
18. The duty cycle specification is a simultaneous condition with the t  
and t  
parameters. This means that at faster character rates the REFCLKx± duty cycle  
REFH  
REFL  
cannot be as large as 30%–70%.  
Document #: 38-02104 Rev. *C  
Page 15 of 21  
[+] Feedback  
CYV15G0403TB  
PLL Characteristics  
Parameter  
Description  
Condition  
Min. Typ.  
Max. Unit  
CYV15G0403TB Transmitter Output PLL Characteristics  
[14, 19]  
tJTGENSD  
tJTGENHD  
tTXLOCK  
Transmit Jitter Generation - SD Data Rate  
Transmit Jitter Generation - HD Data Rate  
Transmit PLL lock to REFCLKx±  
REFCLKx = 27 MHz  
200  
76  
ps  
ps  
[14, 19]  
REFCLKx = 148.5 MHz  
200  
μs  
Capacitance [14]  
Parameter  
CINTTL  
Description  
Test Conditions  
Max.  
Unit  
pF  
TTL Input Capacitance  
PECL input Capacitance  
TA = 25°C, f0 = 1 MHz, VCC = 3.3V  
TA = 25°C, f0 = 1 MHz, VCC = 3.3V  
7
4
CINPECL  
pF  
CYV15G0403TB HOTLink II Transmitter Switching Waveforms  
t
TXCLK  
Transmit Interface  
Write Timing  
TXCLKx selected  
t
t
TXCLKL  
TXCLKH  
TXCLKx  
t
t
TXDH  
TXDS  
TXDx[9:0]  
Transmit Interface  
Write Timing  
REFCLKx selected  
TXRATEx = 0  
t
REFCLK  
t
t
REFL  
REFH  
REFCLKx  
TXDx[9:0]  
t
t
TREFDS  
TREFDH  
Transmit Interface  
Write Timing  
REFCLKx selected  
TXRATEx = 1  
t
REFCLK  
t
t
REFL  
REFH  
REFCLKx  
TXDx[9:0]  
Note 20  
t
t
t
TREFDS  
t
TREFDH  
TREFDS  
TREFDH  
Notes  
19. While sending BIST data at the corresponding data rate, after 10,000 histogram hits on a digital sampling oscilloscope, time referenced to REFCLKx± input.  
20. When REFCLKx± is configured for half-rate operation (TXRATEx = 1) and data is captured using REFCLKx instead of a TXCLKx clock. Data is captured using  
both the rising and falling edges of REFCLKx.  
Document #: 38-02104 Rev. *C  
Page 16 of 21  
[+] Feedback  
CYV15G0403TB  
CYV15G0403TB HOTLink II Transmitter Switching Waveforms (continued)  
Transmit Interface  
TXCLKOx Timing  
tREFCLK  
tREFH  
tREFL  
TXRATEx = 1  
REFCLKx  
Note 21  
tTXCLKO  
Note 22  
TXCLKOx  
(internal)  
Transmit Interface  
TXCLKOx Timing  
t
REFCLK  
t
t
REFH  
REFL  
TXRATEx = 0  
Note 21  
REFCLKx  
t
TXCLKO  
Note 22  
TXCLKOx  
CYV15G0403TB HOTLink II Bus Configuration Switching Waveforms  
Bus Configuration  
Write Timing  
ADDR[3:0]  
DATA[4:0]  
tWRENP  
tDATAS  
WREN  
tDATAH  
Notes  
21. The TXCLKOx output remains at the character rate regardless of the state of TXRATEx and does not follow the duty cycle of REFCLKx±.  
22. The rising edge of TXCLKOx output has no direct phase relationship to the REFCLKx± input.  
Document #: 38-02104 Rev. *C  
Page 17 of 21  
[+] Feedback  
CYV15G0403TB  
Table 4. Package Coordinate Signal Allocation  
Ball  
ID  
Ball  
ID  
Ball  
ID  
Signal Name  
Signal Type  
Signal Name  
Signal Type  
Signal Name  
Signal Type  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C01  
C02  
C03  
NC  
OUTC1–  
NC  
NO CONNECT  
CML OUT  
NO CONNECT  
CML OUT  
POWER  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
E01  
E02  
E03  
E04  
E17  
E18  
E19  
E20  
F01  
NC  
GND  
NO CONNECT  
GROUND  
F17  
F18  
F19  
F20  
G01  
G02  
G03  
G04  
G17  
G18  
G19  
G20  
H01  
H02  
H03  
H04  
H17  
H18  
H19  
H20  
J01  
J02  
J03  
J04  
J17  
J18  
J19  
J20  
K01  
K02  
K03  
K04  
K17  
K18  
K19  
K20  
L01  
L02  
L03  
L04  
L17  
L18  
L19  
NC  
NC  
NO CONNECT  
NO CONNECT  
LVTTL OUT  
NO CONNECT  
LVTTL IN  
NC  
NO CONNECT  
NO CONNECT  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
TXCLKOB  
NC  
OUTC2–  
VCC  
NC  
DATA[3]  
DATA[1]  
GND  
TXDC[7]  
WREN  
TXDC[4]  
TXDC[1]  
SPDSELB  
NC  
NC  
NO CONNECT  
CML OUT  
GROUND  
GROUND  
CML OUT  
GROUND  
CML OUT  
GROUND  
GROUND  
CML OUT  
POWER  
LVTTL IN PU  
LVTTL IN  
OUTD1–  
GND  
NC  
NO CONNECT  
3-LEVEL SEL  
POWER  
LVTTL IN  
GND  
SPDSELD  
VCC  
3-LEVEL SEL  
NO CONNECT  
3-LEVEL SEL  
NO CONNECT  
GROUND  
OUTD2–  
GND  
NC  
NO CONNECT  
LVTTL IN PU  
GROUND  
SPDSELA  
NC  
OUTA1–  
GND  
TRST  
GND  
GND  
GND  
TDO  
LVTTL 3-S OUT  
LVTTL IN PD  
LVTTL IN PU  
POWER  
GND  
GROUND  
OUTA2–  
VCC  
TCLK  
RESET  
VCC  
GND  
GROUND  
GND  
GROUND  
VCC  
POWER  
GND  
GROUND  
OUTB1–  
VCC  
CML OUT  
POWER  
VCC  
POWER  
GND  
GROUND  
VCC  
POWER  
GND  
GROUND  
OUTB2–  
VCC  
CML OUT  
POWER  
VCC  
POWER  
GND  
GROUND  
SPDSELC  
GND  
3-LEVEL SEL  
GROUND  
TXDC[9]  
TXDC[5]  
TXDC[2]  
TXDC[3]  
NC  
LVTTL IN  
OUTC1+  
VCC  
CML OUT  
POWER  
LVTTL IN  
GND  
GROUND  
LVTTL IN  
OUTC2+  
VCC  
CML OUT  
POWER  
DATA[4]  
DATA[2]  
DATA[0]  
GND  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
LVTTL IN  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
PECL IN  
VCC  
POWER  
NC  
OUTD1+  
GND  
CML OUT  
GROUND  
NO CONNECT  
CML OUT  
NO CONNECT  
CML OUT  
GROUND  
NO CONNECT  
CML OUT  
POWER  
NC  
GND  
GROUND  
NC  
NC  
NC  
NO CONNECT  
POWER  
NC  
OUTD2+  
NC  
VCC  
REFCLKC–  
TXDC[8]  
TXCLKC  
NC  
NC  
NO CONNECT  
NO CONNECT  
LVTTL IN PD  
LVTTL IN PD  
POWER  
LVTTL IN  
OUTA1+  
GND  
NC  
LVTTL IN PD  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
PECL IN  
SCANEN2  
TMEN3  
VCC  
NC  
NC  
OUTA2+  
VCC  
NC  
VCC  
POWER  
NC  
NC  
NO CONNECT  
CML OUT  
NO CONNECT  
CML OUT  
LVTTL IN PU  
LVTTL IN PU  
POWER  
VCC  
POWER  
NC  
OUTB1+  
NC  
VCC  
POWER  
REFCLKC+  
NC  
VCC  
POWER  
NO CONNECT  
LVTTL IN  
OUTB2+  
TDI  
VCC  
POWER  
TXDC[6]  
NC  
VCC  
POWER  
NO CONNECT  
NO CONNECT  
NO CONNECT  
TMS  
VCC  
POWER  
NC  
VCC  
NC  
NO CONNECT  
NC  
Document #: 38-02104 Rev. *C  
Page 18 of 21  
[+] Feedback  
CYV15G0403TB  
Table 4. Package Coordinate Signal Allocation (continued)  
Ball  
ID  
Ball  
ID  
Ball  
ID  
Signal Name  
Signal Type  
Signal Name  
Signal Type  
Signal Name  
Signal Type  
C04  
C05  
C06  
M03  
M04  
VCC  
VCC  
POWER  
POWER  
F02  
F03  
F04  
U03  
U04  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
V01  
V02  
V03  
V04  
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
W01  
W02  
NC  
TXDC[0]  
NC  
NO CONNECT  
LVTTL IN  
L20  
M01  
M02  
W03  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
TXDB[6]  
NC  
LVTTL IN  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
POWER  
NC  
NO CONNECT  
NO CONNECT  
LVTTL OUT  
PECL IN  
NO CONNECT  
LVTTL IN  
NC  
NC  
TXDD[2]  
TXDD[9]  
VCC  
NC  
TXERRC  
LVTTL IN  
NC  
M17 REFCLKB+  
M18 REFCLKB–  
POWER  
VCC  
PECL IN  
NC  
NO CONNECT  
NO CONNECT  
GROUND  
NC  
NO CONNECT  
NO CONNECT  
GROUND  
M19  
M20  
N01  
N02  
N03  
N04  
N17  
N18  
N19  
N20  
P01  
P02  
P03  
P04  
P17  
P18  
P19  
P20  
R01  
R02  
R03  
R04  
R17  
R18  
R19  
R20  
T01  
T02  
T03  
T04  
T17  
T18  
T19  
T20  
U01  
U02  
TXERRB  
TXCLKB  
GND  
LVTTL OUT  
LVTTL IN PD  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
LVTTL IN  
NC  
NC  
GND  
GND  
TXDA[9]  
ADDR [0]  
REFCLKD–  
TXDA[1]  
GND  
LVTTL IN  
ADDR [3]  
ADDR [1]  
NC  
LVTTL IN PU  
LVTTL IN PU  
NO CONNECT  
LVTTL OUT  
GROUND  
GND  
LVTTL IN PU  
PECL IN  
GND  
GND  
LVTTL IN  
TXERRA  
GND  
GND  
GROUND  
GND  
TXDA[4]  
TXDA[8]  
VCC  
LVTTL IN  
TXDA[2]  
TXDA[6]  
VCC  
LVTTL IN  
GND  
LVTTL IN  
LVTTL IN  
GND  
POWER  
POWER  
NC  
NC  
NO CONNECT  
LVTTL IN  
NC  
NO CONNECT  
PECL IN  
NC  
TXDB[8]  
NC  
W18 REFCLKA+  
NC  
NO CONNECT  
NO CONNECT  
LVTTL IN  
W19  
W20  
Y01  
Y02  
Y03  
Y04  
Y05  
Y06  
Y07  
Y08  
Y09  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
NC  
NC  
NO CONNECT  
NO CONNECT  
LVTTL IN  
NC  
NC  
TXDB[5]  
TXDB[4]  
TXDB[3]  
TXDB[2]  
NC  
TXDD[3]  
TXDD[4]  
TXDD[8]  
NC  
TXDD[6]  
TXCLKD  
NC  
LVTTL IN  
LVTTL IN  
LVTTL IN PD  
NO CONNECT  
NO CONNECT  
POWER  
LVTTL IN  
LVTTL IN  
LVTTL IN  
NO CONNECT  
POWER  
NC  
NO CONNECT  
LVTTL OUT  
NO CONNECT  
NO CONNECT  
LVTTL IN  
VCC  
VCC  
TXCLKOC  
NC  
NC  
NO CONNECT  
NO CONNECT  
GROUND  
NC  
NO CONNECT  
NO CONNECT  
GROUND  
NC  
NC  
NC  
GND  
GND  
TXDB[1]  
TXDB[0]  
TXDB[9]  
TXDB[7]  
VCC  
NC  
NO CONNECT  
LVTTL IN PU  
PECL IN  
TXCLKOD  
NC  
LVTTL OUT  
NO CONNECT  
LVTTL IN PD  
NO CONNECT  
GROUND  
LVTTL IN  
ADDR [2]  
REFCLKD+  
TXCLKOA  
GND  
LVTTL IN  
TXCLKA  
NC  
LVTTL IN  
LVTTL OUT  
GROUND  
POWER  
GND  
VCC  
POWER  
TXDA[3]  
TXDA[7]  
VCC  
LVTTL IN  
TXDA[0]  
TXDA[5]  
VCC  
LVTTL IN  
VCC  
POWER  
LVTTL IN  
LVTTL IN  
VCC  
POWER  
POWER  
POWER  
VCC  
POWER  
NC  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
LVTTL IN  
TXERRD  
REFCLKA–  
NC  
LVTTL OUT  
PECL IN  
VCC  
POWER  
NC  
VCC  
POWER  
NC  
NO CONNECT  
NO CONNECT  
VCC  
POWER  
NC  
NC  
TXDD[0]  
TXDD[1]  
LVTTL IN  
TXDD[5]  
TXDD[7]  
LVTTL IN  
LVTTL IN  
Document #: 38-02104 Rev. *C  
Page 19 of 21  
[+] Feedback  
CYV15G0403TB  
Ordering Information  
Package  
Name  
Operating  
Range  
Speed  
Ordering Code  
Package Type  
Standard  
Standard  
CYV15G0403TB-BGC  
CYV15G0403TB-BGXC  
BL256  
BL256  
256-Ball Thermally Enhanced Ball Grid Array  
Commercial  
Pb-Free 256-Ball Thermally Enhanced Ball Grid Array  
Commercial  
Package Diagram  
Figure 2. 256-Lead L2 Ball Grid Array (27 x 27 x 1.57 mm) BL256  
TOP VIEW  
0.20ꢀ4ꢁX  
BOTTOM VIEW ꢀBALL SIDEX  
A
27.00 0.13  
Ø0.15 M C  
Ø0.30 M C  
A
B
A1 CORNER I.D.  
A1 CORNER I.D.  
24.13  
Ø0.75 0.15ꢀ256ꢁX  
20 18  
19  
16  
14  
12  
10  
8
6
4
2
17  
15  
13  
11  
9
7
5
3
1
A
B
C
D
E
F
G
H
J
R 2.5 Max ꢀ4ꢁX  
K
L
M
N
P
R
T
A
U
V
W
Y
A
0.50 MIN.  
B
1.57 0.175  
0.97 REF.  
0.15  
C
26°  
0.15  
C
0.60 0.10  
C
0.20 MIN  
TOP OF MOLD COMPOUND  
TO TOP OF BALLS  
TYP.  
SEATING PLANE  
SIDE VIEW  
SECTION A-A  
51-85123-*E  
HOTLink is a registered trademark and HOTLink II is a trademark of Cypress Semiconductor. All product and company names  
mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-02104 Rev. *C  
Page 20 of 21  
© Cypress Semiconductor Corporation, 2002-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the  
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to  
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CYV15G0403TB  
Document History Page  
Document Title: CYV15G0403TB Independent Clock Quad HOTLink II™ Serializer  
Document Number: 38-02104  
ISSUE  
DATE  
ORIG. OF  
CHANGE  
REV.  
ECN NO.  
DESCRIPTION OF CHANGE  
**  
246850  
338721  
384307  
1034120  
See ECN  
See ECN  
See ECN  
See ECN  
FRE  
SUA  
AGT  
UKK  
New Data Sheet  
Added Pb-Free package option availability  
*A  
*B  
*C  
Revised setup and hold times (tTXDH, tTREFDS, tTREFDH  
)
Added clarification for the necessity of JTAG controller reset and the  
methods to implement it.  
Document #: 38-02104 Rev. *C  
Page 21 of 21  
[+] Feedback  
厂商 型号 描述 页数 下载

CYPRESS

CYV15G0100EQ 准专业型视频电缆均衡器[ Prosumer Video Cable Equalizer ] 10 页

CYPRESS

CYV15G0100EQ-SXC 准专业型视频电缆均衡器[ Prosumer Video Cable Equalizer ] 10 页

CYPRESS

CYV15G0101DXB 单通道的HOTLink收发器[ Single-channel HOTLink Transceiver ] 39 页

CYPRESS

CYV15G0101DXB-BBC 单通道的HOTLink收发器[ Single-channel HOTLink Transceiver ] 39 页

CYPRESS

CYV15G0101DXB-BBI 单通道的HOTLink收发器[ Single-channel HOTLink Transceiver ] 39 页

CYPRESS

CYV15G0101DXB-BBXC 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

CYPRESS

CYV15G0101DXB-BBXI 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

CYPRESS

CYV15G0101EQ 多码率视频电缆均衡器( SOIC )[ Multi-Rate Video Cable Equalizer (SOIC) ] 10 页

CYPRESS

CYV15G0101EQ-SXC 多码率视频电缆均衡器( SOIC )[ Multi-Rate Video Cable Equalizer (SOIC) ] 10 页

CYPRESS

CYV15G0101EQ_07 多速率视频电缆均衡器[ Multi Rate Video Cable Equalizer ] 10 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.205310s