找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYV15G0404RB-BGC

型号:

CYV15G0404RB-BGC

描述:

独立时钟四路的HOTLink时钟恢复器和解串器[ Independent Clock Quad HOTLink Reclocking Deserializer ]

品牌:

CYPRESS[ CYPRESS ]

页数:

26 页

PDF大小:

580 K

PRELIMINARY  
CYV15G0404RB  
Independent Clock Quad HOTLink II™ Reclocking  
Deserializer  
channels are independent and can simultaneously operate at  
different rates. Each receive channel accepts serial data and  
Features  
• Quad channel video reclocking deserializer  
— 195- to 1500-Mbps serial data signaling rate  
— Simultaneous operation at different signaling rates  
• Second-generation HOTLink® technology  
converts it to 10-bit parallel characters and presents these  
characters to an Output Register. The received serial data can  
also be reclocked and retransmitted through the reclocker  
serial outputs. Figure 1 illustrates typical connections between  
independent video co-processors and corresponding  
• Compliant to SMPTE 292M and SMPTE 259M video  
CYV15G0404RB  
Reclocking  
Deserializer  
and  
standards  
CYV15G0403TB Serializer chips.  
• Supports reception of either 1.485 or 1.485/1.001 Gbps  
data rate with the same training clock  
The CYV15G0404RB satisfies the SMPTE-259M and  
SMPTE-292M compliance as per SMPTE EG34-1999 Patho-  
logical Test Requirements.  
• Supports half-rate and full-rate clocking  
• Internal phase-locked loops (PLLs) with no external  
As  
a
second-generation  
HOTLink  
device,  
the  
PLL components  
CYV15G0404RB extends the HOTLink family with enhanced  
levels of integration and faster data rates, while maintaining  
serial-link compatibility (data and BIST) with other HOTLink  
devices.  
• Selectable differential PECL-compatible serial inputs  
— Internal DC-restoration  
• Synchronous LVTTL parallel interface  
• JTAG boundary scan  
Each channel of the CYV15G0404RB Quad HOTLink II device  
accepts a serial bit-stream from one of two selectable PECL-  
compatible differential line receivers, and using a completely  
integrated Clock and Data Recovery PLL, recovers the timing  
information necessary for data reconstruction. The recovered  
bit-stream is reclocked and retransmitted through the  
reclocker serial outputs. Also, the recovered serial data is  
deserialized and presented to the destination host system.  
Each channel contains an independent BIST pattern checker.  
This BIST hardware allows at-speed testing of the high-speed  
serial data paths in each receive section of this device, each  
transmit section of a connected HOTLink II device, and across  
the interconnecting links.  
• Built-In Self-Test (BIST) for at-speed link testing  
• Link Quality Indicator  
Analog signal detect  
Digital signal detect  
• Low-power 3W @ 3.3V typical  
• Single 3.3V supply  
• Thermally enhanced BGA  
• 0.25µ BiCMOS technology  
Functional Description  
The CYV15G0404RB Independent Clock Quad HOTLink II™  
Deserializing Reclocker is a point-to-point or point-to-multi-  
point communications building block enabling transfer of data  
over a variety of high-speed serial links including SMPTE 292  
and SMPTE 259 video applications. It supports signaling rates  
in the range of 195 to 1500 Mbps per serial link. The four  
The CYV15G0404RB is ideal for SMPTE applications where  
different data rates and serial interface standards are  
necessary for each channel. Some applications include multi-  
format routers, switchers, format converters, SDI monitors,  
and camera control units.  
Reclocked  
Outputs  
10  
10  
10  
Independent  
Channel  
10  
10  
Independent  
Channel  
CYV15G0404RB  
Reclocking Deserializer  
CYV15G0403TB  
Serializer  
Serial Links  
10  
10  
10  
Reclocked  
Outputs  
Figure 1. HOTLink II™ System Connections  
3901 North First Street San Jose, CA 95134  
Cypress Semiconductor Corporation  
408-943-2600  
Document #: 38-02102 Rev. **  
Revised July 21, 2004  
CYV15G0404RB  
PRELIMINARY  
CYV15G0404RB Deserializing Reclocker Logic Block Diagram  
x10  
x10  
x10  
x10  
Deserializer  
Deserializer  
Deserializer  
Deserializer  
RX  
RX  
RX  
RX  
Reclocker  
Reclocker  
Reclocker  
Reclocker  
Document #: 38-02102 Rev. **  
Page 2 of 26  
CYV15G0404RB  
PRELIMINARY  
=
Internal Signal  
Reclocking Deserializer Path Block Diagram  
RESET  
TRST  
TRGRATEA  
JTAG  
Boundary  
Scan  
TMS  
TCLK  
TDI  
x2  
TRGCLKA  
Controller  
SDASEL[2..1]A[1:0]  
TDO  
LDTDEN  
INSELA  
LFIA  
Receive  
Signal  
Monitor  
10  
RXDA[9:0]  
BISTSTA  
10  
10  
INA1+  
INA1–  
INA2+  
INA2–  
Clock &  
Data  
Recovery  
PLL  
RXCLKA+  
RXCLKA–  
÷2  
ULCA  
SPDSELA  
RXBISTA[1:0]  
RXRATEA  
RXPLLPDA  
Recovered Serial Data  
Recovered Character Clock  
ROE[2..1]A  
Reclocker  
ROUTA1+  
ROUTA1–  
ROE[2..1]A  
Output PLL  
Clock Multiplier A  
ROUTA2+  
ROUTA2–  
RECLKOA  
REPDOA  
Character-Rate Clock A  
TRGRATEB  
x2  
TRGCLKB  
LDTDEN  
SDASEL[2..1]B[1:0]  
LFIB  
Receive  
Signal  
INSELB  
Monitor  
10  
RXDB[9:0]  
BISTSTB  
10  
10  
INB1+  
INB1–  
INB2+  
INB2–  
Clock &  
Data  
Recovery  
PLL  
RXCLKB+  
RXCLKB–  
÷2  
ULCB  
SPDSELB  
RXBISTB[1:0]  
RXRATEB  
RXPLLPDB  
Recovered Serial Data  
Recovered Character Clock  
ROE[2..1]B  
Reclocker  
ROUTB1+  
ROUTB1–  
ROE[2..1]B  
Output PLL  
Clock Multiplier B  
ROUTB2+  
ROUTB2–  
RECLKOB  
REPDOB  
Character-Rate Clock B  
Document #: 38-02102 Rev. **  
Page 3 of 26  
CYV15G0404RB  
PRELIMINARY  
Reclocking Deserializer Path Block Diagram (Continued)  
=
Internal Signal  
TRGRATEC  
x2  
TRGCLKC  
SDASEL[2..1]C[1:0]  
LDTDEN  
INSELC  
LFIC  
Receive  
Signal  
Monitor  
10  
RXDC[9:0]  
BISTSTC  
10  
10  
INC1+  
INC1–  
INC2+  
INC2–  
Clock &  
Data  
Recovery  
PLL  
RXCLKC+  
RXCLKC–  
÷2  
ULCC  
SPDSELC  
RXBISTC[1:0]  
RXRATEC  
RXPLLPDC  
Recovered Serial Data  
Recovered Character Clock  
ROE[2..1]C  
Reclocker  
ROUTC1+  
ROUTC1–  
ROE[2..1]C  
Output PLL  
Clock Multiplier C  
ROUTC2+  
ROUTC2–  
RECLKOC  
REPDOC  
Character-Rate Clock C  
TRGRATED  
x2  
TRGCLKD  
SDASEL[2..1]D[1:0]  
LDTDEN  
INSELD  
LFID  
Receive  
Signal  
Monitor  
10  
RXDD[9:0]  
BISTSTD  
10  
10  
IND1+  
IND1–  
IND2+  
IND2–  
Clock &  
Data  
Recovery  
PLL  
RXCLKD+  
RXCLKD–  
÷2  
ULCD  
SPDSELD  
RXBISTD[1:0]  
RXRATED  
RXPLLPDD  
Recovered Serial Data  
Recovered Character Clock  
ROE[2..1]D  
Reclocker  
ROUTD1+  
ROUTD1–  
ROE[2..1]D  
Output PLL  
Clock Multiplier D  
ROUTD2+  
ROUTD2–  
RECLKOD  
REPDOD  
Character-Rate Clock D  
Document #: 38-02102 Rev. **  
Page 4 of 26  
CYV15G0404RB  
PRELIMINARY  
Device Configuration and Control Block Diagram  
= Internal Signal  
RXBIST[A..D]  
RXRATE[A..D]  
SDASEL[A..D][1:0]  
RXPLLPD[A..D]  
ROE[2..1][A..D]  
GLEN[11..0]  
FGLEN[2..0]  
WREN  
ADDR[3:0]  
DATA[7:0]  
Device Configuration  
and Control Interface  
Document #: 38-02102 Rev. **  
Page 5 of 26  
CYV15G0404RB  
PRELIMINARY  
Pin Configuration (Top View)[1]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
E
F
IN  
ROUT  
C1–  
IN  
ROUT  
C2–  
IN  
ROUT  
D1–  
IN  
ROUT  
D2–  
IN  
ROUT  
A1–  
IN  
ROUT  
A2–  
IN  
ROUT  
B1–  
IN  
ROUT  
B2–  
V
GND  
GND  
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
C1–  
C2–  
D1–  
D2–  
A1–  
A2–  
B1–  
B2–  
IN  
ROUT  
C1+  
IN  
ROUT  
C2+  
IN  
ROUT  
D1+  
IN  
ROUT  
D2+  
IN  
ROUT  
A1+  
IN  
ROUT  
A2+  
IN  
ROUT  
B1+  
IN  
ROUT  
B2+  
V
V
V
GND  
GND  
GND  
GND  
GND  
V
V
V
C1+  
C2+  
D1+  
D2+  
A1+  
A2+  
B1+  
B2+  
TDI  
TMS INSELC INSELB  
ULCD ULCC  
DATA  
[7]  
DATA  
[5]  
DATA  
[3]  
DATA  
[1]  
SPD  
LDTD TRST  
EN  
TDO  
V
GND  
CC  
SELD  
TCLK RESET INSELD INSELA  
ULCA  
SPD  
DATA  
[6]  
DATA  
[4]  
DATA  
[2]  
DATA  
[0]  
ULCB  
SCAN TMEN3  
EN2  
GND GND  
NC  
V
CC  
CC  
SELC  
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
RX  
RX  
RX  
RE  
RX  
V
CC  
DC[8] DC[9]  
DB[0] CLKOB DB[1]  
G
H
J
WREN  
GND  
SPD  
SPD  
RX  
GND GND  
NC  
SELB  
SELA DB[3]  
GND GND GND GND  
GND GND GND GND  
GND GND GND GND  
BIST  
STB  
RX  
RX  
RX  
DB[2]  
DB[7]  
DB[4]  
K
L
RX  
TRG  
RX  
RX  
RX  
LFIB  
GND GND  
DC[4] CLKC–  
DB[5]  
DB[6]  
DB[9]  
RX  
TRG  
LFIC  
RX  
RX  
RX  
GND  
GND  
GND  
DC[5] CLKC+  
DB[8] CLKB+ CLKB–  
M
N
P
R
T
RX  
RX  
RE  
TRG  
TRG  
RE  
V
CC  
DC[6] DC[7]  
PDOC  
CLKB+ CLKB– PDOB  
GND GND GND GND  
GND GND GND GND  
GND GND GND GND  
RX  
RX  
RX  
RX  
DC[3] DC[2] DC[1] DC[0]  
BIST  
RE  
RX  
RX  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
STC CLKOC CLKC+ CLKC–  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
U
V
W
Y
RX  
RX  
ADDR  
[0]  
TRG  
RX  
BIST  
STA  
RX  
V
V
V
V
GND GND  
GND GND GND  
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
DD[4] DD[3]  
CLKD–  
DA[4]  
DA[0]  
RX  
RX  
RX  
BIST ADDR  
STD [2]  
TRG  
RE  
RX  
RX  
RX  
RX  
GND  
GND  
GND  
GND GND  
DD[8]  
DD[5] DD[1]  
CLKD+ CLKOA  
DA[9]  
DA[5]  
DA[2]  
DA[1]  
LFID  
RX  
RX  
RX  
ADDR ADDR  
RX  
RE  
LFIA  
TRG  
RX  
RX  
GND GND  
GND GND  
CLKD–  
DD[6] DD[0]  
[3]  
[1]  
CLKA+ PDOA  
CLKA+ DA[6]  
DA[3]  
RX  
RX  
RX  
RX  
RE  
NC  
RX  
RE  
TRG  
RX  
RX  
GND  
DD[9] CLKD+  
DD[7] DD[2]  
CLKOD  
CLKA–  
PDOD CLKA– DA[8]  
DA[7]  
1. NC = Do not connect.  
Document #: 38-02102 Rev. **  
Page 6 of 26  
CYV15G0404RB  
PRELIMINARY  
Pin Configuration (Bottom View)[1]  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
ROUT  
B2–  
IN  
ROUT  
B1–  
IN  
ROUT  
A2–  
IN  
ROUT  
A1–  
IN  
ROUT  
D2–  
IN  
ROUT  
D1–  
IN  
ROUT  
C2–  
IN  
ROUT  
C1–  
IN  
V
GND  
GND  
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A
B
C
D
E
F
B2–  
B1–  
A2–  
A1–  
D2–  
D1–  
C2–  
C1–  
ROUT  
B2+  
IN  
ROUT  
B1+  
IN  
ROUT  
A2+  
IN  
ROUT  
A1+  
IN  
ROUT  
D2+  
IN  
ROUT  
D1+  
IN  
ROUT  
C2+  
IN  
ROUT  
C1+  
IN  
V
V
V
GND  
GND  
GND  
GND  
GND  
V
V
V
B2+  
B1+  
A2+  
A1+  
D2+  
D1+  
C2+  
C1+  
TDO  
TRST LDTD  
EN  
SPD  
DATA  
[1]  
DATA  
[3]  
DATA  
[5]  
DATA  
[7]  
ULCC ULCD  
INSELB INSELC TMS  
TDI  
GND  
V
CC  
SELD  
TMEN3 SCAN  
EN2  
ULCB  
DATA  
[0]  
DATA  
[2]  
DATA  
[4]  
DATA  
[6]  
SPD  
ULCA  
INSELA INSELD RESET TCLK  
V
V
NC  
GND GND  
CC  
CC  
SELC  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
RX  
RE  
RX  
RX  
RX  
V
CC  
CC  
DB[1] CLKOB DB[0]  
DC[9] DC[8]  
RX  
SPD  
SPD  
WREN  
GND  
NC  
GND GND  
G
H
J
DB[3] SELA  
SELB  
GND GND GND GND  
GND GND GND GND  
GND GND GND GND  
RX  
RX  
RX  
BIST  
STB  
DB[4]  
DB[7]  
DB[2]  
LFIB  
RX  
RX  
RX  
TRG  
RX  
GND GND  
K
L
DB[9]  
DB[6]  
DB[5]  
CLKC– DC[4]  
RX  
RX  
RX  
LFIC  
TRG  
RX  
GND  
GND  
GND  
CLKB– CLKB+ DB[8]  
CLKC+ DC[5]  
RE  
TRG  
TRG  
RE  
RX  
RX  
V
CC  
M
N
P
R
T
PDOB CLKB– CLKB+  
PDOC  
DC[7] DC[6]  
GND GND GND GND  
GND GND GND GND  
GND GND GND GND  
RX  
RX  
RX  
RX  
DC[0] DC[1] DC[2] DC[3]  
RX  
RX  
RE  
BIST  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CLKC– CLKC+ CLKOC STC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
RX  
BIST  
STA  
RX  
TRG  
ADDR  
[0]  
RX  
RX  
V
V
V
V
V
V
V
V
GND GND GND  
GND GND  
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
U
V
W
Y
DA[0]  
DA[4]  
CLKD–  
DD[3] DD[4]  
RX  
RX  
RX  
RX  
RE  
TRG  
ADDR BIST  
[2] STD  
RX  
RX  
RX  
GND GND  
GND  
GND  
GND  
DA[1]  
DA[2]  
DA[5]  
DA[9]  
CLKOA CLKD+  
DD[1] DD[5]  
DD[8]  
RX  
RX  
TRG  
LFIA  
RE  
RX  
ADDR ADDR  
RX  
RX  
RX  
LFID  
GND GND  
GND GND  
DA[3]  
DA[6] CLKA+  
PDOA CLKA+  
[1]  
[3]  
DD[0] DD[6]  
CLKD–  
RX  
RX  
TRG  
RE  
RX  
NC  
RE  
RX  
RX  
RX  
RX  
GND  
DA[7]  
DA[8] CLKA– PDOD  
CLKA–  
CLKOD  
DD[2] DD[7]  
CLKD+ DD[9]  
Document #: 38-02102 Rev. **  
Page 7 of 26  
CYV15G0404RB  
PRELIMINARY  
Pin Definitions  
CYV15G0404RB Quad HOTLink II Deserializing Reclocker  
Name  
I/O Characteristics  
Signal Description  
Receive Path Data and Status Signals  
RXDA[9:0]  
RXDB[9:0]  
RXDC[9:0]  
RXDD[9:0]  
LVTTL Output,  
Parallel Data Output. RXDx[9:0] parallel data outputs change relative to the  
receive interface clock. If RXCLKx± is a full-rate clock, the RXCLKx± clock  
outputs are complementary clocks operating at the character rate. The  
RXDx[9:0] outputs for the associated receive channels follow rising edge of  
RXCLKx+ or falling edge of RXCLKx–. If RXCLKx± is a half-rate clock, the  
RXCLKx± clock outputs are complementary clocks operating at half the  
character rate. The RXDx[9:0] outputs for the associated receive channels  
follow both the falling and rising edges of the associated RXCLKx± clock  
outputs.  
synchronous to the  
RXCLK± output  
When BIST is enabled on the receive channel, the BIST status is presented on  
the RXDx[1:0] and BISTSTx outputs. See Table 5 for each status reported by  
the BIST state machine. Also, while BIST is enabled, the RXDx[9:2] outputs  
should be ignored.  
BISTSTA  
BISTSTB  
BISTSTC  
BISTSTD  
LVTTL Output,  
BIST Status Output. When RXBISTx[1:0] = 10, BISTSTx (along with  
RXDx[1:0]) displays the status of the BIST reception. See Table 5 for the BIST  
status reported for each combination of BISTSTx and RXDx[1:0].  
synchronous to the  
RXCLKx ± output  
When RXBISTx[1:0] 10, BISTSTx should be ignored.  
REPDOA  
REPDOB  
REPDOC  
REPDOD  
Asynchronous to  
reclocker output  
channel  
Reclocker Powered Down Status Output. REPDOx is asserted HIGH, when  
the associated channel’s reclocker output logic is powered down. This occurs  
when ROE2x and ROE1x are both disabled by setting ROE2x = 0 and ROE1x  
= 0.  
enable / disable  
Receive Path Clock Signals  
TRGCLKA±  
TRGCLKB±  
TRGCLKC±  
TRGCLKD±  
DifferentialLVPECLor CDR PLL Training Clock. TRGCLKx± clock inputs are used as the reference  
single-ended  
source for the frequency detector (Range Controller) of the associated receive  
PLL to reduce PLL acquisition time.  
LVTTL input clock  
In the presence of valid serial data, the recovered clock output of the receive  
CDR PLL (RXCLKx±) has no frequency or phase relationship with TRGCLKx±.  
When driven by a single-ended LVCMOS or LVTTL clock source, connect the  
clock source to either the true or complement TRGCLKx input, and leave the  
alternate TRGCLKx input open (floating). When driven by an LVPECL clock  
source, the clock must be a differential clock, using both inputs.  
RXCLKA±  
RXCLKB±  
RXCLKC±  
RXCLKD±  
LVTTL Output Clock  
LVTTL Output  
Receive Clock Output. RXCLKx± is the receive interface clock used to control  
timing of the RXDx[9:0] parallel outputs. These true and complement clocks are  
used to control timing of data output transfers. These clocks are output contin-  
uously at either the half-character rate (1/20th the serial bit-rate) or character  
rate (1/10th the serial bit-rate) of the data being received, as selected by  
RXRATEx.  
Reclocker Clock Output. RECLKOx output clock is synthesized by the  
associated reclocker output PLL and operates synchronous to the internal  
recovered character clock. RECLKOx operates at either the same frequency as  
RXCLKx± (RXRATEx = 0), or at twice the frequency of RXCLKx± (RXRATEx =  
1).The reclocker clock outputs have no fixed phase relationship to RXCLKx±.  
RECLKOA  
RECLKOB  
RECLKOC  
RECLKOD  
Device Control Signals  
RESET  
LVTTL Input,  
Asynchronous Device Reset. RESET initializes all state machines, counters,  
and configuration latches in the device to a known state. RESET must be  
asserted LOW for a minimum pulse width. When the reset is removed, all state  
machines, counters and configuration latches are at an initial state. See Table 3  
for the initialize values of the device configuration latches.  
asynchronous,  
internal pull-up  
Document #: 38-02102 Rev. **  
Page 8 of 26  
CYV15G0404RB  
PRELIMINARY  
Pin Definitions (continued)  
CYV15G0404RB Quad HOTLink II Deserializing Reclocker  
Name  
I/O Characteristics  
Signal Description  
LDTDEN  
LVTTL Input,  
Level Detect Transition Density Enable. When LDTDEN is HIGH, the Signal  
Level Detector, Range Controller, and Transition Density Detector are all  
enabled to determine if the RXPLL tracks TRGCLKx± or the selected input serial  
data stream. If the Signal Level Detector, Range Controller, or Transition Density  
Detector are out of their respective limits while LDTDEN is HIGH, the RXPLL  
locks to TRGCLKx± until such a time they become valid. The SDASEL[A..D][1:0]  
inputs are used to configure the trip level of the Signal Level Detector. The  
Transition Density Detector limit is one transition in every 60 consecutive bits.  
When LDTDEN is LOW, only the Range Controller is used to determine if the  
RXPLL tracks TRGCLKx± or the selected input serial data stream. It is recom-  
mended to set LDTDEN = HIGH.  
internal pull-up  
ULCA  
ULCB  
ULCC  
ULCD  
LVTTL Input,  
Use Local Clock. When ULCx is LOW, the RXPLL is forced to lock to  
TRGCLKx± instead of the received serial data stream. While ULCx is LOW, the  
LFIx for the associated channel is LOW indicating a link fault.  
When ULCx is HIGH, the RXPLL performs Clock and Data Recovery functions  
on the input data streams. This function is used in applications in which a stable  
RXCLKx± is needed. In cases when there is an absence of valid data transitions  
for a long period of time, or the high-gain differential serial inputs (INx±) are left  
floating, there may be brief frequency excursions of the RXCLKx± outputs from  
TRGCLKx±.  
internal pull-up  
SPDSELA  
SPDSELB  
SPDSELC  
SPDSELD  
3-Level Select[2]  
Serial Rate Select. The SPDSELx inputs specify the operating signaling-rate  
static control input  
range of each channel’s receive PLL.  
LOW = 195 – 400 MBd  
MID = 400 – 800 MBd  
HIGH = 800 – 1500 MBd.  
INSELA  
INSELB  
INSELC  
INSELD  
LVTTL Input,  
asynchronous  
Receive Input Selector. The INSELx input determines which external serial bit  
stream is passed to the receiver’s Clock and Data Recovery circuit. When  
INSELx is HIGH, the Primary Differential Serial Data Input, INx1±, is selected  
for the associated receive channel. When INSELx is LOW, the Secondary Differ-  
ential Serial Data Input, INx2±, is selected for the associated receive channel.  
LFIA  
LFIB  
LFIC  
LFID  
LVTTL Output,  
asynchronous  
Link Fault Indication Output. LFIx is an output status indicator signal. LFIx is  
the logical OR of six internal conditions. LFIx is asserted LOW when any of the  
following conditions is true:  
• Received serial data rate outside expected range  
• Analog amplitude below expected levels  
• Transition density lower than expected  
• Receive channel disabled  
• ULCx is LOW  
• Absence of TRGCLKx±.  
Device Configuration and Control Bus Signals  
WREN  
LVTTL input,  
Control Write Enable. The WREN input writes the values of the DATA[7:0] bus  
asynchronous,  
internal pull-up  
into the latch specified by the address location on the ADDR[3:0] bus.[3]  
ADDR[3:0]  
LVTTL input  
Control Addressing Bus. The ADDR[3:0] bus is the input address bus used to  
configure the device. The WREN input writes the values of the DATA[7:0] bus  
into the latch specified by the address location on the ADDR[3:0] bus.[3] Table 3  
lists the configuration latches within the device, and the initialization value of the  
latches upon the assertion of RESET. Table 4 shows how the latches are  
mapped in the device.  
asynchronous,  
internal pull-up  
Notes:  
2. 3-Level Select inputs are used for static configuration. These are ternary inputs that make use of logic levels of LOW, MID, and HIGH. The LOW level is usually  
implemented by direct connection to V (ground). The HIGH level is usually implemented by direct connection to V (power). The MID level is usually  
SS  
CC  
implemented by not connecting the input (left floating), which allows it to self bias to the proper level.  
3. See Device Configuration and Control Interface for detailed information on the operation of the Configuration Interface.  
Document #: 38-02102 Rev. **  
Page 9 of 26  
CYV15G0404RB  
PRELIMINARY  
Pin Definitions (continued)  
CYV15G0404RB Quad HOTLink II Deserializing Reclocker  
Name  
I/O Characteristics  
Signal Description  
DATA[7:0]  
LVTTL input  
Control Data Bus. The DATA[7:0] bus is the input data bus used to configure  
the device. The WREN input writes the values of the DATA[7:0] bus into the latch  
specified by address location on the ADDR[3:0] bus.[3 ] Table 3 lists the config-  
uration latches within the device, and the initialization value of the latches upon  
the assertion of RESET. Table 4 shows how the latches are mapped in the  
device.  
asynchronous,  
internal pull-up  
Internal Device Configuration Latches  
RXRATE[A..D]  
Internal Latch[4]  
Receive Clock Rate Select.  
Signal Detect Amplitude Select.  
SDASEL[2..1][A..D] Internal Latch[4]  
[1:0]  
RXPLLPD[A..D]  
RXBIST[A..D][1:0]  
ROE2[A..D]  
ROE1[A..D]  
GLEN[11..0]  
Internal Latch[4]  
Internal Latch[4]  
Internal Latch[4]  
Internal Latch[4]  
Internal Latch[4]  
Internal Latch[4]  
Receive Channel Power Control.  
Receive Bist Disabled.  
Reclocker Differential Serial Output Driver 2 Enable.  
Reclocker Differential Serial Output Driver 1 Enable.  
Global Latch Enable.  
FGLEN[2..0]  
Force Global Latch Enable.  
Factory Test Modes  
SCANEN2  
LVTTL input,  
Factory Test 2. SCANEN2 input is for factory testing only. This input may be left  
internal pull-down  
as a NO CONNECT, or GND only.  
TMEN3  
LVTTL input,  
Factory Test 3. TMEN3 input is for factory testing only. This input may be left  
internal pull-down  
as a NO CONNECT, or GND only.  
Analog I/O  
ROUTA1±  
ROUTB1±  
ROUTC1±  
ROUTD1±  
CML Differential  
Output  
Primary Differential Serial Data Output. The ROUTx1± PECL-compatible  
CML outputs (+3.3V referenced) are capable of driving terminated transmission  
lines or standard fiber-optic transmitter modules, and must be AC-coupled for  
PECL-compatible connections.  
ROUTA2±  
ROUTB2±  
ROUTC2±  
ROUTD2±  
CML Differential  
Output  
Secondary Differential Serial Data Output. The ROUTx2± PECL-compatible CML  
outputs (+3.3V referenced) are capable of driving terminated transmission lines or  
standard fiber-optic transmitter modules, and must be AC-coupled for PECL-  
compatible connections.  
INA1±  
INB1±  
INC1±  
IND1±  
INA2±  
INB2±  
INC2±  
IND2±  
Differential Input  
Differential Input  
Primary Differential Serial Data Input. The INx1± input accepts the serial data  
stream for deserialization. The INx1± serial stream is passed to the receive CDR  
circuit to extract the data content when INSELx = HIGH.  
Secondary Differential Serial Data Input. The INx2± input accepts the serial  
data stream for deserialization. The INx2± serial stream is passed to the receiver  
CDR circuit to extract the data content when INSELx = LOW.  
JTAG Interface  
TMS  
LVTTL Input,  
Test Mode Select. Used to control access to the JTAG Test Modes. If  
maintained high for 5 TCLK cycles, the JTAG test controller is reset.  
internal pull-up  
TCLK  
TDO  
TDI  
LVTTL Input,  
JTAG Test Clock.  
internal pull-down  
3-State LVTTL Output Test Data Out. JTAG data output buffer. High-Z while JTAG test mode is not  
selected.  
Test Data In. JTAG data input port.  
LVTTL Input,  
internal pull-up  
TRST  
LVTTL Input,  
JTAG reset signal. When asserted (LOW), this input asynchronously resets the  
internal pull-up  
JTAG test access port controller.  
Note:  
4. See Device Configuration and Control Interface for detailed information on the internal latches.  
Document #: 38-02102 Rev. **  
Page 10 of 26  
CYV15G0404RB  
PRELIMINARY  
Pin Definitions (continued)  
CYV15G0404RB Quad HOTLink II Deserializing Reclocker  
Name  
Power  
VCC  
I/O Characteristics  
Signal Description  
+3.3V Power.  
GND  
Signal and Power Ground for all internal circuits.  
CYV15G0404RB HOTLink II Operation  
The CYV15G0404RB is a highly configurable, independent  
clocking, quad-channel reclocking deserializer designed to  
support reliable transfer of large quantities of digital video  
data, using high-speed serial links from multiple sources to  
multiple destinations. This device supports four 10-bit  
channels.  
operation with highly attenuated signals, or in high-noise  
environments. The analog amplitude level detection is set by  
the SDASELx latch via device configuration interface. The  
SDASELx latch sets the trip point for the detection of a valid  
signal at one of three levels, as listed in Table 1. This control  
input affects the analog monitors for all receive channels. The  
Analog Signal Detect monitors are active for the Line Receiver  
as selected by the associated INSELx input.  
CYV15G0404RB Receive Data Path  
Serial Line Receivers  
Table 1. Analog Amplitude Detect Valid Signal Levels[5]  
SDA-  
Two differential Line Receivers, INx1± and INx2±, are  
available on each channel for accepting serial data streams.  
The active Serial Line Receiver on a channel is selected using  
the associated INSELx input. The Serial Line Receiver inputs  
are differential, and can accommodate wire interconnect and  
filtering losses or transmission line attenuation greater than  
16 dB. For normal operation, these inputs should receive a  
signal of at least VIDIFF > 100 mV, or 200 mV peak-to-peak  
differential. Each Line Receiver can be DC- or AC-coupled to  
+3.3V powered fiber-optic interface modules (any ECL/PECL  
family, not limited to 100K PECL) or AC-coupled to +5V  
powered optical modules. The common-mode tolerance of  
these line receivers accommodates a wide range of signal  
termination voltages. Each receiver provides internal DC-  
restoration, to the center of the receiver’s common mode  
range, for AC-coupled signals.  
SEL  
00  
01  
Typical Signal with Peak Amplitudes Above  
Analog Signal Detector is disabled  
140 mV p-p differential  
10  
280 mV p-p differential  
11  
420 mV p-p differential  
Transition Density  
The Transition Detection logic checks for the absence of  
transitions spanning greater than six transmission characters  
(60 bits). If no transitions are present in the data received, the  
Detection logic for that channel asserts LFIx.  
Range Controls  
The CDR circuit includes logic to monitor the frequency of the  
PLL Voltage Controlled Oscillator (VCO) used to sample the  
incoming data stream. This logic ensures that the VCO  
operates at, or near the rate of the incoming data stream for  
two primary cases:  
Signal Detect/Link Fault  
Each selected Line Receiver (i.e., that routed to the clock and  
data recovery PLL) is simultaneously monitored for  
• analog amplitude above amplitude level selected by  
SDASELx  
• when the incoming data stream resumes after a time in  
which it has been “missing.”  
• transition density above the specified limit  
• when the incoming data stream is outside the acceptable  
signaling rate range.  
• range controls report the received data stream inside  
normal frequency range (±1500ppm[21]  
)
To perform this function, the frequency of the RXPLL VCO is  
periodically compared to the frequency of the  
TRGCLKx±input. If the VCO is running at a frequency beyond  
±1500ppm[21] as defined by the TRGCLKx± frequency, it is  
• receive channel enabled  
• Presence of reference clock  
• ULCx is not asserted.  
All of these conditions must be valid for the Signal Detect block  
to indicate a valid signal is present. This status is presented on  
the LFIx (Link Fault Indicator) output associated with each  
receive channel, which changes synchronous to the receive  
interface clock.  
periodically forced to the correct frequency (as defined by  
TRGCLKx±, SPDSELx, and TRGRATEx) and then released in  
an attempt to lock to the input data stream.  
The sampling and relock period of the Range Control is calcu-  
lated as follows: RANGE_CONTROL_ SAMPLING_PERIOD  
= (RECOVERED BYTE CLOCK PERIOD) * (4096).  
Analog Amplitude  
While most signal monitors are based on fixed constants, the  
analog amplitude level detection is adjustable to allow  
Note:  
5. The peak amplitudes listed in this table are for typical waveforms that have generally 3 – 4 transitions for every ten bits. In a worse case environment the signals  
may have a sine-wave appearance (highest transition density with repeating 0101...). Signal peak amplitudes levels within this environment type could increase  
the values in the table above by approximately 100 mV.  
Document #: 38-02102 Rev. **  
Page 11 of 26  
CYV15G0404RB  
PRELIMINARY  
During the time that the Range Control forces the RXPLL VCO  
to track TRGCLKx±, the LFIx output is asserted LOW. After a  
valid serial data stream is applied, it may take up to one  
RANGE CONTROL SAMPLING PERIOD before the PLL  
locks to the input data stream, after which LFIx should be  
HIGH.  
in brief RXCLK± frequency excursions from TRGCLKx±.  
However, the validity of the input data stream is indicated by  
the LFIx output. The frequency of TRGCLKx± is required to be  
within ±1500ppm[21] of the frequency of the clock that drives  
the reference clock input of the remote transmitter to ensure a  
lock to the incoming data stream. This large ppm tolerance  
allows the CDR PLL to reliably receive a 1.485 or 1.485/1.001  
Gbps SMPTE HD-SDI data stream with a constant TRGCLK  
frequency.  
For systems using multiple or redundant connections, the LFIx  
output can be used to select an alternate data stream. When  
an LFIx indication is detected, external logic can toggle  
selection of the associated INx1± and INx2± input through the  
associated INSELx input. When a port switch takes place, it is  
necessary for the receive PLL for that channel to reacquire the  
new serial stream.  
The operating serial signaling-rate and allowable range of  
TRGCLK± frequencies are listed in Table 2.  
Table 2. Operating Speed Settings  
TRGCLKx±  
Frequency  
(MHz)  
Signaling  
SPDSELx TRGRATEx  
Rate (Mbps)  
LOW  
MID (Open)  
HIGH  
1
0
1
0
1
0
reserved  
19.5 – 40  
20 – 40  
40 – 80  
40 – 75  
195 – 400  
400 – 800  
800 – 1500  
Reclocker  
Each receive channel performs a reclocker function on the  
incoming serial data. To do this, the Clock and Data Recovery  
PLL first recovers the clock from the data. The data is retimed  
by the recovered clock and then passed to an output register.  
Also, the recovered character clock from the receive PLL is  
passed to the reclocker output PLL which generates the bit  
clock that is used to clock the retimed data into the output  
register. This data stream is then transmitted through the  
differential serial outputs.  
80 – 150  
Receive Channel Enabled  
The CYV15G0404RB contains four receive channels that can  
be independently enabled and disabled. Each channel can be  
enabled or disabled separately through the RXPLLPDx input  
latch as controlled by the device configuration interface. When  
the RXPLLPDx latch = 0, the associated PLL and analog  
circuitry of the channel is disabled. Any disabled channel  
indicates a constant link fault condition on the LFIx output.  
When RXPLLPDx = 1, the associated PLL and receive  
channel is enabled to receive a serial stream.  
Note. When a disabled receive channel is reenabled, the  
status of the associated LFIx output and data on the parallel  
outputs for the associated channel may be indeterminate for  
up to 2 ms.  
Reclocker Serial Output Drivers  
The serial output interface drivers use differential Current  
Mode Logic (CML) drivers to provide source-matched drivers  
for 50transmission lines. These drivers accept data from the  
reclocker output register in the reclocker channel. These  
drivers have signal swings equivalent to that of standard PECL  
drivers, and are capable of driving AC-coupled optical  
modules or transmission lines.  
Reclocker Output Channels Enabled  
Clock/Data Recovery  
Each driver can be enabled or disabled separately via the  
The extraction of a bit-rate clock and recovery of bits from each  
received serial stream is performed by a separate CDR block  
within each receive channel. The clock extraction function is  
performed by an integrated PLL that tracks the frequency of  
the transitions in the incoming bit stream and align the phase  
of the internal bit-rate clock to the transitions in the selected  
serial data stream.  
Each CDR accepts a character-rate (bit-rate ÷ 10) or half-  
character-rate (bit-rate ÷ 20) training clock from the  
associated TRGCLKx± input. This TRGCLKx± input is used to  
device configuration interface.  
When a driver is disabled via the configuration interface, it is  
internally powered down to reduce device power. If both  
reclocker serial drivers for a channel are in this disabled state,  
the associated internal reclocker logic is also powered down.  
The deserialization logic and parallel outputs will remain  
enabled. A device reset (RESET sampled LOW) disables all  
output drivers.  
Note. When the disabled reclocker function (i.e., both outputs  
disabled) is re-enabled, the data on the reclocker serial  
outputs may not meet all timing specifications for up to 250 µs.  
• ensure that the VCO (within the CDR) is operating at the  
correct frequency (rather than a harmonic of the bit-rate)  
Output Bus  
• reduce PLL acquisition time  
• limit unlocked frequency excursions of the CDR VCO when  
there is no input data present at the selected Serial Line  
Receiver.  
Each receive channel presents a 10-bit data signal (and a  
BIST status signal when RXBISTx[1:0] = 10).  
Receive BIST Operation  
Regardless of the type of signal present, the CDR attempts to  
recover a data stream from it. If the signalling rate of the  
recovered data stream is outside the limits set by the range  
control monitors, the CDR tracks TRGCLKx± instead of the  
data stream. Once the CDR output (RXCLK±) frequency  
returns back close to TRGCLKx± frequency, the CDR input is  
switched back to the input data stream. If no data is present at  
the selected line receiver, this switching behavior may result  
Each receiver channel contains an internal pattern checker  
that can be used to validate both device and link operation.  
These pattern checkers are enabled by the associated  
RXBISTx[1:0] latch via the device configuration interface.  
When enabled, a register in the associated receive channel  
becomes a signature pattern generator and checker by  
Document #: 38-02102 Rev. **  
Page 12 of 26  
CYV15G0404RB  
PRELIMINARY  
logically converting to a Linear Feedback Shift Register  
(LFSR). This LFSR generates a 511-character sequence. This  
provides a predictable yet pseudo-random sequence that can  
be matched to an identical LFSR in the attached Trans-  
mitter(s). When synchronized with the received data stream,  
the associated Receiver checks each character from the  
deserializer with each character generated by the LFSR and  
indicates compare errors and BIST status at the RXDx[1:0]  
and BISTSTx bits of the Output Register.  
The BIST status bus {BISTSTx, RXDx[0], RXDx[1]} indicates  
010b or 100b for one character period per BIST loop to  
indicate loop completion. This status can be used to check test  
pattern progress.  
The specific status reported by the BIST state machine is listed  
in Table 5. These same codes are reported on the receive  
status outputs.  
If the number of invalid characters received ever exceeds the  
number of valid characters by 16, the receive BIST state  
machine aborts the compare operations and resets the LFSR  
to look for the start of the BIST sequence again.  
Following a device reset, it is necessary to enable the receive  
channels used for normal operation. This can be done by  
sequencing the appropriate values on the device configuration  
interface.[3]  
Device Configuration and Control Interface  
The CYV15G0404RB is highly configurable via the configu-  
ration interface. The configuration interface allows the device  
to be configured globally or allows each channel to be  
configured independently. Table 3 lists the configuration  
latches within the device including the initialization value of the  
latches upon the assertion of RESET. Table 4 shows how the  
latches are mapped in the device. Each row in the Table 4  
maps to a 8-bit latch bank. There are 16 such write-only latch  
banks. When WREN = 0, the logic value in the DATA[7:0] is  
latched to the latch bank specified by the values in ADDR[3:0].  
The second column of Table 4 specifies the channels  
associated with the corresponding latch bank. For example,  
the first three latch banks (0,1 and 2) consist of configuration  
bits for channel A. The latch banks 12, 13 and 14 consist of  
Global configuration bits and the last latch bank (15) is the  
Mask latch bank that can be configured to perform bit-by-bit  
configuration.  
A device reset (RESET sampled LOW) presets the BIST  
Enable Latches to disable BIST on all channels.  
BIST Status State Machine  
Global Enable Function  
When a receive path is enabled to look for and compare the  
received data stream with the BIST pattern, the {BISTSTx,  
RXDx[0], RXDx[1]} bits identify the present state of the BIST  
compare operation.  
The BIST state machine has multiple states, as shown in  
Figure 2 and Table 5. When the receive PLL detects an out-of-  
lock condition, the BIST state is forced to the Start-of-BIST  
state, regardless of the present state of the BIST state  
machine. If the number of detected errors ever exceeds the  
number of valid matches by greater than 16, the state machine  
is forced to the WAIT_FOR_BIST state where it monitors the  
receive path for the first character of the next BIST sequence.  
The global enable function, controlled by the GLENx bits, is a  
feature that can be used to reduce the number of write opera-  
tions needed to setup the latch banks. This function is  
beneficial in systems that use a common configuration in  
multiple channels. The GLENx bit is present in bit 0 of latch  
banks 0 through 11 only. Its default value (1) enables the global  
update of the latch bank's contents. Setting the GLENx bit to  
0 disables this functionality.  
Latch Banks 12, 13, and 14 are used to load values in the  
related latch banks in a global manner. A write operation to  
latch bank 12 could do a global write to latch banks 0, 3, 6, and  
9 depending on the value of GLENx in these latch banks; latch  
bank 13 could do a global write to latch banks 1, 4, 7 and 10;  
and latch banks 14 could do a global write to latch banks 2, 5,  
8 and 11. The GLENx bit cannot be modified by a global write  
operation.  
Power Control  
The CYV15G0404RB supports user control of the powered up  
or down state of each transmit and receive channel. The  
receive channels are controlled by the RXPLLPDx latch via the  
device configuration interface. When RXPLLPDx = 0, the  
associated PLL and analog circuitry of the channel is disabled.  
The transmit channels are controlled by the OE1x and the  
OE2x latches via the device configuration interface. The  
reclocker function is controlled by the ROE1x and the ROE2x  
latches via the device configuration interface. When a driver is  
disabled via the configuration interface, it is internally powered  
down to reduce device power. If both serial drivers for a  
channel are in this disabled state, the associated internal logic  
for that channel is also powered down. When the reclocker  
serial drivers are disabled, the reclocker function will be  
disabled, but the deserialization logic and parallel outputs will  
remain enabled.  
Force Global Enable Function  
FGLENx forces the global update of the target latch banks, but  
does not change the contents of the GLENx bits. If FGLENx =  
1 for the associated global channel, FGLENx forces the global  
update of the target latch banks.  
Mask Function  
An additional latch bank (15) is used as a global mask vector  
to control the update of the configuration latch banks on a bit-  
by-bit basis. A logic 1 in a bit location allows for the update of  
that same location of the target latch bank(s), whereas a logic  
0 disables it. The reset value of this latch bank is FFh, thereby  
making its use optional by default. The mask latch bank is not  
maskable. The FGLEN functionality is not affected by the bit 0  
value of the mask latch bank.  
Device Reset State  
When the CYV15G0404RB is reset by assertion of RESET, all  
state machines, counters, and configuration latches in the  
device are initialized to a reset state. See Table 3 for the  
initialize values of the configuration latches.  
Latch Types  
There are two types of latch banks: static (S) and dynamic (D).  
Each channel is configured by 2 static and 1 dynamic latch  
banks. The S type contain those settings that normally do not  
change for a given application, whereas the D type controls  
Document #: 38-02102 Rev. **  
Page 13 of 26  
CYV15G0404RB  
PRELIMINARY  
the settings that could change during the application's lifetime.  
The first and second rows of each channel (address numbers  
0, 1, 3, 4, 6, 7, 9, and 10) are the static control latches. The  
third row of latches for each channel (address numbers 2, 5,  
8, and 11) are the dynamic control latches that are associated  
with enabling dynamic functions within the device.  
Latch Bank 14 is also useful for those users that do not need  
the latch-based programmable feature of the device. This  
latch bank could be used in those applications that do not need  
to modify the default value of the static latch banks, and that  
can afford a global (i.e., not independent) control of the  
dynamic signals. In this case, this feature becomes available  
Table 3. Device Configuration and Control Latch Descriptions  
when ADDR[3:0] is left unchanged with a value of “1110” and  
WREN is left asserted. The signals present in DATA[7:0] effec-  
tively become global control pins, and for the latch banks 2, 5,  
8 and 11.  
Static Latch Values  
There are some latches in the table that have a static value (ie.  
1, 0, or X). The latches that have a ‘1’ or ‘0’ must be configured  
with their corresponding value each time that their associated  
latch bank is configured. The latches that have an ‘X’ are don’t  
cares and can be configured with any value  
Name  
Signal Description  
RXRATEA  
RXRATEB  
RXRATEC  
RXRATED  
Receive Clock Rate Select. The initialization value of the RXRATEx latch = 1. RXRATEx is used to  
select the rate of the RXCLKx± clock output.  
When RXRATEx = 1, the RXCLKx± clock outputs are complementary clocks that follow the recovered  
clock operating at half the character rate. Data for the associated receive channels should be latched  
alternately on the rising edge of RXCLKx+ and RXCLKx–.  
When RXRATEx = 0, the RXCLKx± clock outputs are complementary clocks that follow the recovered  
clock operating at the character rate. Data for the associated receive channels should be latched on the  
rising edge of RXCLKx+ or falling edge of RXCLKx–.  
SDASEL1A[1:0]  
SDASEL1B[1:0]  
SDASEL1C[1:0]  
SDASEL1D[1:0]  
Primary Serial Data Input Signal Detector Amplitude Select. The initialization value of the  
SDASEL1x[1:0] latch = 10. SDASEL1x[1:0] selects the trip point for the detection of a valid signal for the  
INx1± Primary Differential Serial Data Inputs.  
When SDASEL1x[1:0] = 00, the Analog Signal Detector is disabled.  
When SDASEL1x[1:0] = 01, the typical p-p differential voltage threshold level is 140mV.  
When SDASEL1x[1:0] = 10, the typical p-p differential voltage threshold level is 280mV.  
When SDASEL1x[1:0] = 11, the typical p-p differential voltage threshold level is 420mV.  
SDASEL2A[1:0]  
SDASEL2B[1:0]  
SDASEL2C[1:0]  
SDASEL2D[1:0]  
Secondary Serial Data Input Signal Detector Amplitude Select. The initialization value of the  
SDASEL2x[1:0] latch = 10. SDASEL2x[1:0] selects the trip point for the detection of a valid signal for the  
INx2± Secondary Differential Serial Data Inputs.  
When SDASEL2x[1:0] = 00, the Analog Signal Detector is disabled  
When SDASEL2x[1:0] = 01, the typical p-p differential voltage threshold level is 140mV.  
When SDASEL2x[1:0] = 10, the typical p-p differential voltage threshold level is 280mV.  
When SDASEL2x[1:0] = 11, the typical p-p differential voltage threshold level is 420mV.  
TRGRATEA  
TRGRATEB  
TRGRATEC  
TRGRATED  
Training Clock Rate Select. The initialization value of the TRGRATEx latch = 0. TRGRATEx is used to  
select the clock multiplier for the training clock input to the associated CDR PLL. When TRGRATEx =  
0, the associated TRGCLKx± input is not multiplied before it is passed to the CDR PLL. WhenTRGRATEx  
= 1, the TRGCLKx± input is multiplied by 2 before it is passed to the CDR PLL. TRGRATEx = 1 and  
SPDSELx = LOW is an invalid state and this combination is reserved.  
RXPLLPDA  
RXPLLPDB  
RXPLLPDC  
RXPLLPDD  
Receive Channel Enable. The initialization value of the RXPLLPDx latch = 0. RXPLLPDx selects if the  
associated receive channel is enabled or powered-down. When RXPLLPDx = 0, the associated receive  
PLL and analog circuitry are powered-down. When RXPLLPDx = 1, the associated receive PLL and  
analog circuitry are enabled.  
RXBISTA[1:0]  
RXBISTB[1:0]  
RXBISTC[1:0]  
RXBISTD[1:0]  
Receive Bist Disable / SMPTE Receive Enable. The initialization value of the RXBISTx[1:0] latch =  
11. For SMPTE data reception, RXBISTx[1:0] should not remain in this initialization state (11).  
RXBISTx[1:0] selects if receive BIST is disabled or enabled and sets the associated channel for SMPTE  
data reception. When RXBISTx[1:0] = 01, the receiver BIST function is disabled and the associated  
channel is set to receive SMPTE data. When RXBISTx[1:0] = 10, the receive BIST function is enabled  
and the associated channel is set to receive BIST data. RXBISTx[1:0] = 00 and RXBISTx[1:0] = 11 are  
invalid states.  
ROE2A  
ROE2B  
ROE2C  
ROE2D  
Reclocker Secondary Differential Serial Data Output Driver Enable. The initialization value of the  
ROE2x latch = 0. ROE2x selects if the ROUT2± secondary differential output drivers are enabled or  
disabled. When ROE2x = 1, the associated serial data output driver is enabled allowing data to be  
transmitted from the transmit shifter. When ROE2x = 0, the associated serial data output driver is  
disabled. When a driver is disabled via the configuration interface, it is internally powered down to reduce  
device power. If both serial drivers for a channel are in this disabled state, the associated internal logic  
for that channel is also powered down. A device reset (RESET sampled LOW) disables all output drivers.  
Document #: 38-02102 Rev. **  
Page 14 of 26  
CYV15G0404RB  
PRELIMINARY  
Table 3. Device Configuration and Control Latch Descriptions (continued)  
ROE1A  
ROE1B  
ROE1C  
ROE1D  
Reclocker Primary Differential Serial Data Output Driver Enable. The initialization value of the  
ROE1x latch = 0. ROE1x selects if the ROUT1± primary differential output drivers are enabled or  
disabled. When ROE1x = 1, the associated serial data output driver is enabled allowing data to be  
transmitted from the transmit shifter. When ROE1x = 0, the associated serial data output driver is  
disabled. When a driver is disabled via the configuration interface, it is internally powered down to reduce  
device power. If both serial drivers for a channel are in this disabled state, the associated internal logic  
for that channel is also powered down. A device reset (RESET sampled LOW) disables all output drivers.  
GLEN[11..0]  
FGLEN[2..0]  
Global Enable. The initialization value of the GLENx latch = 1. The GLENx is used to reconfigure several  
channels simultaneously in applications where several channels may have the same configuration.  
When GLENx = 1 for a given address, that address is allowed to participate in a global configuration.  
When GLENx = 0 for a given address, that address is disabled from participating in a global configuration.  
Force Global Enable. The initialization value of the FGLENx latch is NA. The FGLENx latch forces a  
GLobal ENable no matter what the setting is on the GLENx latch. If FGLENx = 1 for the associated  
Global channel, FGLEN forces the global update of the target latch banks.  
Device Configuration Strategy  
permits it. [Optional step if the default settings match the  
desired configuration.]  
3. Set the dynamic bank of latches for the target channel.  
Enable the Receive PLLs and set each channel for SMPTE  
data reception (RXBISTx[1:0] = 01) or BIST data reception  
(RXBISTx[1:0] = 10). May be performed using a global  
operation, if the application permits it. [Required step.]  
The following is a series of ordered events needed to load the  
configuration latches on a per channel basis:  
1. Pulse RESET Low after device power-up. This operation  
resets all four channels.  
2. Set the static latch banks for the target channel. May be  
performed using a global operation, if the application  
Document #: 38-02102 Rev. **  
Page 15 of 26  
CYV15G0404RB  
PRELIMINARY  
Table 4. Device Control Latch Configuration Table  
Reset  
ADDR Channel Type  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
Value  
0
A
S
S
D
S
S
D
S
S
D
S
S
D
S
S
D
D
1
0
X
X
0
0
RXRATEA  
GLEN0  
10111111  
(0000b)  
1
A
SDASEL2A[1] SDASEL2A[0] SDASEL1A[1] SDASEL1A[0]  
X
X
TRGRATEA  
X
GLEN1  
GLEN2  
GLEN3  
GLEN4  
GLEN5  
GLEN6  
GLEN7  
GLEN8  
GLEN9  
10101101  
10110011  
10111111  
10101101  
10110011  
10111111  
10101101  
10110011  
10111111  
10101101  
10110011  
N/A  
(0001b)  
2
A
RXBISTA[1]  
1
RXPLLPDA  
0
RXBISTA[0]  
X
X
X
ROE2A  
ROE1A  
(0010b)  
3
B
0
0
RXRATEB  
TRGRATEB  
X
(0011b)  
4
B
SDASEL2B[1] SDASEL2B[0] SDASEL1B[1] SDASEL1B[0]  
X
X
(0100b)  
5
B
RXBISTB[1]  
1
RXPLLPDB  
0
RXBISTB[0]  
X
X
X
ROE2B  
ROE1B  
(0101b)  
6
C
0
0
RXRATEC  
TRGRATEC  
X
(0110b)  
7
C
SDASEL2C[1] SDASEL2C[0] SDASEL1C[1] SDASEL1C[0]  
X
X
(0111b)  
8
C
D
RXBISTC[1]  
1
RXPLLPDC  
0
RXBISTC[0]  
X
X
X
ROE2C  
ROE1C  
(1000b)  
9
0
0
RXRATED  
(1001b)  
10  
D
SDASEL2D[1] SDASEL2D[0] SDASEL1D[1] SDASEL1D[0]  
X
X
TRGRATED GLEN10  
GLEN11  
(1010b)  
11  
D
RXBISTD[1]  
1
RXPLLPDD  
0
RXBISTD[0]  
X
X
X
ROE2D  
ROE1D  
X
(1011b)  
12  
GLOBAL  
GLOBAL  
GLOBAL  
MASK  
0
X
0
X
RXRATEGL FGLEN0  
TRGRATEGL FGLEN1  
(1100b)  
13  
SDASEL2GL[1] SDASEL2GL[0] SDASEL1GL[1] SDASEL1GL[0]  
N/A  
(1101b)  
14  
RXBISTGL[1]  
D7  
RXPLLPDGL  
D6  
RXBISTGL[0]  
D5  
X
ROE2GL  
D3  
ROE1GL  
D2  
X
FGLEN2  
D0  
N/A  
(1110b)  
15  
D4  
D1  
11111111  
(1111b)  
3-Level Select Inputs  
JTAG Support  
Each 3-Level select inputs reports as two bits in the scan  
register. These bits report the LOW, MID, and HIGH state of  
the associated input as 00, 10, and 11 respectively  
The CYV15G0404RB contains a JTAG port to allow system  
level diagnosis of device interconnect. Of the available JTAG  
modes, boundary scan, and bypass are supported. This  
capability is present only on the LVTTL inputs and outputs and  
the TRGCLKx± clock input. The high-speed serial inputs and  
outputs are not part of the JTAG test chain.  
JTAG ID  
The JTAG device ID for the CYV15G0404RB is ‘0C811069’x.  
Table 5. Receive BIST Status Bits  
Description  
{BISTSTx, RXDx[0],  
RXDx[1]}  
Receive BIST Status  
(Receive BIST = Enabled)  
000, 001  
BIST Data Compare. Character compared correctly.  
BIST Last Good. Last Character of BIST sequence detected and valid.  
010  
011  
Reserved.  
100  
BIST Last Bad. Last Character of BIST sequence detected invalid.  
101  
BIST Start. Receive BIST is enabled on this channel, but character compares have not yet  
commenced. This also indicates a PLL Out of Lock condition.  
110  
111  
BIST Error. While comparing characters, a mismatch was found in one or more of the character bits.  
BIST Wait. The receiver is comparing characters. but has not yet found the start of BIST character to  
enable the LFSR.  
Document #: 38-02102 Rev. **  
Page 16 of 26  
CYV15G0404RB  
PRELIMINARY  
Monitor Data  
Receive BIST  
Received  
Detected LOW  
RX PLL  
{BISTSTx, RXDx[0],  
RXDx[1]} =  
Out of Lock  
BIST_START (101)  
{BISTSTx, RXDx[0], RXDx[1]} =  
BIST_WAIT (111)  
Start of  
BIST Detected  
No  
Yes, {BISTSTx, RXDx[0], RXDx[1]} =  
BIST_DATA_COMPARE (000, 001)  
Compare  
Next Character  
Mismatch  
{BISTSTx, RXDx[0], RXDx[1]} =  
Match  
BIST_DATA_COMPARE (000, 001)  
Auto-Abort  
Condition  
Yes  
No  
End-of-BIST  
State  
End-of-BIST  
State  
No  
Yes, {BISTSTx, RXDx[0], RXDx[1]} =  
BIST_LAST_BAD (100)  
Yes, {BISTSTx, RXDx[0], RXDx[1]} =  
BIST_LAST_GOOD (010)  
No, {BISTSTx, RXDx[0], RXDx[1]} =  
BIST_ERROR (110)  
Figure 2. Receive BIST State Machine  
Document #: 38-02102 Rev. **  
Page 17 of 26  
CYV15G0404RB  
PRELIMINARY  
Static Discharge Voltage..........................................> 2000 V  
Maximum Ratings  
(per MIL-STD-883, Method 3015)  
Above which the useful life may be impaired. User guidelines  
Latch-up Current.....................................................> 200 mA  
only, not tested  
Power-up Requirements  
Storage Temperature ..................................65°C to +150°C  
The CYV15G0404RB requires one power-supply. The Voltage  
on any input or I/O pin cannot exceed the power pin during  
power-up.  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Supply Voltage to Ground Potential............... –0.5V to +3.8V  
Operating Range  
DC Voltage Applied to LVTTL Outputs  
in High-Z State .......................................–0.5V to VCC + 0.5V  
Range  
Ambient Temperature  
VCC  
+3.3V ±5%  
Output Current into LVTTL Outputs (LOW)..................60 mA  
DC Input Voltage....................................–0.5V to VCC + 0.5V  
Commercial  
0°C to +70°C  
CYV15G0404RB DC Electrical Characteristics  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
LVTTL-compatible Outputs  
VOHT  
VOLT  
IOST  
IOZL  
Output HIGH Voltage  
Output LOW Voltage  
Output Short Circuit Current  
IOH = 4 mA, VCC = Min.  
IOL = 4 mA, VCC = Min.  
VOUT = 0V[6], VCC = 3.3V  
VOUT = 0V, VCC  
2.4  
V
V
mA  
µA  
0.4  
–100  
20  
–20  
–20  
High-Z Output Leakage Current  
LVTTL-compatible Inputs  
VIHT  
VILT  
IIHT  
Input HIGH Voltage  
Input LOW Voltage  
Input HIGH Current  
2.0  
–0.5  
VCC + 0.3  
0.8  
V
V
TRGCLKx Input, VIN = VCC  
Other Inputs, VIN = VCC  
TRGCLKx Input, VIN = 0.0V  
Other Inputs, VIN = 0.0V  
1.5  
+40  
–1.5  
–40  
+200  
–200  
mA  
µA  
mA  
µA  
µA  
µA  
IILT  
Input LOW Current  
IIHPDT  
IILPUT  
Input HIGH Current with internal pull-down VIN = VCC  
Input LOW Current with internal pull-up  
VIN = 0.0V  
LVDIFF Inputs: TRGCLKx±  
[7]  
VDIFF  
Input Differential Voltage  
400  
1.2  
0.0  
1.0  
VCC  
VCC  
VCC/2  
mV  
V
V
VIHHP  
Highest Input HIGH Voltage  
Lowest Input LOW voltage  
Common Mode Range  
VILLP  
VCOMREF  
[8]  
VCC – 1.2V  
V
3-Level Inputs  
VIHH  
VIMM  
VILL  
IIHH  
IIMM  
IILL  
Three-Level Input HIGH Voltage  
Min. VCC Max.  
Min. VCC Max.  
Min. VCC Max.  
VIN = VCC  
VIN = VCC/2  
VIN = GND  
0.87 * VCC  
0.47 * VCC  
0.0  
VCC  
0.53 * VCC  
0.13 * VCC  
200  
V
V
V
µA  
µA  
µA  
Three-Level Input MID Voltage  
Three-Level Input LOW Voltage  
Input HIGH Current  
Input MID current  
–50  
50  
–200  
Input LOW current  
Differential CML Serial Outputs: ROUTA1±, ROUTA2±, ROUTB1±, ROUTB2±, ROUTC1±, ROUTC2±, ROUTD1±,  
ROUTD2±  
VOHC  
VOLC  
Output HIGH Voltage  
(Vcc Referenced)  
100differential load  
150differential load  
100differential load  
150differential load  
V
CC – 0.5  
VCC – 0.2  
VCC – 0.2  
V
V
V
V
VCC – 0.5  
VCC – 1.4 VCC – 0.7  
VCC – 1.4 VCC – 0.7  
Output LOW Voltage  
(VCC Referenced)  
6. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle.  
7. This is the minimum difference in voltage between the true and complement inputs required to ensure detection of a logic-1 or logic-0. A logic-1 exists when  
the true (+) input is more positive than the complement () input. A logic-0 exists when the complement () input is more positive than true (+) input.  
8. The common mode range defines the allowable range of TRGCLKx+ and TRGCLKxwhen TRGCLKx+ = TRGCLKx. This marks the zero-crossing between  
the true and complement inputs as the signal switches between a logic-1 and a logic-0.  
Document #: 38-02102 Rev. **  
Page 18 of 26  
CYV15G0404RB  
PRELIMINARY  
CYV15G0404RB DC Electrical Characteristics (continued)  
Parameter  
Description  
Test Conditions  
100differential load  
150differential load  
Min.  
450  
560  
Max.  
900  
1000  
Unit  
mV  
mV  
VODIF  
Output Differential Voltage  
|(OUT+) (OUT)|  
Differential Serial Line Receiver Inputs: INA1±, INA2±, INB1±, INB2±, INC1±, INC2±, IND1±, IND2±  
[7]  
VDIFFs  
VIHE  
VILE  
IIHE  
IILE  
Input Differential Voltage |(IN+) (IN)|  
Highest Input HIGH Voltage  
Lowest Input LOW Voltage  
Input HIGH Current  
Input LOW Current  
Common Mode input range  
100  
1200  
VCC  
mV  
V
V
µA  
µA  
V
VCC – 2.0  
VIN = VIHE Max.  
VIN = VILE Min.  
((VCC – 2.0V)+0.5)min,  
1350  
+3.1  
–700  
+1.25  
[9]  
VICOM  
(VCC – 0.5V) max.  
Power Supply  
Typ.  
910  
Max.  
1270  
1320  
1270  
1320  
[10,11]  
ICC  
Max Power Supply Current  
TRGCLKx Commercial  
mA  
mA  
mA  
mA  
= MAX  
Industrial  
[10,11]  
ICC  
Typical Power Supply Current  
TRGCLKx Commercial  
900  
= 125 MHz  
Industrial  
AC Test Loads and Waveforms  
3.3V  
RL = 100Ω  
R
L
R1  
R2  
R1 = 590Ω  
R2 = 435Ω  
CL 7 pF  
(Includes fixture and  
probe capacitance)  
CL  
(b) CML Output Test LoadNote 12  
(Includes fixture and  
probe capacitance)  
(a) LVTTL Output Test Load Note 12  
VIHE  
3.0V  
VIHE  
VILE  
2.0V  
0.8V  
2.0V  
0.8V  
80%  
80%  
Vth = 1.4V  
Vth = 1.4V  
20%  
20%  
GND  
VILE  
270 ps  
270 ps  
1 ns  
1 ns  
(c) LVTTL Input Test Waveform Note 13  
(d) CML/LVPECL Input Test Waveform  
CYV15G0404RB AC Electrical Characteristics  
Parameter  
Description  
Min.  
Max  
Unit  
CYV15G0404RB Receiver LVTTL Switching Characteristics Over the Operating Range  
fRS  
RXCLKx± Clock Output Frequency  
RXCLKx± Period = 1/fRS  
RXCLKx± Duty Cycle Centered at 50% (Full Rate and Half Rate)  
RXCLKx± Rise Time  
RXCLKx± Fall Time  
9.75  
6.66  
–1.0  
0.3  
0.3  
150  
102.56  
+1.0  
1.2  
MHz  
ns  
ns  
ns  
ns  
tRXCLKP  
tRXCLKD  
tRXCLKR  
tRXCLKF  
tRXDv–  
[14]  
[14]  
1.2  
[18]  
Status and Data Valid Time to RXCLKx± (RXRATEx = 0) (Full Rate)  
Status and Data Valid Time to RXCLKx± (RXRATEx = 1) (Half Rate)  
5UI–1.8[19]  
5UI–1.3[19]  
ns  
ns  
Notes:  
9. The common mode range defines the allowable range of INPUT+ and INPUTwhen INPUT+ = INPUT. This marks the zero-crossing between the true and  
complement inputs as the signal switches between a logic-1 and a logic-0.  
10. Maximum I is measured with V = MAX, T = 25°C, with all channels and Serial Line Drivers enabled, sending a continuous alternating 01 pattern, and  
CC  
CC  
A
outputs unloaded.  
11. Typical I is measured under similar conditions except with V = 3.3V, T = 25°C, with all channels enabled and one Serial Line Driver per transmit channel  
CC  
CC  
A
sending a continuous alternating 01 pattern. The redundant outputs on each channel are powered down and the parallel outputs are unloaded.  
12. Cypress uses constant current (ATE) load configurations and forcing functions. This figure is for reference only.  
13. The LVTTL switching threshold is 1.4V. All timing references are made relative to where the signal edges cross the threshold voltage.  
14. Tested initially and after any design or process changes that may affect these parameters, but not 100% tested.  
Document #: 38-02102 Rev. **  
Page 19 of 26  
CYV15G0404RB  
PRELIMINARY  
CYV15G0404RB AC Electrical Characteristics (continued)  
Parameter  
tRXDv+  
Description  
Status and Data Valid Time to RXCLKx± (RXRATEx = 0)  
Status and Data Valid Time to RXCLKx± (RXRATEx = 1)  
RECLKOx Clock Frequency  
RECLKOx Period=1/fROS  
RECLKOx Duty Cycle centered at 60% HIGH time  
Min.  
5UI–1.7[19]  
5UI–2.1[19]  
19.5  
Max  
Unit  
ns  
ns  
MHz  
ns  
ns  
[18]  
fROS  
tRECLKO  
tRECLKOD  
150  
51.28  
0
6.66  
-1.9  
CYV15G0404RB TRGCLKx Switching Characteristics Over the Operating Range  
fTRG  
TRGCLKx Clock Frequency  
TRGCLKx Period = 1/fREF  
19.5  
6.6  
150  
51.28  
MHz  
ns  
ns  
ns  
ns  
ns  
%
TRGCLK  
tTRGH  
TRGCLKx HIGH Time (TXRATEx = 1)(Half Rate)  
TRGCLKx HIGH Time (TXRATEx = 0)(Full Rate)  
TRGCLKx LOW Time (TXRATEx = 1)(Half Rate)  
TRGCLKx LOW Time (TXRATEx = 0)(Full Rate)  
TRGCLKx Duty Cycle  
5.9  
2.9[14]  
5.9  
tTRGL  
2.9[14]  
30  
[20]  
tTRGD  
70  
2
[14, 15, 16,  
tTRGR  
TRGCLKx Rise Time (20%–80%)  
ns  
17]  
[14, 15, 16, 17]  
[21]  
tTRGF  
tTRGRX  
TRGCLKx Fall Time (20%–80%)  
TRGCLKx Frequency Referenced to Received Clock Frequency  
2
ns  
%
–0.15  
+0.15  
CYV15G0404RB Bus Configuration Write Timing Characteristics Over the Operating Range  
tDATAH  
tDATAS  
tWRENP  
Bus Configuration Data Hold  
Bus Configuration Data Setup  
Bus Configuration WREN Pulse Width  
0
10  
10  
ns  
ns  
ns  
CYV15G0404RB JTAG Test Clock Characteristics Over the Operating Range  
fTCLK  
tTCLK  
JTAG Test Clock Frequency  
JTAG Test Clock Period  
20  
MHz  
ns  
50  
30  
CYV15G0404RB Device RESET Characteristics Over the Operating Range  
tRST Device RESET Pulse Width  
CYV15G0404RB Reclocker Serial Output Characteristics Over the Operating Range  
ns  
Parameter  
Description  
Condition  
Min.  
5128  
50  
100  
180  
50  
Max.  
660  
270  
500  
1000  
270  
Unit  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tB  
Bit Time  
[14]  
tRISE  
CML Output Rise Time 2080% (CML Test Load)  
CML Output Fall Time 8020% (CML Test Load)  
SPDSELx = HIGH  
SPDSELx = MID  
SPDSELx =LOW  
SPDSELx = HIGH  
SPDSELx = MID  
SPDSELx =LOW  
[14]  
tFALL  
100  
180  
500  
1000  
Notes:  
15. The ratio of rise time to falling time must not vary by greater than 2:1.  
16. For a given operating frequency, neither rise or fall specification can be greater than 20% of the clock-cycle period or the data sheet maximum time.  
17. All transmit AC timing parameters measured with 1ns typical rise time and fall time.  
18. Parallel data output specifications are only valid if all outputs are loaded with similar DC and AC loads.  
19. Receiver UI (Unit Interval) is calculated as 1/(f  
* 20) (when TRGRATEx = 1) or 1/(f  
* 10) (when TRGRATEx = 0). In an operating link this is equivalent to t .  
TRG  
T
R
G
B
20. The duty cycle specification is a simultaneous condition with the t  
cycle cannot be as large as 30%–70%.  
and t  
parameters. This means that at faster character rates the TRGCLKx± duty  
REFH  
REFL  
21. TRGCLKx± has no phase or frequency relationship with the recovered clock(s) and only acts as a centering reference to reduce clock synchronization time.  
TRGCLKx± must be within ±1500PPM(±0.15%) of the transmitter PLL reference (REFCLKx±) frequency. Although transmitting to a HOTLink II receiver channel  
necessitates the frequency difference between the transmitter and receiver reference clocks to be within ±1500-PPM, the stability of the crystal needs to be  
within the limits specified by the appropriate standard when transmitting to a remote receiver that is compliant to that standard.  
Document #: 38-02102 Rev. **  
Page 20 of 26  
CYV15G0404RB  
PRELIMINARY  
PLL Characteristics  
Min  
Parameter  
Description  
Condition  
.
Typ.  
Max. Unit  
CYV15G0404RB Reclocker Output PLL Characteristics  
[14, 22]  
tJRGENSD  
Reclocker Jitter Generation - SD Data Rate  
Reclocker Jitter Generation - HD Data Rate  
TRGCLKx = 27 MHz  
133  
107  
ps  
ps  
[14, 22]  
tJRGENHD  
TRGCLKx = 148.5  
MHz  
CYV15G0404RB Receive PLL Characteristics Over the Operating Range  
tRXLOCK  
Receive PLL lock to input data stream (cold start)  
Receive PLL lock to input data stream  
Receive PLL Unlock Rate  
376k  
376k  
46  
UI  
UI  
UI  
tRXUNLOCK  
Capacitance [14]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
CINTTL  
TTL Input Capacitance  
TA = 25°C, f0 = 1 MHz, VCC = 3.3V  
7
pF  
CINPECL  
PECL input Capacitance  
TA = 25°C, f0 = 1 MHz, VCC = 3.3V  
4
pF  
Switching Waveforms for the CYV15G0404RB HOTLink II Receiver  
Receive Interface  
tRXCLKP  
Read Timing  
RXRATEx = 0  
RXCLKx+  
RXCLKx-  
RXDx[9:0]  
t
RXDV  
t
RXDV+  
Receive Interface  
Read Timing  
tRXCLKP  
RXRATEx = 1  
RXCLKx+  
RXCLKx-  
t
RXDV  
RXDx[9:0]  
t
RXDV+  
Notes:  
22. Receiver input stream is BIST data from the transmit channel. This data is reclocked and output to a wide-bandwidth digital sampling oscilloscope. The  
measurement was recorded after 10,000 histogram hits, time referenced to REFCLKx± of the transmit channel.  
Document #: 38-02102 Rev. **  
Page 21 of 26  
CYV15G0404RB  
PRELIMINARY  
CYV15G0404RB HOTLink II Bus Configuration Switching Waveforms  
Bus Configuration  
Write Timing  
ADDR[3:0]  
DATA[7:0]  
tWRENP  
tDATAS  
WREN  
tDATAH  
Document #: 38-02102 Rev. **  
Page 22 of 26  
CYV15G0404RB  
PRELIMINARY  
Table 6. Package Coordinate Signal Allocation  
Ball  
Ball  
Ball  
ID  
ID  
Signal Name  
INC1–  
ROUTC1–  
INC2–  
ROUTC2–  
VCC  
IND1–  
ROUTD1–  
GND  
IND2–  
ROUTD2–  
INA1–  
ROUTA1–  
GND  
INA2–  
ROUTA2–  
VCC  
INB1–  
ROUTB1–  
INB2–  
ROUTB2–  
INC1+  
ROUTC1+  
INC2+  
ROUTC2+  
VCC  
IND1+  
ROUTD1+  
GND  
IND2+  
ROUTD2+  
INA1+  
ROUTA1+  
GND  
INA2+  
ROUTA2+  
VCC  
INB1+  
ROUTB1+  
INB2+  
Signal Type  
CML IN  
CML OUT  
CML IN  
CML OUT  
POWER  
CML IN  
CML OUT  
GROUND  
CML IN  
CML OUT  
CML IN  
CML OUT  
GROUND  
CML IN  
CML OUT  
POWER  
CML IN  
CML OUT  
CML IN  
CML OUT  
CML IN  
CML OUT  
CML IN  
CML OUT  
POWER  
CML IN  
CML OUT  
GROUND  
CML IN  
CML OUT  
CML IN  
CML OUT  
GROUND  
CML IN  
CML OUT  
POWER  
CML IN  
CML OUT  
CML IN  
ID  
Signal Name  
ULCC  
GND  
Signal Type  
LVTTL IN PU  
GROUND  
Signal Name  
Signal Type  
POWER  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
GROUND  
LVTTL IN PU  
GROUND  
GROUND  
3-LEVEL SEL  
NO CONNECT  
3-LEVEL SEL  
LVTTL OUT  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
PECL IN  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C01  
C02  
C03  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
E01  
E02  
E03  
E04  
E17  
E18  
E19  
E20  
F01  
F17  
F18  
F19  
F20  
G01  
G02  
G03  
G04  
G17  
G18  
G19  
G20  
H01  
H02  
H03  
H04  
H17  
H18  
H19  
H20  
J01  
VCC  
RXDB[0]  
RECLKOB  
RXDB[1]  
GND  
WREN  
GND  
GND  
SPDSELB  
NC  
SPDSELA  
RXDB[3]  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BISTSTB  
RXDB[2]  
RXDB[7]  
RXDB[4]  
RXDC[4]  
DATA[7]  
DATA[5]  
DATA[3]  
DATA[1]  
GND  
VCC  
SPDSELD  
VCC  
LDTDEN  
TRST  
GND  
TDO  
TCLK  
RESET  
INSELD  
INSELA  
VCC  
ULCA  
SPDSELC  
GND  
DATA[6]  
DATA[4]  
DATA[2]  
DATA[0]  
GND  
GND  
ULCB  
VCC  
NC  
VCC  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
POWER  
3-LEVEL SEL  
POWER  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
LVTTL 3-S OUT  
LVTTL IN PD  
LVTTL IN PU  
LVTTL IN  
LVTTL IN  
POWER  
LVTTL IN PU  
3-LEVEL SEL  
GROUND  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
GROUND  
LVTTL IN PU  
POWER  
NO CONNECT  
POWER  
LVTTL IN PD  
LVTTL IN PD  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
LVTTL OUT  
J02  
J03  
J04  
J17  
J18  
J19  
J20  
K01  
K02 TRGCLKC–  
K03  
K04  
K17  
K18  
K19  
K20  
L01  
GND  
GND  
RXDB[5]  
RXDB[6]  
RXDB[9]  
LFIB  
GROUND  
GROUND  
SCANEN2  
TMEN3  
VCC  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
PECL IN  
LVTTL OUT  
GROUND  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RXDC[8]  
RXDC[5]  
L02 TRGCLKC+  
L03  
L04  
L17  
L18  
L19  
LFIC  
GND  
RXDB[8]  
RXCLKB+  
RXCLKB–  
ROUTB2+  
TDI  
TMS  
INSELC  
CML OUT  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN  
Document #: 38-02102 Rev. **  
Page 23 of 26  
CYV15G0404RB  
PRELIMINARY  
Table 6. Package Coordinate Signal Allocation (continued)  
Ball  
Ball  
Ball  
ID  
ID  
Signal Name  
INSELB  
VCC  
ULCD  
VCC  
REPDOC  
Signal Type  
LVTTL IN  
POWER  
LVTTL IN PU  
POWER  
LVTTL OUT  
PECL IN  
PECL IN  
ID  
Signal Name  
RXDC[9]  
VCC  
Signal Type  
LVTTL OUT  
POWER  
POWER  
POWER  
Signal Name  
Signal Type  
GROUND  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
POWER  
LVTTL OUT  
LVTTL OUT  
GROUND  
LVTTL IN PU  
LVTTL IN PU  
LVTTL OUT  
LVTTL OUT  
GROUND  
GROUND  
POWER  
C04  
C05  
C06  
M03  
M04  
F02  
F03  
F04  
U03  
U04  
U05  
U06  
U07  
U08  
U09  
U10  
L20  
M01  
M02  
W03  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
GND  
RXDC[6]  
RXDC[7]  
LFID  
RXCLKD–  
VCC  
RXDD[6]  
RXDD[0]  
GND  
ADDR [3]  
ADDR [1]  
RXCLKA+  
REPDOA  
GND  
VCC  
VCC  
VCC  
VCC  
RXDD[4]  
RXDD[3]  
GND  
GND  
ADDR [0]  
POWER  
POWER  
M17 TRGCLKB+  
M18 TRGCLKB–  
LVTTL OUT  
LVTTL OUT  
GROUND  
GROUND  
LVTTL IN PU  
PECL IN  
GROUND  
GROUND  
GROUND  
POWER  
POWER  
LVTTL OUT  
POWER  
LVTTL OUT  
LVTTL OUT  
POWER  
M19  
M20  
N01  
N02  
N03  
N04  
N17  
N18  
N19  
N20  
P01  
P02  
P03  
P04  
P17  
P18  
P19  
P20  
R01  
R02  
R03  
R04  
R17  
R18  
R19  
R20  
T01  
T02  
T03  
T04  
T17  
T18  
T19  
T20  
U01  
U02  
REPDOB  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
LVTTL OUT  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
GROUND  
GROUND  
GROUND  
GROUND  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
POWER  
U11 TRGCLKD–  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
V01  
V02  
V03  
V04  
V05  
V06  
V07  
V08  
V09  
V10  
GND  
GND  
GND  
VCC  
VCC  
RXDA[4]  
VCC  
BISTSTA  
RXDA[0]  
VCC  
GND  
VCC  
VCC  
LFIA  
GND  
POWER  
LVTTL OUT  
PECL IN  
LVTTL OUT  
LVTTL OUT  
POWER  
RXDC[3]  
RXDC[2]  
RXDC[1]  
RXDC[0]  
GND  
GND  
GND  
GND  
BISTSTC  
RECLKOC  
RXCLKC+  
RXCLKC–  
VCC  
W18 TRGCLKA+  
W19  
W20  
Y01  
Y02  
Y03  
Y04  
Y05  
Y06  
Y07  
Y08  
Y09  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
RXDA[6]  
RXDA[3]  
VCC  
VCC  
VCC  
POWER  
POWER  
LVTTL OUT  
POWER  
VCC  
POWER  
RXDD[9]  
RXCLKD+  
VCC  
RXDD[7]  
RXDD[2]  
GND  
RECLKOD  
NC  
GND  
RXCLKA–  
GND  
LVTTL OUT  
LVTTL OUT  
POWER  
RXDD[8]  
VCC  
RXDD[5]  
RXDD[1]  
GND  
LVTTL OUT  
LVTTL OUT  
GROUND  
LVTTL OUT  
LVTTL IN PU  
PECL IN  
LVTTL OUT  
GROUND  
GROUND  
POWER  
LVTTL OUT  
LVTTL OUT  
GROUND  
LVTTL OUT  
NO CONNECT  
GROUND  
LVTTL OUT  
GROUND  
GROUND  
POWER  
POWER  
LVTTL OUT  
PECL IN  
LVTTL OUT  
LVTTL OUT  
BISTSTD  
ADDR [2]  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
V11 TRGCLKD+  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
W01  
W02  
RECLKOA  
GND  
GND  
VCC  
VCC  
RXDA[9]  
RXDA[5]  
RXDA[2]  
RXDA[1]  
VCC  
GND  
VCC  
VCC  
REPDOD  
POWER  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
POWER  
Y18 TRGCLKA–  
Y19  
Y20  
RXDA[8]  
RXDA[7]  
VCC  
POWER  
VCC  
POWER  
Document #: 38-02102 Rev. **  
Page 24 of 26  
CYV15G0404RB  
PRELIMINARY  
Ordering Information  
Operating  
Range  
Commercial  
Speed  
Standard  
Ordering Code  
CYV15G0404RB-BGC  
Package Name  
BL256  
Package Type  
256-Ball Thermally Enhanced Ball Grid Array  
Package Diagram  
256-Lead L2 Ball Grid Array (27 x 27 x 1.57 mm) BL256  
51-85123-*E  
HOTLink is a registered trademark and HOTLink II is a trademark of Cypress Semiconductor. All product and company names  
mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-02102 Rev. **  
Page 25 of 26  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges  
CYV15G0404RB  
PRELIMINARY  
Document History Page  
Document Title: CYV15G0404RB Independent Clock Quad HOTLink II™ Deserializing Reclocker  
Document Number: 38-02102  
ISSUE  
ORIG. OF  
REV.  
ECN NO.  
DATE  
CHANGE  
DESCRIPTION OF CHANGE  
**  
246850  
See ECN  
FRE  
New Data Sheet  
Document #: 38-02102 Rev. **  
Page 26 of 26  
厂商 型号 描述 页数 下载

CYPRESS

CYV15G0100EQ 准专业型视频电缆均衡器[ Prosumer Video Cable Equalizer ] 10 页

CYPRESS

CYV15G0100EQ-SXC 准专业型视频电缆均衡器[ Prosumer Video Cable Equalizer ] 10 页

CYPRESS

CYV15G0101DXB 单通道的HOTLink收发器[ Single-channel HOTLink Transceiver ] 39 页

CYPRESS

CYV15G0101DXB-BBC 单通道的HOTLink收发器[ Single-channel HOTLink Transceiver ] 39 页

CYPRESS

CYV15G0101DXB-BBI 单通道的HOTLink收发器[ Single-channel HOTLink Transceiver ] 39 页

CYPRESS

CYV15G0101DXB-BBXC 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

CYPRESS

CYV15G0101DXB-BBXI 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

CYPRESS

CYV15G0101EQ 多码率视频电缆均衡器( SOIC )[ Multi-Rate Video Cable Equalizer (SOIC) ] 10 页

CYPRESS

CYV15G0101EQ-SXC 多码率视频电缆均衡器( SOIC )[ Multi-Rate Video Cable Equalizer (SOIC) ] 10 页

CYPRESS

CYV15G0101EQ_07 多速率视频电缆均衡器[ Multi Rate Video Cable Equalizer ] 10 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.228375s