找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYW320OXC-3

型号:

CYW320OXC-3

描述:

200 - MHz的扩频时钟合成器/驱动器[ 200-MHz Spread Spectrum Clock Synthesizer/Driver ]

品牌:

CYPRESS[ CYPRESS ]

页数:

18 页

PDF大小:

303 K

W320-03  
200-MHz Spread Spectrum Clock  
Synthesizer/Driver  
Benefits  
Features  
• Compliant with Intel® CK-Titan Clock Synthe-  
• Supports next-generation Pentium® processors using  
sizer/Driver Specifications  
differential clock drivers  
• Multiple output clocks at different frequencies  
• Three pairs of differential CPU outputs, up to 200 MHz  
• Ten synchronous PCI clocks, three free-running  
• Six 3V66 clocks  
• Two 48-MHz clocks  
• One reference clock at 14.318 MHz  
• One VCH clock  
• Motherboard clock generator  
• Support Multiple CPUs and a chipset  
• Support for PCI slots and chipset  
• Supports AGP, DRCG reference and Hub Link  
• Supports USB host controller and graphic controller  
• Supports ISA slots and I/O chip  
• Enables reduction of electromagnetic interference  
(EMI) and overall system cost  
• Spread Spectrum clocking (down spread)  
• Enables ACPI-compliant designs  
• Power-down features (PCI_STOP#, CPU_STOP#  
PWR_DWN#)  
• Supports up to four CPU clock frequencies  
• Enables ATE and “bed of nails” testing  
• Widely available, standard package enables lower cost  
• Three Select inputs (Mode select & IC Frequency  
Select)  
OE and Test Mode support  
56-pin SSOP package and 56-pin TSSOP package  
Logic Block Diagram  
Pin Configurations  
SSOP & TSSOP  
Top View  
VDD_REF  
REF  
REF  
VDD_REF  
XTAL_IN  
XTAL_OUT  
GND_REF  
PCI_F0  
1
2
3
4
5
6
56  
55  
54  
53  
52  
51  
50  
X1  
X2  
XTAL  
OSC  
PWR  
S1  
PLL Ref Freq  
S0  
CPU_STOP#  
Divider  
CPU0  
PLL 1  
Network  
PCI_F1  
PCI_F2  
CPU#0  
VDD_CPU  
CPU1  
VDD_CPU  
CPU0:2  
Stop  
Clock  
PWR  
7
Gate  
S0:2  
PWR_GD#  
Control  
VDD_PCI  
GND_PCI  
PCI0  
49  
48  
47  
46  
8
9
10  
11  
12  
13  
CPU#0:2  
CPU#1  
GND_CPU  
VDD_CPU  
CPU_STOP#  
VDD_PCI  
PCI_F0:2  
PCI1  
PCI2  
PWR  
CPU2  
CPU#2  
MULT0  
45  
44  
43  
42  
41  
Stop  
Clock  
PCI3  
PCI0:6  
Control  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VDD_PCI  
GND_PCI  
PCI4  
PCI_STOP#  
PWR_DWN#  
IREF  
/2  
VDD_3V66  
3V66_0  
GND_IREF  
S2  
USB  
DOT  
VDD_ 48 MHz  
PWR  
PWR  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PCI5  
PCI6  
VDD_3V66  
3V66_2:4/  
66BUFF0:2  
PWR  
3V66_5/ 66IN  
GND_3V66  
66BUFF0/3V66_2  
66BUFF1/3V66_3  
GND_ 48 MHz  
3V66_1/VCH  
PCI_STOP#  
3V66_0  
VDD_3V66  
GND_3V66  
VDD_48MHz  
USB (48MHz)  
PLL 2  
66BUFF2/3V66_4  
66IN/3V66_5  
DOT (48MHz)  
PWR_DWN#  
VDD_CORE  
GND_CORE  
VCH_CLK/ 3V66_1  
SCLK  
SDATA  
PWR_GD#  
SDATA  
SCLK  
SMBus  
Logic  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-07248 Rev. *C  
Revised June 28, 2005  
W320-03  
Pin Summary  
Name  
REF  
XTAL_IN  
XTAL_OUT  
CPU, CPU# [0:2]  
Pins  
56  
2
3
Description  
3.3V 14.318-MHz clock output  
14.318-MHz crystal input  
14.318-MHz crystal input  
44, 45, 48, 49, 51, Differential CPU clock outputs  
52  
3V66_0  
33  
3.3V 66-MHz clock output  
3V66_1/VCH  
66IN/3V66_5  
35  
24  
3.3V selectable through SMBus to be 66 MHz or 48 MHz  
66-MHz input to buffered 66BUFF and PCI or 66-MHz clock from internal VCO  
66-MHz buffered outputs from 66Input or 66-MHz clocks from internal VCO  
66BUFF [2:0] /3V66  
21, 22, 23  
[4:2]  
PCI_F [0:2]  
PCI [0:6]  
5, 6, 7,  
33 MHz clocks divided down from 66Input or divided down from 3V66  
10, 11, 12, 13, 16, PCI clock outputs divided down from 66Input or divided down from 3V66  
17, 18  
USB  
DOT  
S2  
S1, S0  
IREF  
39  
38  
40  
54, 55  
42  
Fixed 48-MHz clock output  
Fixed 48-MHz clock output  
Special 3.3V 3 level input for Mode selection  
3.3V LVTTL inputs for CPU frequency selection  
A precision resistor is attached to this pin which is connected to the internal  
current reference  
MULT0  
43  
25  
34  
53  
28  
3.3V LVTTL input for selecting the current multiplier for the CPU outputs  
3.3V LVTTL input for Power_Down# (active LOW)  
3.3V LVTTL input for PCI_STOP# (active LOW)  
3.3V LVTTL input for CPU_STOP# (active LOW)  
3.3V LVTTL input is a level sensitive strobe used to determine when S[2:0] and  
MULTI0 inputs are valid and OK to be sampled (Active LOW). Once PWRGD#  
is sampled LOW, the status of this output will be ignored.  
PWR_DWN#  
PCI_STOP#  
CPU_STOP#  
PWRGD#  
SDATA  
SCLK  
29  
30  
SMBus compatible SDATA  
SMBus compatible Sclk  
VDD_REF, VDD_PCI, 1, 8, 14, 19, 32, 46, 3.3V power supply for outputs  
VDD_3V66,  
VDD_CPU  
50  
VDD_48 MHz  
VDD_CORE  
37  
26  
3.3V power supply for 48 MHz  
3.3V power supply for PLL  
GND_REF, GND_PCI, 4, 9, 15, 20, 31, 36, Ground for outputs  
GND_3V66,  
GND_IREF,  
VDD_CPU  
41, 47  
GND_CORE  
27  
Ground for PLL  
Document #: 38-07248 Rev. *C  
Page 2 of 18  
W320-03  
[1]  
Function Table  
CPU  
3V66[0:1] 66BUFF[0:2]/3 66IN/3V66_5 PCI_F/PCI  
USB/DOT  
(MHz)  
S2 S1  
S0  
(MHz)  
(MHz)  
V66[2:4] (MHz)  
66 IN  
(MHz)  
(MHz)  
REF0(MHz)  
Notes  
2, 3, 4  
2, 3, 4  
2, 3, 4  
2, 3, 4  
2, 3, 4  
2, 3, 4  
2, 3, 4  
2, 3, 4  
1, 5  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
66 MHz  
66 MHz  
66 MHz Input 66 IN/2  
66 MHz Input 66 IN/2  
66 MHz Input 66 IN/2  
66 MHz Input 66 IN/2  
14.318 MHz 48 MHz  
14.318 MHz 48 MHz  
14.318 MHz 48 MHz  
14.318 MHz 48 MHz  
14.318 MHz 48 MHz  
14.318 MHz 48 MHz  
14.318 MHz 48 MHz  
14.318 MHz 48 MHz  
1
1
100 MHz 66 MHz  
200 MHz 66 MHz  
133 MHz 66 MHz  
66 IN  
66 IN  
66 IN  
1
0
66 MHz  
66 MHz  
66 MHz  
66 MHz  
66 MHz  
66 MHz  
Hi-Z  
66 MHz  
66 MHz  
66 MHz  
66 MHz  
Hi-Z  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
Hi-Z  
0
0
0
100 MHz 66 MHz  
200 MHz 66 MHz  
133 MHz 66 MHz  
Hi-Z  
TCLK/2  
Mid  
Mid  
Mid  
Mid  
Hi-Z  
Hi-Z  
TCLK  
Reserved  
Reserved  
Hi-Z  
TCLK/4  
TCLK/4  
TCLK/4  
Reserved  
Reserved  
TCLK/8  
Reserved  
Reserved  
TCLK/2  
Reserved  
Reserved  
6, 7, 8  
Reserved Reserved Reserved  
Reserved Reserved Reserved  
Swing Select Functions  
Board Target  
Reference R, IREF =  
VDD/(3*Rr)  
Output  
Current  
Mult0  
Trace/Term Z  
VOH @ Z  
0
60Ω  
Rr = 221 1%,  
IOH = 4*IREF  
1.0V @ 50  
IREF = 5.00 mA  
1
50Ω  
Rr = 475 1%,  
IOH = 6*IREF  
0.7V @ 50  
IREF = 2.32 mA  
Clock Driver Impedances  
Impedance  
Minimum  
Typical  
Maximum  
Buffer Name  
CPU, CPU#  
REF  
PCI, 3V66, 66BUFF  
USB  
DOT  
VDD Range  
Buffer Type  
Type X1  
Type 3  
Type 5  
Type 3A  
Type 3B  
50  
40  
30  
30  
30  
3.135–3.465  
3.135–3.465  
3.135–3.465  
3.135–3.465  
20  
12  
12  
12  
60  
55  
55  
55  
Clock Enable Configuration  
VCOS/  
PWR_DWN# CPU_STOP# PCI_STOP#  
CPU  
CPU# 3V66 66BUFF PCI_F PCI USB/DOT  
OSC  
OFF  
ON  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
IREF*2 FLOAT LOW  
IREF*2 FLOAT  
IREF*2 FLOAT  
ON  
ON  
LOW  
LOW LOW  
LOW  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Notes:  
1. TCLK is a test clock driven in on the XTALIN input in test mode.  
2. “Normal” mode of operation.  
3. Range of reference frequency allowed is min. = 14.316 nominal = 14.31818 MHz, max = 14.32 MHz.  
4. Frequency accuracy of 48 MHz must be +167PPM to match USB default.  
5. Mid is defined a Voltage level between 1.0V and 1.8V for 3 level input functionality. Low is below 0.8V. High is above 2.0V.  
6. TCLK is a test clock over driven on the XTAL_IN input during test mode.  
7. Required for DC output impedance verification.  
8. These modes are to use the SAME internal dividers as the CPU = 200-MHz mode. The only change is to slow down the internal VCO to allow under clock  
margining.  
Document #: 38-07248 Rev. *C  
Page 3 of 18  
W320-03  
ability to stop after any complete byte has been transferred.  
Serial Data Interface (SMBus)  
Indexed bytes are not allowed.  
To enhance the flexibility and function of the clock synthesizer,  
a two signal SMBus interface is provided according to the  
SMBus specification. Through the Serial Data Interface (SDI),  
various device functions such as individual clock output  
buffers, etc can be individually enabled or disabled. W320-03  
support both block read and block write operations.  
The registers associated with the SDI initialize to their default  
setting upon power-up, and therefore use of this interface is  
optional. Clock device register changes are normally made  
upon system initialization, if any are required. The interface  
can also be used during system operation for power  
management functions.  
A block write begins with a slave address and a WRITE  
condition. The R/W bit is used by the SMBus controller as a  
data direction bit. A zero indicates a WRITE condition to the  
clock device. The slave receiver address is 11010010 (D2h).  
A command code of 0000 0000 (00h) and the byte count bytes  
are required for any transfer. After the command code, the  
core logic issues a byte count which describes number of  
additional bytes required for the transfer, not including the  
command code and byte count bytes. For example, if the host  
has 20 data bytes to send, the first byte would be the number  
20 (14h), followed by the 20 bytes of data. The byte count byte  
is required to be a minimum of one byte and a maximum of 32  
bytes It may not be 0. Figure 1 shows an example of a block  
write.  
Data Protocol  
The clock driver serial protocol accepts only block writes from  
the controller. The bytes must be accessed in sequential order  
from lowest to highest byte, (most significant bit first) with the  
A transfer is considered valid after the acknowledge bit corre-  
sponding to the byte count is read by the controller.  
Start Slave Address R/W  
bit 1 1 0 1 0 0 1 0 0/1  
A
1
Command  
Code  
A ByteCount= A Data Byte 0  
N
A
1
. . .  
Data Byte N-1 A Stop  
bit  
0 0 0 0 0 0 0 0  
1 bit  
7 bits  
1
8 bits  
1
8 bits  
1
8 bits  
8 bits  
1
1 bit  
From Master to Slave  
From Slave to Master  
Figure 1. An Example of a Block Write  
Data Byte Configuration Map  
Data Byte 0: Control Register (0 = Enable, 1 = Disable)  
Power On  
Default  
Bit  
Affected Pin#  
Name  
Description  
Type  
Bit 7  
5, 6, 7, 10, 11, PCI [0:6]  
Spread Spectrum Enable  
R/W  
0
12, 13, 16, 17, CPU[2:0]  
0 = Spread Off, 1 = Spread On  
18, 33, 35  
3V66[1:0]  
TBD  
Bit 6  
Bit 5  
TBD  
R
R/W  
0
0
35  
3V66_1/VCH  
VCH Select 66 MHz/48 MHz  
0 = 66 MHz, 1 = 48 MHz  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
44, 45, 48, 49, CPU [2:0]  
51, 52 CPU# [2:0]  
CPU_STOP#  
R
N/A  
N/A  
N/A  
N/A  
N/A  
Reflects the current value of the external CPU_STOP# pin  
10, 11, 12, 13, PCI [6:0]  
PCI_STOP#  
R/W  
R
16, 17, 18  
(Does not affect PCI_F [2:0] pins)  
S2  
Reflects the value of the S2 pin sampled on Power-up  
S1  
R
Reflects the value of the S1 pin sampled on Power-up  
S0  
R
Reflects the value of the S1 pin sampled on Power-up  
Document #: 38-07248 Rev. *C  
Page 4 of 18  
W320-03  
Data Byte 1  
Power On  
Bit  
Bit 7  
Bit 6  
Pin#  
Name  
Description  
Type  
R
R
R/W  
Default  
N/A  
N/A  
CPU Mult0 Value  
TBD  
N/A  
0
0
Bit 5  
44, 45 CPU2  
Allow Control of CPU2 with assertion of CPU_STOP#  
CPU2#  
0 = Not free running; 1 = Free running  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
48, 49 CPU1  
CPU1#  
Allow Control of CPU1 with assertion of CPU_STOP#  
0 = Not free running;1 = Free running  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
1
1
1
51, 52 CPU0  
Allow Control of CPU0 with assertion of CPU_STOP#  
CPU0#  
0= Not free running; 1 = Free running  
44, 45 CPU2  
CPU2#  
CPU2 Output Enable  
1 = Enabled; 0 = Disabled  
48, 49 CPU1  
CPU1Output Enable  
CPU1#  
1 = Enabled; 0= Disabled  
51, 52 CPU0  
CPU0#  
CPU0 Output Enable  
1 = Enabled; 0 = Disabled  
Data Byte 2  
Power On  
Default  
0
Bit  
Bit 7  
Pin#  
Name  
Pin Description  
Type  
R
N/A  
N/A  
Bit 6  
18  
PCI6  
PCI6 Output Enable  
R/W  
1
1 = Enabled; 0 = Disabled  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
17  
16  
13  
12  
11  
10  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
PCI5 Output Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
1 = Enabled; 0 = Disabled  
PCI4 Output Enable  
1 = Enabled; 0 = Disabled  
PCI3 Output Enable  
1 = Enabled; 0 = Disabled  
PCI2 Output Enable  
1 = Enabled; 0 = Disabled  
PCI1 Output Enable  
1 = Enabled; 0 = Disabled  
PCI0 Output Enable  
1 = Enabled; 0 = Disabled  
Data Byte 3  
Power On  
Default  
1
Bit  
Bit 7  
Pin#  
38  
Name  
Pin Description  
DOT 48-MHz Output Enable  
Type  
R/W  
DOT  
Bit 6  
Bit 5  
39  
7
USB  
PCI_F2  
USB 48-MHz Output Enable  
R/W  
R/W  
1
0
Allow control of PCI_F2 with assertion of PCI_STOP#  
0 = Free running; 1 = Stopped with PCI_STOP#  
Bit 4  
Bit 3  
6
5
PCI_F1  
PCI_F0  
Allow control of PCI_F1 with assertion of PCI_STOP#  
0 = Free running; 1 = Stopped with PCI_STOP#  
R/W  
R/W  
0
0
Allow control of PCI_F0 with assertion of PCI_STOP#  
0 = Free running; 1 = Stopped with PCI_STOP#  
Bit 2  
Bit 1  
Bit 0  
7
6
5
PCI_F2  
PCI_F1  
PCI_F0  
PCI_F2 Output Enable  
PCI_F1Output Enable  
PCI_F0 Output Enable  
R/W  
R/W  
R/W  
1
1
1
Document #: 38-07248 Rev. *C  
Page 5 of 18  
W320-03  
Data Byte 4  
Power On  
Bit  
Bit 7  
Bit 6  
Pin#  
--  
--  
Name  
Pin Description  
Type  
R
R
R/W  
Default  
TBD  
TBD  
3V66_0  
N/A  
N/A  
0
0
1
Bit 5  
33  
3V66_0 Output Enable  
1 = Enabled; 0 = Disabled  
Bit 4  
Bit 3  
35  
24  
3V66_1/VCH  
66IN/3V66_5  
3V66_1/VCH Output Enable  
R/W  
R/W  
1
1
1 = Enabled; 0 = Disabled  
3V66_5 Output Enable  
1 = Enable; 0 = Disable  
NOTE: THIS BIT SHOULD BE USED WHEN PIN 24 IS  
CONFIGURED AS 3V66_5 OUTPUT. DO NOT CLEAR  
THIS BIT WHEN PIN 24 IS CONFIGURED AS 66IN INPUT.  
Bit 2  
Bit 1  
Bit 0  
23  
22  
21  
66BUFF2  
66BUFF1  
66BUFF0  
66-MHz Buffered 2 Output Enable  
R/W  
R/W  
R/W  
1
1
1
1 = Enabled; 0 = Disabled  
66-MHz Buffered 1 Output Enable  
1 = Enabled; 0 = Disabled  
66-MHz Buffered 0 Output Enable  
1 = Enabled; 0 = Disabled  
Data Byte 5  
Power On  
Default  
0
Bit  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Pin#  
Name  
Pin Description  
Type  
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
N/A  
N/A  
N/A  
N/A  
0
0
0
0
0
0
0
66BUFF [2:0]  
66BUFF [2:0]  
DOT  
Tpd 66IN to 66BUFF propagation delay control  
DOT edge rate control  
USB edge rate control  
DOT  
USB  
USB  
Byte 6: Vendor ID  
Power On  
Default  
Bit  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Description  
Type  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
Vendor ID Bit 2  
Vendor ID Bit 1  
Vendor ID Bit 0  
R
R
R
R
R
R
R
R
0
0
0
1
0
1
0
0
Document #: 38-07248 Rev. *C  
Page 6 of 18  
W320-03  
Storage Temperature  
Maximum Ratings  
(Non-condensing)....................................... –65°C to +150°C  
Max. Soldering Temperature (10 sec) ...................... +260°C  
Junction Temperature............................................... +150°C  
Package Power Dissipation...............................................1Ω  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Supply Voltage..................................................–0.5 to +7.0V  
Input Voltage..............................................0.5V to VDD+0.5  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015) ........................... > 2000V  
Operating Conditions Over which Electrical Parameters are Guaranteed[9]  
Parameter  
Description  
Min.  
Max.  
Unit  
V
DD_REF, VDD_PCI,VDD_CORE  
,
3.3V Supply Voltages  
3.135  
3.465  
V
V
DD_3V66, VDD_CPU,  
VDD_48 MHz  
TA  
Cin  
CXTAL  
CL  
48-MHz Supply Voltage  
Operating Temperature, Ambient  
Input Pin Capacitance  
2.85  
0
3.465  
70  
5
V
°C  
pF  
pF  
pF  
XTAL Pin Capacitance  
22.5  
Max. Capacitive Load on  
USBCLK, REF  
20  
30  
PCICLK, 3V66  
f(REF)  
Reference Frequency, Oscillator Nominal Value  
14.318  
14.318  
MHz  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min. Max. Unit  
VIH  
High-level Input Voltage  
Except Crystal Pads. Threshold voltage for crystal pads = VDD/2  
2.0  
V
VIL  
Low-level Input Voltage  
Except Crystal Pads  
0.8  
V
VOH  
High-level Output Voltage USB, REF, 3V66  
IOH = –1 mA  
OH = –1 mA  
IOL = 1 mA  
OL = 1 mA  
2.4  
2.4  
V
V
V
V
mA  
mA  
mA  
PCI  
Low-level Output Voltage USB, REF, 3V66  
PCI  
I
VOL  
0.4  
0.55  
5
I
IIH  
IIL  
IOH  
Input High Current  
Input Low Current  
0 < VIN < VDD  
0 < VIN < VDD  
–5  
–5  
5
High-level Output Current CPU  
Type X1, VOH = 0.65V 12.9  
Type X1, VOH = 0.74V  
For IOH =6*IRef Configuration  
14.9  
–23  
–33  
27  
REF, DOT, USB  
3V66, DOT, PCI  
Type 3, VOH = 1.00V  
Type 3, VOH = 3.135V  
Type 5, VOH = 1.00V  
Type 5, VOH = 3.135V  
Type 3, VOL = 1.95V  
Type 3, VOL = 0.4V  
Type 5, VOL =1.95 V  
Type 5, VOL = 0.4V  
–29  
–33  
29  
IOL  
Low-level Output Current REF, DOT, USB  
3V66, PCI  
mA  
mA  
30  
38  
10  
IOZ  
IDD3  
IDDPD3  
Output Leakage Current  
3.3V Power Supply Current VDD_CORE/VDD3.3 = 3.465V, FCPU = 133 MHz  
3.3V Shutdown Current VDD_CORE/VDD3.3 = 3.465V  
Three-state  
360 mA  
20 mA  
Note:  
9. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
Document #: 38-07248 Rev. *C  
Page 7 of 18  
W320-03  
Switching Characteristics[10] Over the Operating Range  
Parameter  
t1  
Output  
Description  
Test Conditions  
Measured at 1.5V  
Min.  
45  
Max.  
55  
Unit  
%
All  
Output Duty Cycle[11]  
t3  
t3  
t5  
t5  
t6  
t7  
t9  
t9  
t9  
t9  
USB, REF, DOT Falling Edge Rate  
Between 2.4V and 0.4V  
Between 2.4V and 0.4V  
Measured at 1.5V  
Measured at 1.5V  
Measured at 1.5V  
3V66 leads. Measured at 1.5V  
Measured at 1.5V t9 = t9A – t9B  
Measured at 1.5V t9 = t9A – t9B  
Measured at 1.5V t9 = t9A – t9B  
Measured at 1.5V t9 = t9A – t9B  
0.5  
1.0  
2.0  
4.0  
ps  
V/ns  
ps  
ps  
ps  
ns  
ps  
ps  
ps  
PCI,3V66  
3V66[0:1]  
66BUFF[0:2]  
PCI  
Falling Edge Rate  
3V66-3V66 Skew  
66BUFF-66BUFF Skew  
PCI-PCI Skew  
500  
175  
500  
3.5  
250  
350  
500  
1000  
3V66,PCI  
3V66  
USB, DOT  
PCI  
3V66-PCI Clock Jitter  
Cycle-Cycle Clock Jitter  
Cycle-Cycle Clock Jitter  
Cycle-Cycle Clock Jitter  
Cycle-Cycle Clock Jitter  
1.5  
REF  
ps  
CPU 1.0V Switching Characteristics  
t2  
CPU  
RiseTime  
Measured differential waveform from  
–0.35V to +0.35V  
175  
175  
467  
467  
ps  
ps  
t3  
CPU  
Fall Time  
Measured differential waveform from  
–0.35V to +0.35V  
t4  
t8  
CPU  
CPU  
CPU  
CPU  
CPU-CPU Skew  
Cycle-Cycle Clock Jitter  
Rise/Fall Matching  
Measured at Crossover  
150  
150  
325  
1.45  
ps  
ps  
mV  
V
Measured at Crossover t8 = t8A – t8B  
Measured with test loads[12]  
Measured with test loads[12]  
Voh  
High-level Output Voltage  
0.92  
–0.2  
0.51  
including overshoot  
Vol  
CPU  
CPU  
Low-level Output Voltage  
including undershoot  
Crossover Voltage  
Measured with test loads[12]  
Measured with test loads[12]  
0.35  
0.76  
V
V
Vcrossover  
CPU 0.7V Switching Characteristics  
t2  
CPU  
RiseTime  
Measured single ended waveform from 175  
0.175V to 0.525V  
700  
700  
ps  
ps  
t3  
CPU  
Fall Time  
Measured single ended waveform from 175  
0.175V to 0.525V  
t4  
t8  
CPU  
CPU  
CPU-CPU Skew  
Cycle-Cycle Clock Jitter  
Measured at Crossover  
150  
150  
ps  
ps  
Measured at Crossover t8 = t8A – t8B  
With all outputs running  
CPU  
CPU  
Rise/Fall Matching  
Measured with test loads[13, 14]  
Measured with test loads[14]  
20  
0.85  
%
V
Voh  
Vol  
High-level Output Voltage  
including overshoot  
CPU  
CPU  
Low-level Output Voltage  
including undershoot  
Crossover Voltage  
Measured with test loads[14]  
Measured with test loads[14]  
–0.15  
0.28  
V
V
Vcrossover  
0.43  
Notes:  
10. All parameters specified with loaded outputs.  
11. Duty cycle is measured at 1.5V when V = 3.3V. When V = 2.5V, duty cycle is measured at 1.25V.  
DD  
DD  
12. The 1.0V test load is shown on test circuit page.  
13. Determined as a fraction of 2*(Trp – Trn)/(Trp +Trn) Where Trp is a rising edge and Trp is an intersecting falling edge.  
14. The 0.7V test load is R = 33.2, R = 49.9in test circuit.  
s
p
Document #: 38-07248 Rev. *C  
Page 8 of 18  
W320-03  
Definition and Application of PWRGD# Signal  
Vtt  
VRM8.5  
CPU  
PWRGD#  
BSEL0  
BSEL1  
3.3V  
3.3V  
3.3V  
NPN  
PWRGD#  
CLOCK  
S0  
10K  
10K  
10K  
10K  
GMCH  
GENERATOR  
S1  
Document #: 38-07248 Rev. *C  
Page 9 of 18  
W320-03  
Switching Waveforms  
Duty Cycle Timing  
(Single Ended Output)  
t1B  
t1A  
Duty Cycle Timing (CPU Differential Output)  
t1B  
t1A  
All Outputs Rise/Fall Time  
VDD  
0V  
OUTPUT  
t2  
t3  
CPU-CPU Clock Skew  
Host_b  
Host  
Host_b  
Host  
t4  
3V66-3V66 Clock Skew  
3V66  
3V66  
t5  
PCI-PCI Clock Skew  
PCI  
PCI  
t6  
Document #: 38-07248 Rev. *C  
Page 10 of 18  
W320-03  
Switching Waveforms (continued)  
3V66-PCI Clock Skew  
3V66  
PCI  
t7  
CPU Clock Cycle-Cycle Jitter  
t8A  
t8B  
Host_b  
Host  
Cycle-Cycle Clock Jitter  
t9A  
t9B  
CLK  
PWRDWN# Assertion[15]  
66BUFF  
PCI  
Power Down Rest of Generator  
PCI_F (APIC)  
PWR_DWN#  
CPU  
CPU#  
3V66  
UNDEF  
66IN  
USB  
REF  
Note:  
15. PCI_STOP# asserted LOW.  
Document #: 38-07248 Rev. *C  
Page 11 of 18  
W320-03  
PWRDWN# Deassertion[15]  
10-30 µs min.  
100-200 µs max.  
<3ms  
66BUFF1/GMCH  
66BUFF0,2  
PCI  
PCI_F (APIC)  
PWR_DWN#  
CPU  
CPU#  
3V66  
66IN  
USB  
REF  
PWRGD# Timing Diagrams  
GND VRM 5/12V  
PWRGD#  
VID [3:0]  
BSEL [1:0]  
PWRGD# FROM  
VRM  
Possible glitch while Clock VCC is coming  
up. Will be gone in 0.2–0.3 ms delay.  
PWRGD# FROM  
NPN  
VCC CPU CORE  
PWRGD#  
Wait for  
0.2 – 0.3 ms  
delay  
Sample  
BSELS  
PWRGD#  
VCC W320 CLOCK  
GEN  
State 1 State 2  
State 3  
State 0  
CLOCK STATE  
OFF  
ON  
CLOCK VCO  
OFF  
ON  
CLOCK OUTPUTS  
Figure 2. CPU Power BEFORE Clock Power  
Document #: 38-07248 Rev. *C  
Page 12 of 18  
W320-03  
GND VRM 5/12V  
PWRGD#  
VID [3:0]  
BSEL [1:0]  
PWRGD# FROM  
VRM  
PWRGD# FROM  
VCC CPU CORE  
PWRGD#  
Sample  
BSELS  
0.2 – 0.3 ms  
delay  
Wait for  
PWRGD#  
VCC W320 CLOCK  
GEN  
State 1  
State 2  
State 3  
State 0  
OFF  
CLOCK STATE  
ON  
ON  
CLOCK VCO  
OFF  
CLOCK OUTPUTS  
Figure 3. CPU Power AFTER Clock Power  
Document #: 38-07248 Rev. *C  
Page 13 of 18  
W320-03  
Layout Example  
+3.3V Supply  
FB  
VDDQ3  
10 µF  
0.005 µF  
C1  
G
G
G
G
V
1
56  
55  
54  
53  
G
2
3
4
G
5
52  
G
V
6
51  
50  
49  
48  
47  
46  
45  
G
G
G
G
7
G
G
V
8
9
G
V
10  
11  
12  
G
13  
14  
15  
16  
17  
18  
19  
20  
44  
43  
42  
41  
40  
39  
38  
37  
G
V
G
G
G
G
G
G
VDDQ3  
8Ω  
V
G
21  
22  
23  
24  
25  
26  
27  
28  
36  
35  
34  
33  
32  
31  
30  
29  
C5  
C6  
G
G
G
G
V
G
G
G
V
G
G
FB = Dale ILB1206 - 300 or 2TDKACB2012L-120 or 2 Murata BLM21B601S  
C2 = 0.005 µF C6 = 10 µF  
µF  
C5 = 0.1 µF  
V =VIA to respective supply plane layer  
Note: Each supply plane or strip should have a ferrite bead and capacitors  
Ceramic Caps C1 = 10–22  
= VIA to GND plane layer  
G
Document #: 38-07248 Rev. *C  
Page 14 of 18  
W320-03  
Test Circuit[16, 17]  
VDD_REF, VDD_PCI,  
VDD_3V66, VDD_CORE  
VDD_48 MHz, VDD_CPU  
0.7V Test Load  
9, 15, 20, 27, 31, 36, 41, 47  
1, 8, 14, 26, 32, 37, 46, 50  
Rp  
Rs  
W320-03  
2 pF  
Ref,USB Outputs  
PCI,3V66 Outputs  
CPU  
Test Node  
Test  
OUTPUTS  
20 pF  
Nodes  
2 pF  
Rs  
Test Node  
Rp  
30 pF  
VDD_REF, VDD_PCI,  
VDD_3V66, VDD_CORE  
VDD_48 MHz, VDD_CPU  
1.0V Test Load  
9, 15, 20, 27, 31, 36, 41, 47  
1, 8, 14, 26, 32, 37, 46, 50  
33  
2 pF  
475  
33  
W320-03  
Test  
Ref,USB Outputs  
CPU  
Test Node  
Nodes  
OUTPUTS  
20 pF  
2 pF  
63.4  
63.4  
PCI,3V66 Outputs  
Test Node  
1.0V Amplitude  
30 pF  
Ordering Information  
Ordering Code  
Package Type  
Operating Range  
W320-03H  
W320-03HT  
W320-03X  
W320-03XT  
56-pin SSOP  
56-pin SSOP - Tape and Reel  
56-pin TSSOP  
Commercial  
Commercial  
Commercial  
Commercial  
56-pin TSSOP - Tape and Reel  
Lead-free  
CYW320OXC-3  
CYW320OXC-3T  
56-pin SSOP  
56-pin SSOP - Tape and Reel  
Commercial  
Commercial  
Notes:  
16. Each supply pin must have an individual decoupling capacitor.  
17. All capacitors must be placed as close to the pins as is physically possible. 0.7V amplitude: R = 33R = 50.  
S
P
Document #: 38-07248 Rev. *C  
Page 15 of 18  
W320-03  
Package Diagrams  
56-lead Shrunk Small Outline Package O56  
51-85062-*C  
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56  
0.249[0.009]  
28  
1
DIMENSIONS IN MM[INCHES] MIN.  
MAX.  
7.950[0.313]  
8.255[0.325]  
REFERENCE JEDEC MO-153  
PACKAGE WEIGHT 0.42gms  
5.994[0.236]  
6.198[0.244]  
PART #  
Z5624 STANDARD PKG.  
ZZ5624 LEAD FREE PKG.  
29  
56  
13.894[0.547]  
14.097[0.555]  
1.100[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.508[0.020]  
0.762[0.030]  
0.051[0.002]  
0.152[0.006]  
0.851[0.033]  
0.950[0.037]  
0.500[0.020]  
BSC  
0°-8°  
0.100[0.003]  
0.200[0.008]  
0.170[0.006]  
0.279[0.011]  
SEATING  
PLANE  
51-85060-*C  
Document #: 38-07248 Rev. *C  
Page 16 of 18  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
W320-03  
Intel and Pentium are registered trademarks of Intel Corporation. Direct Rambus is a trademark of Rambus, Inc. All product and  
company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-07248 Rev. *C  
Page 17 of 18  
W320-03  
Document History Page  
Document Title: W320-03 200-MHz Spread Spectrum Clock Synthesizer/Driver with Differential CPU  
Document Number: 38-07248  
Orig. of  
REV.  
**  
*A  
*B  
*C  
ECN NO. Issue Date Change  
Description of Change  
Change from Spec number: 38-01022 to 38-07248  
Power up requirements added to Operating Conditions Information  
Removed “Preliminary”  
Added Lead-free for SSOP device only  
110513  
122854  
125505  
384982  
01/17/02  
12/14/02  
03/19/03  
See ECN  
SZV  
RBI  
RGL  
RGL  
Document #: 38-07248 Rev. *C  
Page 18 of 18  
厂商 型号 描述 页数 下载

CYPRESS

CYW134MOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134MOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

SPECTRALINEAR

CYW137OXC FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SPECTRALINEAR

CYW137OXCT FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SILICON

CYW150 [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXC [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXCT [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

CYPRESS

CYW15G0101DXB 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.193980s