找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYW20719

型号:

CYW20719

品牌:

CYPRESS[ CYPRESS ]

页数:

49 页

PDF大小:

1110 K

PRELIMINARY  
CYW20719  
Enhanced Low Power, BR/EDR/BLE  
Bluetooth 5.0 SOC  
The CYW20719 is a BT 5.0 compliant, stand-alone baseband processor with an integrated 2.4 GHz transceiver with BLE, EDR and  
BR. The device is intended for use in audio, IoT, sensors (medical, home, security, and so forth) and human interface device (HID)  
applications. Manufactured using an advanced 40nm CMOS low-power fabrication process, the CYW20719 employs high level of  
integration to reduce external components, thereby minimizing application footprint and costs.  
This datasheet provides details of the functional, operational, and electrical characteristics of the CYW20719 device. It is intended for  
hardware, design, application, and OEM engineers.  
Figure 1. Functional Block Diagram  
RF  
MODEM  
PKA  
SHA  
LCU  
RX/TX  
AES  
96 MHz  
ARM CM4  
w/FPU  
Patch RAM  
64 KB  
RAM  
448 KB  
ROM 2 MB  
Flash 1 MB  
Bluetooth 5.0  
MAC  
Security Engine  
Patch Control  
AHB Bus Matrix  
Random  
Number  
Generator  
PWM x6  
ADC  
Core Buck  
HP- LPO  
128 KHz  
XTALOSC  
32 KHz  
Key Scan  
Watchdog  
Peripheral  
UART  
GPIO  
x40  
Digital  
LDO  
LP- LPO  
32 KHz  
XTALOSC  
24 MHz  
SPIFFY X2  
(MIPI  
DBI-C, SPI,  
Quad SPI)  
1x I2C M/S  
1x I2C  
master  
HCI UART  
HID OFF  
Timer  
RF LDO  
Power Management  
Unit  
Clock Management  
Hardware Peripheral Block  
Cypress Semiconductor Corporation  
Document Number: 002-14815 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised Thursday, July 12, 2018  
PRELIMINARY  
CYW20719  
Features  
Bluetooth Subsystem  
Peripherals and communication  
6x 16-bit PWMs  
Complies with Bluetooth Core Specification v5.0 with LE 2  
Mbps  
Programmable key-scan matrix interface, up to 8x20 key-  
scanning matrix 1,2  
Quadrature decoder2  
Supports Basic Rate (BR), Enhanced Data Rate (EDR) 2&3  
Mbps, Bluetooth Low Energy (BLE)  
Supports Adaptive Frequency Hopping (AFH)  
TX power 4 dBm  
Watchdog timer (WDT)  
1x peripheral UART, 1x UART for programming and HCI  
RX sensitivity -95.5 dBm (BLE)  
Ultra-low-power radio  
2x SPI (master/slave mode) Blocks (SPI, Quad SPI, and  
MIPI DBI-C)  
RX current 5.9 mA (BLE)  
TX current 5.6 mA @ 0 dBm (BLE)  
1x I2C master/slave and 1x I2C master  
1x 28-channel ADC (10-ENOB for DC measurement and 12-  
ENOB for Audio measurement)  
Hardware security engine2  
Coexistence Support  
Support for Global Coexistence Interface for easy coexis-  
tence implementation with select Cypress Wi-Fi devices  
General Purpose Input Output (GPIO)  
16 GPIOs on QFN package  
MCU Subsystem  
96-MHz Arm Cortex-M4 microcontroller unit (MCU) with float-  
40 GPIOs on WLCSP package  
Support up to 3.63 V operation  
ing point unit (FPU)  
Supports serial wire debug (SWD)  
Four GPIOs support 16 mA and 8 mA sink at 3.3 V and 1.8 V  
respectively  
Runs Bluetooth stack and application  
Option to execute from on-chip flash or RAM  
Operating voltage and low-power support  
Wide operating voltage range: 1.90 V to 3.63 V  
Memory Subsystem  
1 MB flash  
5 power modes to implement ultra-low power application –  
managed by real time operating system  
512 KB RAM  
0.4 uA current in HID-OFF mode (wake from GPIO).  
2 MB ROM that stores Bluetooth stack and driver and off-  
loads flash for user applications  
Packages  
5 mm x 5 mm 40-pin quad flat no-lead (QFN)  
Audio features and interfaces  
1x I2S with master and slave modes  
3.2 mm x 3.1 mm 134-ball Wafer Level Chip Scale Package  
(WLCSP)  
1x PCM  
PDM2  
Software Support  
WICED Studio  
Analog front end for analog microphone1  
Applications  
Clocks  
Wearables and Fitness bands  
Headsets, earbuds, and other audio solutions  
Home automation  
On-chip 32 kHz oscillator (LP-LPO)  
On-chip 128 kHz oscillator (HP-LPO)  
32 kHz crystal oscillator (Optional if low power modes not  
required)  
Blood pressure monitors and other medical applications  
Proximity sensors  
24 MHz crystal oscillator  
48-bit real time clock (RTC)  
Key Fobs  
Thermostats and thermometers  
Toys  
1. Available only in WLCSP Package  
2. Subjected to driver support in WICED Studio  
®
Document Number: 002-14815 Rev. *D  
Page 2 of 49  
PRELIMINARY  
CYW20719  
Contents  
1. Bluetooth Baseband Core ...........................................4  
1.1 BQB and Regulatory Testing Support ...................4  
2. MCU ...............................................................................5  
3. External Reset ...............................................................5  
4. Power Management Unit (PMU) ..................................6  
5. Integrated Radio Transceiver ......................................7  
5.1 Transmitter Path ....................................................7  
5.2 Receiver Path ........................................................7  
5.3 Local Oscillator (LO) ..............................................7  
6. Peripheral and Communication Interfaces ................8  
6.1 I2C Compatible Master ..........................................8  
6.2 HCI UART Interface ..............................................8  
6.3 Peripheral UART Interface ....................................8  
6.4 Crystal Oscillators .................................................9  
6.5 GPIO Ports ..........................................................10  
6.6 Keyboard Scanner (Available only on WLCSP  
6.13 PCM Interface ...................................................14  
6.14 Security Engine .................................................14  
6.15 Power Modes ....................................................15  
7. Firmware ......................................................................15  
8. Pin Assignments and GPIOs .....................................16  
8.1 40-Pin QFN and WLCSP Pin Assignments .........16  
8.2 40-Pin QFN and WLCSP GPIOs .........................18  
9. Pin/Ball Maps ..............................................................23  
9.1 40-Pin QFN Pin Map ...........................................23  
9.2 WLCSP Ball Map .................................................24  
10. Specifications ...........................................................29  
10.1 Electrical Characteristics ...................................29  
10.2 RF Specifications ..............................................33  
10.3 Timing and AC Characteristics ..........................36  
11. Mechanical Information ...........................................42  
11.1 40-Pin QFN Package ........................................42  
11.2 WLCSP Package ...............................................43  
11.3 WLCSP Package Keep-out ...............................44  
11.4 Tape Reel and Packaging Specifications ..........44  
12. Ordering Information ................................................45  
13. Additional Information .............................................45  
13.1 Acronyms and Abbreviations .............................45  
Sales, Solutions, and Legal Information .....................49  
Package) .............................................................11  
6.7 Mouse Quadrature Signal Decoder .....................11  
6.8 ADC .....................................................................11  
6.9 PWM ....................................................................12  
6.10 Serial Peripheral Interface block .......................13  
6.11 Pulse Density Modulation (PDM) Microphone ...13  
6.12 I2S Interface ......................................................13  
Document Number: 002-14815 Rev. *D  
Page 3 of 49  
PRELIMINARY  
CYW20719  
1. Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all time-critical functions required for high-performance Bluetooth operation. The  
BBC manages the buffering, segmentation, and routing of data for all connections. It prioritizes and schedules all RX/TX activities  
including adv, paging, scanning, and servicing of connections. In addition to these functions, it independently handles the host  
controller interface (HCI) including all commands, events, and data flowing over HCI. The core also handles symbol timing, forward  
error correction (FEC), header error control (HEC), cyclic redundancy check (CRC), authentication, data encryption/decryption, and  
data whitening/dewhitening.  
Table 1. Bluetooth Features  
Bluetooth 1.0  
Bluetooth 1.2  
Interlaced Scans  
Bluetooth 2.0  
Basic Rate  
SCO  
EDR 2 Mbps and 3 Mbp  
Adaptive Frequency Hopping  
eSCO  
Paging and Inquiry  
Page and Inquiry Scan  
Sniff  
Bluetooth 2.1  
Bluetooth 3.0  
Bluetooth 4.0  
Bluetooth Low Energy  
Secure Simple Pairing  
Enhanced Inquiry Response  
Sniff Subrating  
Unicast Connectionless Data  
Enhanced Power Control  
eSCO  
Bluetooth 4.1  
Bluetooth 4.2  
Bluetooth 5.0  
LE 2 Mbps  
Low Duty Cycle Advertising  
Dual Mode  
Data Packet Length Extension  
LE Secure Connection  
Link Layer Privacy  
Slot Availability Mask  
High Duty Cycle Advertising  
LE Link Layer Topology  
1.1 BQB and Regulatory Testing Support  
The CYW20719 fully supports Bluetooth Test mode as described in Part 1:1 of the Specification of the Bluetooth System v3.0. This  
includes the transmitter tests, normal and delayed loop back tests, and reduced hopping sequence.  
In addition to the standard Bluetooth Test Mode, the CYW20719 also supports enhanced testing features to simplify RF debugging  
and qualification and type-approval testing. These features include:  
Fixed frequency carrier wave (unmodulated) transmission  
Simplifies some type-approval measurements (Japan)  
Aids in transmitter performance analysis  
Fixed frequency constant receiver mode  
Receiver output directed to I/O pin  
Allows for direct BER measurements using standard RF test equipment  
Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
8-bit fixed pattern or PRBS-9  
Enables modulated signal measurements with standard RF test equipment  
Document Number: 002-14815 Rev. *D  
Page 4 of 49  
PRELIMINARY  
CYW20719  
2. MCU  
The CYW20719 includes a Cortex M4 processor with 2 MB of ROM, 448 KB of data RAM, 64 KB of patch RAM, and 1 MB of on-chip  
flash. The CM4 has a maximum speed of 96 MHz. CYW20719 supports execution from on-chip flash (OCF).  
The CM4 also includes a single precision IEEE 754 compliant floating point unit (FPU).  
The CM4 runs all the BT layers as well as application code. The ROM includes LM, HCI, L2CAP, GATT, as well as other stack layers  
freeing up the flash for application usage. A standard SWD Interface provides debugging support.  
3. External Reset  
An external active-low reset signal, RESET_N, can be used to put the CYW20719 in the reset state. The RESET_N should be released  
only after the VDDO supply voltage level has been stabilized for at least 35 ms.  
Document Number: 002-14815 Rev. *D  
Page 5 of 49  
PRELIMINARY  
CYW20719  
4. Power Management Unit (PMU)  
Figure 2 shows the CYW20719 PMU block diagram. The CYW20719 includes an integrated buck regulator, a bypass LDO, a capless  
LDO for digital circuits and a separate LDO for RF. The bypass LDO automatically takes over from the buck once Vbat supply falls  
below 2.1 V.  
The voltage levels shown in this figure are the default settings; the firmware may change voltage levels based on operating conditions.  
Figure 2. Default Usage Mode  
CYW20719 PMU  
VBAT: 1.76V to 3.63V  
SR_VDDBAT3V  
DIGLDO_  
VDDOUT  
DIGLDO_VDDIN  
SR_VLX  
Digital LDO  
VBAT  
Core buck  
regulator  
BT Digital  
SR_  
PVSS  
Internal LDO (capless)  
CBUCK  
BT Retention Memory  
Maximum 50 mA  
RFLDO_  
VDDOUT  
BYPLDO  
50 mA  
RF LDO  
BT RF  
RFLDO_VDDIN  
Denotes board pin  
Denotes chip pin  
Denotes power switch  
Document Number: 002-14815 Rev. *D  
Page 6 of 49  
PRELIMINARY  
CYW20719  
5. Integrated Radio Transceiver  
The CYW20719 has an integrated radio transceiver that has been designed to provide low power operation in the globally available  
2.4 GHz unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification and exceeds the requirements to provide  
the highest communication link quality of service.  
5.1 Transmitter Path  
The CYW20719 features a fully integrated transmitter. The baseband transmit data is GFSK modulated in the 2.4 GHz ISM band.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK signal. The fully digital modulator minimizes  
any frequency drift or anomalies in the modulation characteristics of the transmitted signal.  
Power Amplifier  
The CYW20719 has an integrated power amplifier (PA) that can transmit up to +4 dBm for class 2 operation.  
5.2 Receiver Path  
The receiver path uses a low IF scheme to down-convert the received signal for demodulation in the digital demodulator and bit  
synchronizer. The receiver path provides a high degree of linearity, and an extended dynamic range to ensure reliable operation in  
the noisy 2.4 GHz ISM band. The front-end topology, which has built-in out-of-band attenuation, enables the CYW20719 to be used  
in most applications without off-chip filtering.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit  
synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the CYW20719 provides a receiver signal strength indicator (RSSI) to the baseband. This enables the controller  
to take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the  
transmitter should increase or decrease its output power.  
5.3 Local Oscillator (LO)  
LO provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels for BR/EDR functionality. The  
CYW20719 uses an internal loop filter.  
Document Number: 002-14815 Rev. *D  
Page 7 of 49  
PRELIMINARY  
CYW20719  
6. Peripheral and Communication Interfaces  
2
6.1 I C Compatible Master  
The CYW20719 provides a 2-pin I2C compatible Master interface to communicate with I2C compatible peripherals. The I2C compatible  
master supports the following clock speeds:  
100 kHz  
400 kHz  
800 kHz (Not a standard I2C-compatible speed.)  
1 MHz (Compatibility with high-speed I2C-compatible devices is not guaranteed.)  
SCL and SDA lines can be routed to any of the P0-P39 GPIOs allowing for flexible system configuration. When used as SCL/SDA  
the GPIOs go into open drain mode and require an external pull-up for proper operation. I2C block does not support multi master  
capability by either master/slave devices.  
I2C1 is Master Only; I2C2 is Master/Slave. The Slave support is subject to driver support in WICEDStudio.  
6.2 HCI UART Interface  
The CYW20719 includes a UART interface for factory programming as well as when operating as a BT HCI device in a system with  
an external host. The UART physical interface is a standard, 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from  
115200 bps to 1.5 Mbps. Typical rates are 115200, 921600, 1500000 bps although intermediate speeds are also available. Support  
for changing the baud rate during normal HCI UART operation is included through a vendor-specific command. The CYW20719 UART  
operates correctly with the host UART as long as the combined baud rate error of the two devices is within ±5%. The UART interface  
has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support enhanced data rates. The interface supports the Bluetooth  
UART HCI (H4) specification. The default baud rate for H4 is 115.2 kbaud.  
During HCI mode the DEV_WAKE signal can be programmed to wake up the CYW20719 or allow the CYW20719 to sleep when radio  
activities permit. The CYW20719 can also wake up the host as needed or allow the host to sleep via the HOST_WAKE signal. The  
combined two signals allow the host and the CYW20719 to optimize system power consumption by allowing independent control of  
low power modes. DEV_WAKE and HOST_WAKE signals can be enabled via a vendor specific command.  
6.3 Peripheral UART Interface  
The CYW20719 has a second UART that may be used to interface to peripherals. This peripheral UART is accessed through the  
optional I/O ports, which can be configured individually and separately for each functional pin. The CYW20719 can map the peripheral  
UART to any GPIO (P0-P39). The Peripheral UART is functionally the same as HCI UART but with a 256 byte transmit and receive  
FIFO.  
Document Number: 002-14815 Rev. *D  
Page 8 of 49  
PRELIMINARY  
CYW20719  
6.4 Crystal Oscillators  
6.4.1 24-MHz Crystal Oscillator  
The CYW20719 uses a 24 MHz crystal oscillator (XTAL). The XTAL must have an accuracy of ±20 ppm as defined by the Bluetooth  
specification. Two external load capacitors are required to work with the crystal oscillator. The selection of the load capacitors is XTAL-  
dependent (see Figure 3).  
Figure 3. Recommended 24 MHz Oscillator Configuration  
CL1  
XIN  
Crystal  
XOUT  
CL2  
Table 2. Reference Crystal Electrical Specifications  
Parameter  
Nominal frequency  
Conditions  
Minimum  
Typical  
24.000  
Maximum  
Unit  
MHz  
Oscillation mode  
Fundamental  
Frequency Accuracy  
Includes operating temperature  
range and aging  
± 20  
ppm  
Equivalent series resistance  
Load capacitance  
Drive level  
8
60  
ohm  
pF  
200  
2
μW  
pF  
Shunt capacitance  
Document Number: 002-14815 Rev. *D  
Page 9 of 49  
PRELIMINARY  
CYW20719  
6.4.2 32 kHz Crystal Oscillator  
The CYW20719 includes a 32 KHz oscillator to provide accurate timing during low power operations. Figure 4 shows the 32 kHz XTAL  
oscillator with external components and Table 3 lists the oscillator’s characteristics. This oscillator can be operated with 32.768 kHz  
crystal oscillator or be driven with a clock input at similar frequency. The default component values are: R1 = 10 MΩ and C1 = C2 =  
~6 pF. The values of C1 and C2 are used to fine-tune the oscillator.  
Figure 4. Recommended 32 kHz Oscillator Electrical Specification  
C2  
32.768 kH z  
R1  
XTAL  
C1  
Table 3. Reference 32 kHz Oscillator Electrical Specification  
Parameter  
Output frequency  
Symbol  
Foscout  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
kHz  
ppm  
ms  
32.768  
Frequency tolerance  
Start-up time  
Crystal-dependent  
100  
500  
Tstartup  
Pdrv  
XTAL drive level  
For crystal selection  
For crystal selection  
For crystal selection  
0.5  
70  
2.2  
μW  
XTAL series resistance  
XTAL shunt capacitance  
External AC Input Amplitude  
Rseries  
Cshunt  
kΩ  
pF  
V
IN (AC)  
Ccouple = 100 pF;  
Rbias= 10 Mohm  
400  
mVpp  
6.5 GPIO Ports  
The CYW20719 has 40 GPIOs labeled P0-P39 on WLCSP package and 16 GPIOs on QFN package. All GPIOs support the following:  
programmable pull-up/down of approx 45K Ohms.  
input disable, allowing pins to be left floating or analog signals connected without risk of leakage.  
source/sink 8 mA at 3.3 V and 4 mA at 1.8 V.  
P15 is Bonded to the same pin as XTALI_32K on the QFN package (Pin 32). If External 32.768KHz crystal is not used, then this  
pin can be used as GPIO P15.  
P26/P27/P28/P29 (some of these pins are not available on QFN package) sink/source 16 mA at 3.3 V and 8 mA at 1.8 V.  
Most peripheral functions can be assigned to any GPIO. For details, refer to Table 4 and Table 5.  
For more details on Supermux configuration and control, refer to "Supermux Wizard for CYW20719" user guide.  
Document Number: 002-14815 Rev. *D  
Page 10 of 49  
PRELIMINARY  
CYW20719  
6.6 Keyboard Scanner (Available only on WLCSP Package)  
The CYW20719 includes a HW keyscanner that supports a maximum matrix size of 20x8. The scanner has 8 inputs (also referred to  
as rows) and 20 outputs (also referred to as columns). Keys are detected by driving the columns down sequentially and sampling the  
rows. The HW scanner includes support for ghost key detection and debouncing. The scanner can also operate in sleep and PDS  
mode allowing low power operation while continuing to detect/store all key strokes, up or down. In other low power modes, the scanner  
can continue to monitor the matrix and initiate exit to active mode upon detecting a change of state.  
Note: Subject to the driver support in WICEDStudio.  
6.7 Mouse Quadrature Signal Decoder  
The CYW20719 includes one double-axis and one single axis quadrature decoders. There are two input lines for each axis and a  
programmable control signal that can be active high or low. The application can access the quadrature interface via the driver included  
in the firmware.  
Note: Subject to the driver support in WICEDStudio.  
6.8 ADC  
CYW20719 includes is a Σ-Δ ADC designed for audio (13 bits) and DC (10 bits) measurements. The ADC can measure the voltage  
on 28 GPIO. When used for analog inputs, the GPIOs must be placed in digital input disable mode to disconnect the digital circuit  
from the pin and avoid leakage. The internal band gap reference has ±5% accuracy without calibration. Calibration and digital  
correction schemes can be applied to reduce ADC absolute error and improve measurement accuracy in DC mode.  
P0, P1, P8-P18, P21-23, P28-P38 can be used as ADC inputs.  
Document Number: 002-14815 Rev. *D  
Page 11 of 49  
PRELIMINARY  
CYW20719  
6.9 PWM  
The CYW20719 has six internal PWMs, labeled PWM0-5  
Each of the six PWM channels contains the following registers:  
16-bit initial value register (read/write)  
16-bit toggle register (read/write)  
16-bit PWM counter value register (read)  
PWM configuration register is shared among PWM0–5 (read/write). This 6-bit register is used:  
To enable/disable each PWM channel  
To select the clock of each PWM channel  
To invert the output phase of each PWM channel  
The application can access the PWM module through the FW driver.  
Figure 5 shows the structure of one PWM channel.  
Figure 5. PWM Block Diagram  
pwm_cfg_adr register  
pwm#_init_val_adr register  
16  
pwm#_togg_val_adr register  
16  
pwm#_cntr_adr  
16  
cntr value is ARM readable  
pwm_out  
Example: PWM cntr w/ pwm#_init_val = 0 (dashed line)  
PWM cntr w/ pwm#_init_val = x (solid line)  
16'HFFFF  
pwm_togg_val_adr  
16'Hx  
16'H000  
pwm#_init  
_value is x  
Document Number: 002-14815 Rev. *D  
Page 12 of 49  
PRELIMINARY  
CYW20719  
6.10 Serial Peripheral Interface block  
The CYW20719 has two independent SPI interfaces. Both interfaces support Single, Dual, and Quad mode SPI operations as well  
as MIPI DBI-C Interface.Either of the interface can be a master/slave. SPI2 can support only one Slave. SPI1 has a 1024 byte transmit  
and receive buffers which is shared with the host UART interface. SPI2 has a dedicated 256 byte transmit and receive buffers. To  
support more flexibility for user applications, the CYW20719 has optional I/O ports that can be configured individually and separately  
for each functional pin. SPI I/O voltage depends on VDDO.  
6.10.1 MIPI interface  
There are three options in DBI type-C corresponding to 9-bit, 16-bit, and 8-bit modes. The CYW20719 plays the role of host, and only  
the 9-bit and 8-bit modes (option 1 and option 3 in DBI-C spec) are supported. In the 9-bit mode, the SCL, CS, MOSI, and MISO pins  
are used. In the 8-bit mode, an additional pin DCX, indicating whether the current outgoing bit stream is a command or data byte is  
required.  
6.11 Pulse Density Modulation (PDM) Microphone  
The CYW20719 accepts a ΣΔ-based one-bit PDM input stream and outputs filtered samples at either 8 kHz or 16 kHz sampling rates.  
The PDM signal derives from an external kit that can process analog microphone signals and generate digital signals. The PDM input  
shares the filter path with the aux ADC. Two types of data rates can be supported:  
8 kHz  
16 kHz  
The external digital microphone takes in a 2.4 MHz clock generated by the CYW20719 and outputs a PDM signal which is registered  
by the PDM interface with either the rising or falling edge of the 2.4 MHz clock selectable through a programmable control bit. The  
design can accommodate two simultaneous PDM input channels, so stereo voice is possible.  
Note: Subject to the driver support in WICED Studio.  
2
6.12 I S Interface  
The CYW20719 supports a single I2S digital audio port in both master and slave modes. The I2S signals are:  
I2S Clock: I2S SCK  
I2S Word Select: I2S WS  
I2S Data Out: I2S DO  
I2S Data In: I2S DI  
I2S SCK and I2S WS become outputs in master mode and inputs in slave mode, while I2S DO always stays as an output and I2S DI  
stays as input. The channel word length is fixed to 16 bits (frame length of 32 bits) and the data is justified so that the MSB of the left-  
channel data is aligned with the MSB of the I2S bus, as per I2S Specifications. The MSB of each data word is transmitted one bit clock  
cycle after the I2S WS transition, synchronous with the falling edge of bit clock. Left Channel data is transmitted when I2S WS is low,  
and right-channel data is transmitted when I2S WS is high. Data bits sent by the CYW20719 are synchronized with the falling edge  
of I2S SCK and should be sampled by the receiver on the rising edge of the I2S SCK.  
The I2S port is primarily used to transfer audio samples while using the A2DP profile1. The A2DP controller is half duplex and the  
direction of the audio samples depend on the A2DP role (sink/source). The I2S clock in the master mode can either be  
44.1 KHz x 32 bits per frame = 1411.2 KHz  
48 KHz x 32 bits per frame = 1536 KHz  
In the slave mode, any clock rate is supported up to a maximum of 3.072 MHz.  
Note: PCM interface shares HW with the I2S interface which means that both voice and audio cannot be routed at the same time.  
2
1. The I S port cannot be used at the application level for purposes other than routing A2DP audio samples.  
Document Number: 002-14815 Rev. *D  
Page 13 of 49  
PRELIMINARY  
CYW20719  
6.13 PCM Interface  
The CYW20719 includes a PCM interface that can connect to linear PCM codec devices in master or slave mode. In master mode,  
the CYW20719 generates the PCM_CLK and PCM_SYNC signals. In slave mode, these signals are provided by another device on  
the PCM interface and are inputs to the CYW20719. Some of the parameters of the PCM interface may be configured by the host.  
The PCM interface is used for full-duplex bi-directional transfer of 8K or 16K voice samples from and to a SCO or eSCO connection2.  
By default, the PCM interface runs in an I2S compatible mode, which allows the CYW20719 to transfer voice samples to I2S devices.  
Note: PCM interface shares HW with the I2S interface which means that both voice and audio cannot be routed simultaneously.  
6.13.1 Slot Mapping  
The CYW20719 supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM Interface. These three  
channels are time-multiplexed onto the single PCM interface by using a time-slotting scheme where the 8 kHz or 16 kHz voice sample  
interval is divided into as many as 16 slots. The number of slots is dependent on the selected interface rate (128 kHz, 256kHz, 512  
kHz, 1024 kHz or 2048 kHz). The corresponding number of slots for these interface rate is 1, 2, 4, 8, and 16, respectively. Transmit  
and receive PCM data from an SCO channel is always mapped to the same slot. The PCM data output driver tristates its output on  
unused slots to allow other devices to share the same PCM interface signals. The data output driver tristates its output after the falling  
edge of the PCM clock during the last bit of the slot.  
6.13.2 Frame Synchronization  
The CYW20719 supports both short and long-frame synchronization in both master and slave modes and can be configured from the  
host. In short frame synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate that is a  
single-bit period in width and is synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of  
the bit clock and expects the first bit of the first slot to start at the next rising edge of the clock. In long-frame synchronization mode,  
the frame synchronization signal is again an active-high pulse at the audio frame rate; however, the duration is three bit periods and  
the pulse starts coincident with the first bit of the first slot.  
6.13.3 Data Formatting  
The CYW20719 may be configured to generate or accept several different data formats. For conventional narrow band speech mode,  
the CYW20719 always uses 13 of the 16 bits in each PCM frame. The location and order of these 13 bits can be configured to support  
various data formats on the PCM interface. The remaining three bits are ignored on the input and may be filled with 0s, 1s, a sign bit,  
or a programmed value on the output. The default format is 13-bit 2's complement data, left justified, filled with 0's and clocked MSB  
first.  
6.13.4 Burst PCM Mode  
In this mode of operation, the PCM bus runs at a significantly higher rate of operation to allow the host to duty cycle its operation and  
save current. In this mode of operation, the PCM bus can operate at a rate of up to 24 MHz. This mode of operation is initiated with  
an HCI command from the host.  
6.14 Security Engine  
The CYW20719 includes a hardware security accelerator which greatly decreases the time required to perform typical security  
operations.This security engine includes:  
Public key acceleration (PKA) cryptography  
AES-CTR/CBC-MAC/CCM acceleration  
SHA2 message hash and HMAC acceleration  
RSA encryption and decryption of modulus sizes up to 2048 bits  
Elliptic curve Diffie-Hellman in prime field GF(p)  
Note: Security engine is used only by Bluetooth stack to reduce CPU overhead. It is not available for application use  
6.14.1 Random Number Generator  
This hardware block is used for key generation for Bluetooth.  
Note: Availability for use by the application is subject to the support in WICEDStudio.  
2. The PCM interface cannot be used as a generic serial interface at the application level. It can only be used for routing SCO or eSCO voice samples.  
Document Number: 002-14815 Rev. *D  
Page 14 of 49  
PRELIMINARY  
CYW20719  
6.15 Power Modes  
The CYW20719 supports the following HW power modes:  
Active mode - Normal operating mode in which all peripherals are available and the CPU is active.  
Idle mode- In this mode, the CPU is in “Wait for Interrupt” (WFI) and the HCLK, which is the high frequency clock derived from the  
main crystal oscillator is running at a lower clock speed. Other clocks are active and the state of the entire chip is retained.  
Sleep mode - In this mode, CPU is in WFI and the HCLK is not running. The PMU determines if the other clocks can be turned off  
and does accordingly. State of the entire chip is retained, the internal LDOs run at a lower voltage (voltage is managed by the PMU),  
and SRAM is retained.  
Power Down Sleep (PDS) mode -This mode is an extension of the PMU Sleep wherein most of the peripherals such as UART and  
SPI are turned off. The entire memory is retained, and on wakeup the execution resumes from where it paused.  
Shut Down Sleep (SDS) mode -Everything is turned off except I/O Power Domain, RTC, and LPO. The device can come out of  
this mode either due to BT activity or by an external interrupt. Before going into this mode, the application can store some bytes of  
data into “Always On RAM” (AON). When the device comes out of this mode, the data from AON is restored. After waking from  
SDS, the application will start from the beginning (warmboot) and has to restore its state based on information stored in AON. In  
the SDS mode, a single BT task with no data activity, such as an ACL connection, BLE connection, or BLE advertisement can be  
performed.  
HID-OFF (Timed-Wake) mode -The device can enter this mode asynchronously, that is, the application can force the device into  
this mode at any time. I/O Power Domain, RTC, and LPO are the only active blocks. A timer that runs off the LPO is used to wake  
the device up after a predetermined fixed time.  
HID-OFF (External Interrupt-Waked) mode - This mode is similar to Timed-Wake, but in HID-OFF mode even the LPO and RTC  
are turned off. So, the only wakeup source is an external interrupt.  
Transition between power modes is handled by the on-chip firmware with host/application involvement. Please see Firmware Section  
for details.  
7. Firmware  
The CYW20719 ROM firmware runs on a real time operating system and handles the programming and configuration of all on-chip  
hardware functions as well as the BT/LE baseband, Link Manager (LM), HCI, Generic Attribute Profile (GATT), Attribute Protocol  
(ATT), Logical Link Control and Adaptation Protocol (L2CAP) and Service Discovery Protocol (SDP) layers. The ROM also includes  
drivers for on-chip peripherals as well as handling on-chip power management functions including transitions between different power  
modes.  
The CYW20719 is fully supported by the Cypress WICED® Studio platform. WICED releases provide latest ROM patches, drivers,  
and sample applications allowing customized applications using the CYW20719 to be built quickly and efficiently.  
Please refer to WICED Technical Brief and CYW20719 Product Guide for details on the firmware architecture, driver documentation,  
power modes and how to write applications/profiles using the CYW20719.  
Document Number: 002-14815 Rev. *D  
Page 15 of 49  
PRELIMINARY  
CYW20719  
8. Pin Assignments and GPIOs  
This section addresses both QFN and WLCSP pin assignments and GPIOs for the CYW20719 device.  
8.1 40-Pin QFN and WLCSP Pin Assignments  
Table 4. 40-Pin QFN and WLCSP Pin Assignments  
Pin Number  
Pin Name  
I/O  
Power Domain  
Description  
QFN-40  
WLCSP  
Microphone  
ADC_avddBAT  
ADC_AVDDC  
Mic_avdd  
5
I
I
I
I
I
I
I
I
I
I
VDDIO  
VDDIO  
3
No Connect  
19  
32  
4
MIC_AVDD  
MIC_AVDD  
MIC_AVDD  
MIC_AVDD  
AVSS  
Microphone supply  
Micbias  
Microphone Bias Supply  
Microphone negative input  
Microphone positive input  
Analog ground  
Micn  
Micp  
18  
34  
17  
33  
47  
ADC_AVSS  
ADC_AVSSC  
ADC_REFGND  
Mic_avss  
AVSS  
Analog ground  
AVSS  
Analog reference ground  
Microphone analog ground  
AVSS  
Baseband Supply  
BT_VDDO  
25  
1,8,9,11,14,26,29,4  
2,56,66,91  
I
I/O  
I
VDDO  
VDDC  
VDDO  
I/O Pad Power supply  
BT_VDDC  
VDDO  
2,43,58,74,  
99  
Baseband core power supply  
39  
-
LHL PAD power supply. Can be tied to  
BT_VDDO.  
RF Power Supply  
BT_PAVDD  
17  
21  
20  
19  
116  
106  
125  
110  
I
I
I
I
PAVDD  
PA supply  
BT_PLLVDD1p2  
BT_VCOVDD1p2  
BT_IFVDD1P2  
Onboard LDO's  
DIGLDO_VDDIN  
DIGLDO_VDDOUT  
RFLDO_VDDIN  
RFLDO_VDDOUT  
SR_VDDBAT3V  
VDDBAT3V  
PLLVDD1P2 RFPLL and crystal oscillator supply  
VCOVDD1P2 VCO supply  
IFVDD1P2  
IFPLL Power Supply  
16  
127  
126  
111  
128  
129  
120  
121  
I
O
I
Internal Digital LDO input  
Internal Digital LDO output  
RF LDO Input  
15  
14  
13  
O
I
RF LDO Output  
Core Buck Input  
I
Core Buck Input  
SR_VLX  
12  
O
Core Buck Output  
Ground Pins  
BT_PAVSS  
BT_PLLVSS  
BT_VCOVSS  
BT_IFVSS  
123  
107  
119  
115  
I
I
I
I
I
VSS  
VSS  
VSS  
VSS  
VSS  
Ground  
Ground  
Ground  
Ground  
Ground  
BT_VSSC  
30, 57, 75, 87, 117,  
118, 124, 133, 134  
Document Number: 002-14815 Rev. *D  
Page 16 of 49  
PRELIMINARY  
CYW20719  
Table 4. 40-Pin QFN and WLCSP Pin Assignments (Cont.)  
Pin Number  
WLCSP  
Pin Name  
I/O  
Power Domain  
Description  
QFN-40  
VSSC  
112  
I
I
VSS  
VSS  
Ground  
Ground  
VSSO_0  
10,13, 25, 28,72,  
96,101  
SR_PVSS  
xtal_avss  
130  
35  
I
I
I
VSS  
Ground  
XTAL_AVSS Crystal ground  
PMU_AVSS PMU ground  
PMU_AVSS  
UART  
113  
BT_UART_CTS_N  
30  
29  
15  
31  
I, PU  
VDDO  
VDDO  
Clear to send (CTS) for HCI UART  
interface. Leave unconnected if not  
used.  
BT_UART_RTS_N  
O, PU  
Request to send (RTS) for HCI UART  
interface. Leave unconnected if not  
used.  
BT_UART_RXD  
BT_UART_TXD  
27  
28  
45  
46  
I
VDDO  
VDDO  
UART serial input. Serial data input for  
the HCI UART interface.  
O, PU  
UART serial output. Serial data output  
for the HCI UART interface.  
Crystal  
BT_XTALI  
22  
105  
I
PLLVDD1P2 Crystal oscillator input. See “The XTAL  
must have an accuracy of ±20 ppm as  
defined by the Bluetooth specification.  
Two external load capacitors are  
required to work with the crystal oscil-  
lator. The selection of the load capac-  
itors is XTAL-dependent (see Figure 3)”  
for options.  
BT_XTALO  
XTALI_32K  
XTALO_32K  
BT_RF  
23  
32  
31  
18  
104  
6
O
I
PLLVDD1P2 Crystal oscillator output.  
VDDO  
VDDO  
Low-power oscillator input.  
Low-power oscillator output.  
RF Antenna Port  
20  
O
132  
68  
BT_CLK_REQ  
JTAG_SEL  
O
N/A  
Used for shared-clock application.  
11  
102  
Reserved ARM JTAG debug mode  
control. Connect to GND for all applica-  
tions.  
RST_N  
10  
103  
I
VDDO  
Active-low system reset with internal  
pull-up resistor.  
Reserved Pins  
Reserved  
26  
21, 36, 49, 61, 77,  
84, 85, 108  
N/A  
N/A  
N/A  
N/A  
Reserved. Leave unconnected.  
Reserved, connect to GND  
Reserved, Connect to  
GND  
16, 92  
Document Number: 002-14815 Rev. *D  
Page 17 of 49  
PRELIMINARY  
CYW20719  
8.2 40-Pin QFN and WLCSP GPIOs  
Table 5. 40-Pin QFN and WLCSP GPIOs  
Pin Number  
Power  
Domain  
Pin Name  
I/O  
Description  
QFN-40  
WLCSP  
BT_DEV_WAKE  
86  
I
VDDO  
Asignal from the host to the CYW20719 indicating  
that the host requires attention.  
BT_HOST_WAKE  
24  
76  
O
VDDO  
A signal from the CYW20719 device to the host  
indicating that the Bluetooth device requires  
attention.  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
P0  
3
44  
59  
79  
78  
93  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
GPIO: Can also be configured as a GCI Pin  
GPIO: Can also be configured as a GCI Pin  
GPIO: Can also be configured as a GCI Pin  
GPIO: Can also be configured as a GCI Pin  
GPIO: P0  
Keyboard scan input (row): KSI0  
A/D converter input 29  
Supermux I/O functions as defined in Table 6.  
P1  
4
54  
I/O  
VDDO  
GPIO: P1  
Keyboard scan input (row): KSI1  
A/D converter input 28  
Supermux I/O functions as defined in Table 6  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
34  
60  
22  
23  
37  
50  
62  
69  
52  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
GPIO: P2  
Keyboard scan input (row): KSI2  
Supermux I/O functions as defined in Table 6  
GPIO: P3  
Keyboard scan input (row): KSI3  
Supermux I/O functions as defined in Table 6  
35  
GPIO: P4  
Keyboard scan input (row): KSI4  
Supermux I/O functions as defined in Table 6  
GPIO: P5  
Keyboard scan input (row): KSI5  
Supermux I/O functions as defined in Table 6  
36  
37  
GPIO: P6  
Keyboard scan input (row): KSI6  
Supermux I/O functions as defined in Table 6  
GPIO: P7  
Keyboard scan input (row): KSI7  
Supermux I/O functions as defined in Table 6  
GPIO: P8  
A/D converter input 27  
Supermux I/O functions as defined in Table 6  
GPIO: P9  
A/D converter input 26  
External T/R switch control: tx_pd  
Supermux I/O functions as defined in Table 6  
Document Number: 002-14815 Rev. *D  
Page 18 of 49  
PRELIMINARY  
CYW20719  
Table 5. 40-Pin QFN and WLCSP GPIOs (Cont.)  
Pin Number  
Pin Name  
Power  
Domain  
I/O  
Description  
QFN-40  
WLCSP  
P10  
40  
63  
I/O  
VDDO  
GPIO: P10  
Keyboard scan output (column): KSO2  
A/D converter input 25  
Supermux I/O functions as defined in Table 6  
P11  
P12  
P13  
P14  
P15c  
P16  
P17  
P18  
40  
70  
40  
71  
24  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
GPIO: P11  
A/D converter input 24  
Supermux I/O functions as defined in Table 6  
GPIO: P12  
A/D converter input 23  
Supermux I/O functions as defined in Table 6  
1
GPIO: P13  
A/D converter input 22  
Supermux I/O functions as defined in Table 6  
GPIO: P14  
A/D converter input 21  
Supermux I/O functions as defined in Table 6  
32  
33  
38  
GPIO: P15  
A/D converter input 20  
Supermux I/O functions as defined in Table 12  
48  
38  
51  
GPIO: P16  
A/D converter input 19  
Supermux I/O functions as defined in Table 6  
GPIO: P17  
A/D converter input 18  
Supermux I/O functions as defined in Table 6  
GPIO: P18  
A/D converter input 17  
Supermux I/O functions as defined in Table 6  
P19  
P20  
P21  
39  
12  
53  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
Reserved for system use. Leave unconnected.  
Reserved for system use. Leave unconnected.  
GPIO: P21  
A/D converter input 14  
Supermux I/O functions as defined in Table 6  
P22  
P23  
1
27  
64  
I/O  
I/O  
VDDO  
VDDO  
GPIO: P22  
A/D converter input 13  
Supermux I/O functions as defined in Table 6  
GPIO: P23  
A/D converter input 12  
Supermux I/O functions as defined in Table 6  
P24  
P25  
P26  
8
7
90  
97  
83  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
GPIO: P24  
Supermux I/O functions as defined in Table 6  
GPIO: P25  
Supermux I/O functions as defined in Table 6  
GPIO: P26  
Current: 16 mA sink  
Supermux I/O functions as defined in Table 6  
Document Number: 002-14815 Rev. *D  
Page 19 of 49  
PRELIMINARY  
CYW20719  
Table 5. 40-Pin QFN and WLCSP GPIOs (Cont.)  
Pin Number  
Pin Name  
Power  
Domain  
I/O  
Description  
QFN-40  
WLCSP  
P27  
P28  
94  
I/O  
VDDO  
GPIO: P27  
Current: 16 mA sink  
Supermux I/O functions as defined in Table 6  
1
2
41  
I/O  
I/O  
VDDO  
VDDO  
GPIO: P28  
A/D converter input 11  
Current: 16 mA sink  
Supermux I/O functions as defined in Table 6  
P29  
80  
GPIO: P29  
Optical control output: QOC3  
A/D converter input 10  
Current: 16 mA sink  
Supermux I/O functions as defined in Table 6  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37c  
P38  
9
5
5
5
6
95  
73  
98  
100  
81  
65  
55  
88  
89  
82  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
GPIO: P30  
A/D converter input 9  
Supermux I/O functions as defined in Table 6  
GPIO: P31  
A/D converter input 8  
Supermux I/O functions as defined in Table 6  
GPIO: P32  
A/D converter input 7  
Supermux I/O functions as defined in Table 6  
GPIO: P33  
A/D converter input 6  
Supermux I/O functions as defined in Table 6  
GPIO: P34  
A/D converter input 5  
Supermux I/O functions as defined in Table 6  
GPIO: P35  
A/D converter input 4  
Supermux I/O functions as defined in Table 6  
GPIO: P36  
A/D converter input 3  
Supermux I/O functions as defined in Table 6  
GPIO: P37  
A/D converter input 2  
Supermux I/O functions as defined in Table 6  
GPIO: P38  
A/D converter input 1  
Supermux I/O functions as defined in Table 6  
P39  
Reserved for system use. Leave unconnected.  
Strapping Pins  
BT_TM1  
67  
I
I
Device test mode control. Connect to GND for all  
applications.  
PMU_DISABLE  
109  
VDDO  
PMU Enable/Disable. Connected to ground.  
a. All GPIOs are super mux. All GPIOs can be programmed for any alternative functions as listed in Table 6 and Table 7.  
Document Number: 002-14815 Rev. *D  
Page 20 of 49  
PRELIMINARY  
CYW20719  
b. During power-on reset, all inputs are disabled.  
c. P15 and P37 should not be driven high externally while the part is held in reset (they can be floating or driven low). Failure to do so may cause some current to flow  
through these pins until the part comes out of reset.  
Table 6. GPIO Supermux Input Functions (Cont.)  
Table 6. GPIO Supermux Input Functions  
Input  
spiffy2_int[s]  
puart_rx  
puart_cts_n  
SCL  
Description  
SPIFFY 2 Interrupt (Slave)  
Peripheral UART RX  
Peripheral UART CTS  
I2C Clock  
Input  
SWDCK  
Description  
Serial Wire Debugger Clock  
Serial Wire Debugger I/O  
SPIFFY 1 Clock (Slave)  
SWDIO  
spiffy1_clk[s]  
spiffy1_cs[s]  
SPIFFY 1 Chip Select (Slave)  
SDA  
I2C Data  
spiffy1_mosi[s] SPIFFY 1 MOSI (Slave)  
spiffy1_miso[m] SPIFFY 1 MISO (Master)  
SCL2  
I2C2 Clock  
SDA2  
I2C2 Data  
spiffy1_io2  
SPIFFY 1 I/O 2 (Quad SPI)  
SPIFFY 1 I/O 3 (Quad SPI)  
SPIFFY 1 Interrupt (Slave)  
SPIFFY 2 Clock (Slave)  
PCM_IN  
PCM_CLK  
PCM_SYNC  
I2S_DI  
PCM Input  
spiffy1_io3  
PCM Clock  
spiffy1_int[s]  
spiffy2_clk[s]  
spiffy2_cs[s]  
PCM Sync  
I2S Data Input  
I2S Word Select  
I2S Clock  
SPIFFY 2 Chip Select (Slave)  
I2S_WS  
I2S_CLK  
spiffy2_mosi[s] SPIFFY 2 MOSI (Slave)  
spiffy2_miso[m] SPIFFY 2 MISO (Master)  
PDM_IN_Ch_1 PDM Input Channel 1  
PDM_IN_Ch 2 PDM Input Channel 2  
spiffy2_io2  
spiffy2_io3  
SPIFFY 2 I/O 2  
SPIFFY 2 I/O 3  
Document Number: 002-14815 Rev. *D  
Page 21 of 49  
PRELIMINARY  
CYW20719  
Table 7. GPIO Supermux Output Functions (Cont.)  
Output Description  
Table 7. GPIO Supermux Output Functions  
Output  
Description  
rx_pu  
External PA Control Signal  
do_P# (data out of GPIO. For example: 0)  
SWDIO  
Serial Wire Debugger Input/  
Output  
kso0  
Key Scan output 0  
kso1  
Key Scan output 1  
Key Scan output 2  
Key Scan output 3  
Key Scan output 4  
Key Scan output 5  
Key Scan output 6  
Key Scan output 7  
Key Scan output 8  
Key Scan output 9  
Key Scan output 10  
Key Scan output 11  
Key Scan output 12  
Key Scan output 13  
Key Scan output 14  
Key Scan output 15  
Key Scan output 16  
Key Scan output 17  
Key Scan output 18  
Key Scan output 19  
PWM Channel 0  
SDA2  
SCL2  
I2C 2 Data  
kso2  
I2C 2 Clock  
kso3  
puart_tx (uart2_tx)  
puart_rts_n (uart2_rts_n)  
spiffy1_CLK  
Peripheral UART TX  
Peripheral UART RTS  
SPIFFY 1 Clock  
SPIFFY 1 Chip Select  
SPIFFY 1 MOSI  
SPIFFY 1 MISO  
SPIFFY I/O 2  
kso4  
kso5  
spiffy1_CS  
kso6  
spiffy1_MOSI  
spiffy1_MISO  
spiffy1_IO2  
kso7  
kso8  
kso9  
spiffy1_IO3  
SPIFFY I/O 3  
kso10  
spiffy1_INT  
SPIFFY Interrupt  
kso11  
spiffy1_DCX  
MIPI-DBI Data/Command  
Indicator  
kso12  
kso13  
spiffy2_CLK  
spiffy2_CS  
SPIFFY 2 Clock  
SPIFFY 2 Chip Select  
SPIFFY 2 MOSI  
SPIFFY 2 MISO  
SPIFFY 2 I/O 2  
kso14  
kso15  
spiffy2_MOSI  
spiffy2_MISO  
spiffy2_IO2  
spiffy2_IO3  
spiffy2_INT  
spiffy2_DCX  
kso16  
kso17  
kso18  
SPIFFY 2 I/O 3  
kso19  
SPIFFY 2 Interrupt  
do_P# ^ pwm0  
do_P# ^ pwm1  
do_P# ^ pwm2  
do_P# ^ pwm3  
do_P# ^ pwm4  
do_P# ^ pwm5  
aclk0  
MIPI-DBI Data/Command  
Indicator  
PWM Channel 1  
PWM Channel 2  
pcm_in_o  
pcm_out_o  
pcm_bclk_o  
pcm_sync_o  
i2s_ssd  
PCM IN  
PCM Out  
PWM Channel 3  
PCM Bit Clock  
PWM Channel 4  
PCM Sync Output  
I2S Slave Serial Data  
I2S Slave Word Select  
I2S Slave Clock  
I2S Master Serial Data  
I2S Master Word Select  
I2S Master Clock  
PWM Channel 5  
Auxiliary clock Output 0  
Auxiliary clock Output 1  
HID-OFF Indicator  
External PA ramp  
External PA Control Signal  
i2s_sws  
aclk1  
i2s_sck  
HID_OFF  
pa_ramp  
tx_pu  
i2s_msd  
i2s_mws  
i2s_mck  
Document Number: 002-14815 Rev. *D  
Page 22 of 49  
PRELIMINARY  
CYW20719  
9. Pin/Ball Maps  
9.1 40-Pin QFN Pin Map  
The CYW20719 40-pin QFN package is shown in Figure 6.  
Figure 6. 40-Pin QFN Pin Map  
40  
39  
38  
37  
36  
35  
P4  
34  
P2  
33  
32  
31  
P10  
P17  
xtali_32K  
LHL_VDDO  
P7  
P6  
P16  
xtalo_32K  
UART_  
CTS_N  
P28  
P29  
P0  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
UART_  
RTS_N  
3
UART_TXD  
UART_RXD  
P1  
4
CYW20719 5x5 QFN-40  
P34  
P38  
P26  
5
RSVD  
6
BT_VDDO  
HOST_  
WAKE  
7
P25  
8
XTALO  
P33  
9
XTAL1  
RST_N  
10  
PLLVDD1p2  
SR_  
VDDBAT3V  
RFLDO_  
VDDOOUT  
RFLDO_  
VDDIN  
DIGLDO_  
VDDIN  
BT_RF  
18  
IFVDD1p2 VCOVDD1p2  
SR_VLX  
12  
PAVDD  
17  
JTAG_SEL  
11  
13  
14  
15  
16  
19  
20  
Document Number: 002-14815 Rev. *D  
Page 23 of 49  
PRELIMINARY  
CYW20719  
9.2 WLCSP Ball Map  
The CYW20719 WLCSP package is shown in Figure 7.  
Figure 7. WLCSP Ball Map  
14  
28  
42  
55  
66  
73  
83  
91  
98  
103  
13  
27  
41  
54  
65  
72  
82  
90  
97  
102  
12  
26  
40  
53  
64  
71  
81  
89  
96  
101  
11  
25  
39  
52  
63  
70  
80  
88  
95  
100  
10  
24  
38  
51  
9
8
7
6
5
4
3
2
1
23  
37  
50  
62  
69  
22  
36  
49  
61  
21  
35  
48  
60  
20  
34  
19  
33  
47  
18  
32  
46  
59  
17  
31  
45  
58  
16  
30  
44  
57  
68  
77  
86  
15  
29  
43  
56  
67  
76  
85  
74  
79  
78  
87  
75  
84  
92  
94  
93  
99  
105  
104  
107  
106  
109  
108  
113  
120  
129  
110  
114  
122  
131  
112  
128  
111  
127  
115  
116  
118  
117  
123  
119  
125  
121  
130  
124  
126  
132  
134  
133  
Notes:  
Figure 7 shows the bottom view of the WLCSP package (Bumps facing up).  
See Table 4 and Table 9 and for additional WLCSP information.  
Table 9 shows the package view from the bottom (bumps facing up).  
Coordinate origin (0, 0) is at the center of the WLCSP package with the bumps facing up.  
Document Number: 002-14815 Rev. *D  
Page 24 of 49  
PRELIMINARY  
CYW20719  
.
Table 8. CYW20719 WLCSP Bump Coordinates  
Bump#  
1
NET_NAME  
X-COORD (μm)  
Y-COORD (μm)  
BT_VDDO  
BT_VDDC  
1232.28  
1032.28  
832.28  
632.28  
432.28  
232.29  
32.29  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
956.88  
2
3
Reserved - Do not connect  
Micn  
4
5
ADC_avddBAT  
xtali_32K  
P15  
6
7
8
VDDO_0  
VDDO_0  
VSSO_0  
VDDO_0  
P20  
-167.7  
9
-367.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
-567.7  
-767.7  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
832.28  
632.28  
432.28  
232.29  
32.29  
VSSO_0  
VDDO_0  
BT_UART_CTS_N  
Reserved, Connect to GND  
ADC_AVSSC  
Micp  
Mic_avdd  
xtalo_32K  
Reserved  
P3  
-167.7  
P4  
-367.7  
P14  
-567.7  
VSSO_0  
VDDO_0  
P22  
-767.7  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
832.28  
632.28  
432.28  
232.29  
32.29  
VSSO_0  
BT_VDDO  
BT_VSSC  
BT_UART_RTS_N  
Micbias  
956.88  
956.88  
956.88  
ADC_REFGND  
ADC_AVSS  
xtal_avss  
Reserved  
P5  
956.88  
956.88  
956.88  
-167.7  
956.88  
-367.7  
956.88  
P17  
-567.7  
956.88  
P19  
-767.7  
956.88  
P12  
-967.69  
-1167.69  
-1367.69  
956.88  
P28  
956.88  
VDDO_0  
956.88  
Document Number: 002-14815 Rev. *D  
Page 25 of 49  
PRELIMINARY  
CYW20719  
Table 8. CYW20719 WLCSP Bump Coordinates (Cont.)  
NET_NAME  
Bump#  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
X-COORD (μm)  
Y-COORD (μm)  
BT_VDDC  
BT_GPIO_2  
BT_UART_RXD  
BT_UART_TXD  
Mic_avss  
P16  
1232.28  
1032.28  
832.28  
632.28  
432.28  
32.29  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
356.89  
356.89  
356.89  
356.89  
356.89  
356.89  
356.89  
322.94  
156.89  
156.89  
156.89  
156.89  
156.89  
156.89  
156.89  
156.89  
156.89  
-43.1  
Reserved  
P6  
-167.7  
-367.7  
P18  
-567.7  
P9  
-767.7  
P21  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
832.28  
632.28  
32.29  
P1  
P36  
BT_VDDO  
BT_VSSC  
BT_VDDC  
BT_GPIO_3  
P2  
Reserved  
P7  
-167.7  
-367.7  
P10  
-767.7  
P23  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
-367.7  
P35  
VDDO_0  
BT_TM1  
BT_CLK_REQ  
P8  
P11  
-767.7  
P13  
-967.69  
-1167.69  
-1367.69  
401.88  
1432.27  
1232.28  
1032.28  
832.28  
632.28  
-767.7  
VSSO_0  
P31  
BT_VDDC  
BT_VSSC  
BT_HOST_WAKE  
Reserved  
BT_GPIO_5  
BT_GPIO_4  
P29  
P34  
-967.69  
-1167.69  
-1367.69  
1432.27  
P39  
P26  
Reserved  
Document Number: 002-14815 Rev. *D  
Page 26 of 49  
PRELIMINARY  
CYW20719  
Table 8. CYW20719 WLCSP Bump Coordinates (Cont.)  
Bump#  
85  
NET_NAME  
X-COORD (μm)  
Y-COORD (μm)  
Reserved  
BT_DEV_WAKE  
BT_VSSC  
P37  
1232.28  
1032.28  
832.28  
-767.7  
-43.1  
-43.1  
86  
87  
-43.1  
88  
-43.1  
89  
P38  
-967.69  
-1167.69  
-1367.69  
1432.27  
-367.7  
-43.1  
90  
P24  
-43.1  
91  
VDDO_0  
-43.1  
92  
Reserved, Connect to GND  
P0  
-243.09  
-243.09  
-243.09  
-243.09  
-243.09  
-243.09  
-243.09  
-435.87  
-443.09  
-443.09  
-443.09  
-443.09  
-597.97  
-597.97  
-797.97  
-814.63  
-819  
93  
94  
P27  
-567.7  
95  
P30  
-767.7  
96  
VSSO_0  
-967.69  
-1167.69  
-1367.69  
56.23  
97  
P25  
98  
P32  
99  
BT_VDDC  
P33  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
-767.7  
VSSO_0  
-967.69  
-1167.69  
-1367.69  
1462.79  
1262.79  
1262.79  
1462.79  
-1059.5  
-1259.5  
1062.79  
-659.5  
JTAG_SEL  
RST_N  
BT_XTALO  
BT_XTALI  
BT_PLLVDD1p2  
BT_PLLVSS  
Reserved  
PMU_DISABLE  
BT_IFVDD1p2  
RFLDO_VDDIN1P5  
VSSC  
-819  
-849.66  
-1018.99  
-1018.99  
-1018.99  
-1018.99  
-1035.5  
-1087.29  
-1128.6  
-1128.6  
-1212.28  
-1218.99  
-1218.99  
-1218.99  
-1153.5  
-1328.59  
-1412.28  
-1418.99  
-859.5  
PMU_AVSS  
PMU_AVSS  
BT_IFVSS  
BT_PAVDD  
BT_VSSC  
BT_VSSC  
BT_VCOVSS  
VDDBAT3V  
SR_VLX  
-1059.5  
-1459.49  
1159.51  
756.99  
-234  
-433.99  
1472.59  
-1059.5  
-1259.5  
-1459.49  
994.94  
-34  
Reserved  
BT_PAVSS  
BT_VSSC  
BT_VCOVDD1p2  
DIGLDO_VDDOUT  
1472.59  
-459.5  
Document Number: 002-14815 Rev. *D  
Page 27 of 49  
PRELIMINARY  
CYW20719  
Table 8. CYW20719 WLCSP Bump Coordinates (Cont.)  
Bump#  
127  
NET_NAME  
DIGLDO_VDDIN1P5  
X-COORD (μm)  
Y-COORD (μm)  
-659.5  
-859.5  
-1418.99  
-1418.99  
-1418.99  
-1418.99  
-1418.99  
-1475  
128  
RFLDO_VDDOUT  
SR_VDDBAT3V  
SR_PVSS  
129  
-1059.5  
-1259.5  
-1459.49  
988.31  
365.99  
165.99  
130  
131  
Reserved  
132  
BT_RF  
133  
BT_VSSC  
-1479.96  
-1479.96  
134  
BT_VSSC  
Document Number: 002-14815 Rev. *D  
Page 28 of 49  
PRELIMINARY  
CYW20719  
10. Specifications  
10.1 Electrical Characteristics  
Caution! The absolute maximum ratings in the following table indicate levels where permanent damage to the device can occur, even  
if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at  
absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.  
Table 9. Absolute Maximum Ratings  
Requirement Parameter  
Maximum Junction Temperature  
Specification  
Unit  
Min.  
Nom.  
Max.  
125  
°C  
V
VDD IO (BT_VDDO, VDDO_0)  
–0.5  
–0.5  
3.795  
1.38  
VDD RF (BT_IFVDD1p2, BT_PLLVDD1p2,  
BT_VCOVDD1p2, BT_PAVDD)  
V
VDDBAT3V/SR_VDDBAT3V  
DIGLDO_VDDIN1P5  
RFLDO_VDDIN1P5  
MIC_AVDD  
–0.5  
–0.5  
–0.5  
–0.5  
3.795  
1.65  
V
V
V
V
1.50  
3.795  
Table 10. ESD/Latch up  
Requirement Parameter  
Specification  
Unit  
Min.  
–2000  
–500  
Nom.  
Max.  
2000  
500  
ESD Tolerance HBM  
ESD Tolerance CDM  
Latch up  
V
V
200  
mA  
Table 11. Environmental Ratings  
Characteristic  
Operating Temperature  
Value  
Units  
°C  
–30 to +85  
Storage Temperature  
–40 to +150  
°C  
Note:  
Lowest operating temperature for the 32 KHz xtal is -10°C  
Table 12. Recommended Operating Conditions  
Parameter  
Specification  
Unit  
Min.  
1.76  
1.9  
Typ.  
3.0  
Max.  
3.63  
3.63  
3.63  
VDDIO (BT_VDDO, VDDO_0)  
VDDBAT3Va /SR_VDDBAT3Va  
MIC_AVDD  
V
V
V
3.0  
1.76  
3.0  
a. Supply tolerance for VDDBAT3V and SR_VDDBAT3V must be 2% or less.  
Document Number: 002-14815 Rev. *D  
Page 29 of 49  
PRELIMINARY  
CYW20719  
The CYW20719 uses an on board low voltage detector to shut down the part when supply voltage (VDDBAT3V) drops below operating  
range.  
Table 13. Shutdown Voltage  
Specification  
Parameter  
Unit  
Min.  
Typ.  
Max.  
VSHUT  
1.625  
1.7  
1.76  
V
10.1.1 Core Buck Regulator  
Table 14. Core Buck Regulator  
Parameter  
Input supply voltage DC, VBAT  
CBUCK output current  
Conditions  
Min.  
1.9  
Typ.  
3.0  
Max.  
3.63  
65  
Unit  
V
DC voltage range inclusive of disturbances  
Low Power Operation Mode (LPOM) only  
mA  
V
Output voltage range  
Programmable, 30mV/step  
default = 1.2 V (bits = 0000)  
1.2  
1.26  
1.5  
Output voltage DC accuracy  
Includes load and line regulation  
–4  
+4  
%
LPOM efficiency (high load)  
LPOM efficiency (low load)  
85  
80  
%
%
Input supply voltage ramp-up time  
0 to 3.3 V  
40  
μs  
Minimum capacitor value refers to residual capacitor value after taking into account part-to-part tolerance, DC-bias, temperature,  
and aging.  
Maximum capacitor value refers to the total capacitance seen at a node where the capacitor is connected. This also includes any  
decoupling capacitors connected at the load side, if any.  
10.1.2 Recommended External Component for Core Buck Regulator  
Table 15. Recommended External Component for Core Buck Regulator  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
External output inductor L  
2.2 μH ±25%, DCR=114 mΩ ±20%, ACR<1Ω  
(for frequency<1 MHz)  
2.2  
μH  
External output capacitor, Cout  
External input capacitor, Cin  
4.7 μF ±10%, 6.3V, 0402 inch, X5R, MLCC  
capacitor +board total-ESR < 20 mΩ  
4.7  
10  
μF  
μF  
For SR_VDDBAT pin  
Ceramic, X5R, 0402, ESR<30 mΩ at  
4 MHz, +/-20%, 6.3V, 10 μF  
10.1.3 Recommended External Components for RFLDO  
Table 16. Recommended External Components for RFLDO  
Parameter  
Conditions  
Total ESR (trace/cap): 5 m–240 mΩ  
Min.  
Typ.  
Max.  
Unit  
External output capacitor, Co  
0.5  
2.2  
4.7  
μF  
Document Number: 002-14815 Rev. *D  
Page 30 of 49  
PRELIMINARY  
CYW20719  
10.1.4 Digital I/O Characteristics  
Table 17. Digital I/O Characteristics  
Characteristics  
Input low voltage (VDDO = 3 V)  
Input high voltage (VDDO = 3 V)  
Input low voltage (VDDO = 1.8 V)  
Input high voltage (VDDO = 1.8 V)  
Output low voltage  
Symbol  
VIL  
Minimum  
Typical  
Maximum  
Unit  
V
0.8  
VIH  
VIL  
2.4  
V
0.4  
V
VIH  
VOL  
VOH  
IIL  
1.4  
V
0.45  
V
Output high voltage  
VDDO – 0.45 V  
V
Input low current  
1.0  
1.0  
0.4  
8.0  
4.0  
8.0  
4.0  
μA  
μA  
pF  
mA  
mA  
mA  
mA  
Input high current  
IIH  
Input capacitance  
CIN  
IOL  
Output low current (VDDO = 3 V, VOL = 0.5 V)  
Output low current (VDDO = 1.8 V, VOL = 0.5 V)  
Output high current (VDDO = 3 V, VOH = 2.55 V)  
Output high current (VDDO = 1.8 V, VOH = 1.35 V)  
IOL  
IOH  
IOH  
10.1.5 ADC Electrical Characteristics  
Table 18. Electrical Characteristics  
Parameter  
Current consumption  
Power down current  
ADC Core Specification  
ADC reference voltage  
ADC sampling clock  
Absolute error  
Symbol  
ITOT  
Conditions/Comments  
Min.  
Typ.  
Max.  
Unit  
2
1
3
mA  
μA  
At room temperature  
VREF  
From BG with ±3% accuracy  
0.85  
12  
5
V
MHz  
%
Includes gain error, offset and  
distortion. Without factory calibration.  
Includes gain error, offset and  
distortion. After factory calibration.  
2
%
ENOB  
For audio application  
For static measurement  
For audio application  
For static measurement  
For audio application  
For audio application  
For static measurement  
For audio application  
For static measurement  
For audio application  
For static measurement  
12  
10  
13  
Bit  
ADC input full scale  
FS  
1.6  
1.8  
8
3.6  
Conversion rate  
Signal bandwidth  
16  
kHz  
Hz  
20  
8K  
DC  
Input impedance  
Startup time  
RIN  
10  
500  
KΩ  
10  
20  
ms  
μs  
MIC PGA Specifications  
MIC PGA gain range  
MIC PGA gain step  
0
1
42  
dB  
dB  
μV  
PGA input referred noise  
At 42 dB PGA gain A-weighted  
4
Document Number: 002-14815 Rev. *D  
Page 31 of 49  
PRELIMINARY  
CYW20719  
Table 18. Electrical Characteristics (Cont.)  
Parameter  
MIC Bias Specifications  
MIC bias output voltage  
MIC bias loading current  
MIC bias noise  
Symbol  
Conditions/Comments  
Min.  
Typ.  
Max.  
Unit  
At 3 V supply, 25°C, default settings  
2.4  
3
3
V
mA  
μV  
Refers to PGA input 20 Hz to  
8 kHz, A-weighted  
MIC bias PSRR  
ADC SNR  
at 1 kHz  
40  
dB  
dB  
A-weighted 0 dB PGA gain,  
Temperature= 25°C  
78  
ADC THD + N  
–3 dBFS input 0 dB PGA gain,  
Temperature= 25°C  
70  
dB  
GPIO input voltage  
GPIO source impedancea  
Always lower than avddBAT  
Resistance  
3.6  
1
V
kΩ  
pF  
Capacitance  
10  
a. Conditional requirement for the measurement time of 10 μs. Relaxed with longer measurement time for each GPIO input channel.  
10.1.6 Current Consumption  
In Table 19, current consumption measurements are taken at input of VBAT and VDDIO combined (LDOIN = VDDIO = 3.0V).  
Table 19. Current Consumption BT/LE  
Operational Mode  
Conditions  
Typical  
1.1  
Unit  
mA  
mA  
mA  
mA  
uA  
HCI  
48 MHz with Pause  
48 MHz Without Pause  
Continuous RX  
2.2  
RX  
5.9  
TX  
Continuous TX - 0 dBm  
5.6  
PDS  
61  
HID-Off  
32 KHz XTAL and 16 KB Retention RAM on  
Unconnectable - 1 sec  
1.6  
uA  
Advertising  
14  
uA  
Connectable undirected - 1 sec  
Master - 1 sec  
17  
uA  
LE Connection - SDS  
TBD  
TBD  
122  
132  
138  
6.9  
uA  
Slave - 1 sec  
uA  
Page Scan - PDS  
Sniff - PDS  
Interlaced - R1  
uA  
500 ms Sniff, 1 attempt, 0 timeout - Master  
500 ms Sniff, 1 attempt, 0 timeout - Slave  
uA  
uA  
Bi-Directional Data Exchange Continuous DM5 or DH5 packets - Master/Slave  
mA  
Document Number: 002-14815 Rev. *D  
Page 32 of 49  
PRELIMINARY  
CYW20719  
10.2 RF Specifications  
Note: Table 20 and Table 21 apply to single-ended industrial temperatures. Unused inputs are left open.  
Table 20. Receiver RF Specifications  
Parameter  
Frequency range  
RX sensitivity (QFN)a  
Mode and Conditions  
Min  
Typ  
Max  
Unit  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
2402  
2480  
GFSK, 0.1% BER, 1 Mbps  
π/4-DQPSK, 0.01% BER, 2 Mbps  
8-DPSK, 0.01% BER, 3 Mbps  
GFSK, 0.1% BER, 1 Mbps  
π/4-DQPSK, 0.01% BER, 2 Mbps  
8-DPSK, 0.01% BER, 3 Mbps  
All data rates  
–92.0b  
–94.0b  
–88.0b  
–91.5b  
–93.5b  
–87.5b  
RX sensitivity (WLCSP)a  
Maximum input  
–20  
GFSK Modulation  
C/I cochannel  
GFSK, 0.1% BERc  
GFSK, 0.1% BERd  
GFSK, 0.1% BERc  
GFSK, 0.1% BERe  
GFSK, 0.1% BERc  
11.0  
0
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
–30.0  
–40.0  
–9.0  
–20.0  
C/I 1 MHz adjacent to image channel GFSK, 0.1% BERc  
QPSK Modulation  
C/I cochannel  
p/4-DQPSK, 0.1% BERc  
p/4-DQPSK, 0.1% BERd  
p/4-DQPSK, 0.1% BERc  
p/4-DQPSK, 0.1% BERe  
p/4-DQPSK, 0.1% BERc  
13.0  
0
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
–30.0  
–40.0  
–9.0  
–20.0  
C/I 1 MHz adjacent to image channel p/4-DQPSK, 0.1% BERc  
8PSK Modulation  
C/I cochannel  
8-DPSK, 0.1% BERc  
8-DPSK, 0.1% BERc  
8-DPSK, 0.1% BERc  
8-DPSK, 0.1% BERe  
8-DPSK, 0.1% BERc  
21.0  
5.0  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
–25.0  
–33.0  
0
C/I 1 MHz adjacent to image channel 8-DPSK, 0.1% BERc  
13  
Out-of-Band Blocking Performance (CW)d  
30 MHz to 2000 MHz  
2000 MHz to 2399 MHz  
2498 MHz to 3000 MHz  
3000 MHz to 12.75 GHz  
Inter-modulation Performancef  
BT, interferer signal level  
Spurious Emissions  
BDR GFSK 0.1% BER  
BDR GFSK 0.1% BER  
BDR GFSK 0.1% BER  
BDR GFSK 0.1% BER  
–10.0  
–27.0  
–27.0  
–10.0  
dBm  
dBm  
dBm  
dBm  
BDR GFSK 0.1% BER  
–39.0  
dBm  
30 MHz to 1 GHz  
–57.0  
–55.0  
dBm  
dBm  
1 GHz to 12.75 GHz  
a. Dirty TX is off  
b. Up to 1dB of variation may potentially be seen from typical sensitivity specs due to the chip, board and associated variations  
Document Number: 002-14815 Rev. *D  
Page 33 of 49  
PRELIMINARY  
CYW20719  
c. The receiver sensitivity is measured at BER of 0.1% on the device interface.  
d. Desired signal is 10 dB above the reference sensitivity level (defined as –70 dBm).  
e. Desired signal is 3 dB above the reference sensitivity level (defined as –70 dBm).  
f. Desired signal is -64 dBm Bluetooth-modulated signal, interferer 1 is –39 dBm sine wave at frequency f1, interferer 2 is –39 dBm Bluetooth modulated signal at  
frequency f2, f0 = 2*f1 – f2, and |f2 – f1| = n*1 MHz, where n is 3, 4, or 5. For the typical case, n = 4.  
Table 21. Transmitter RF Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Transmitter Section  
Frequency range  
2402  
4.0  
0
2480  
MHz  
dBm  
dBm  
kHz  
Class 2: GFSK TX power  
Class2: EDR TX Power  
20 dB bandwidth  
930  
1000  
Adjacent Channel Power  
|M – N| = 2  
–20  
–40  
dBm  
dBm  
|M – N| 3  
Out-of-Band Spurious Emission  
30 MHz to 1 GHz  
–36.0  
–30.0  
–47.0  
–47.0  
dBm  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
LO Performance  
Initial carrier frequency tolerance  
Frequency Drift  
–75  
+75  
kHz  
DH1 packet  
–25  
–40  
–40  
–20  
+25  
+40  
+40  
20  
kHz  
kHz  
DH3 packet  
DH5 packet  
kHz  
Drift rate  
kHz/50 µs  
Frequency Deviation  
Average deviation in payload (sequence used is 00001111)  
Maximum deviation in payload (sequence used is 10101010)  
Channel spacing  
140  
115  
1
175  
kHz  
kHz  
MHz  
Modulation Accuracy  
p/4-DQPSK Frequency Stability  
p/4-DQPSK RMS DEVM  
p/4-QPSK Peak DEVM  
p/4-DQPSK 99% DEVM  
8-DPSK frequency stability  
8-DPSK RMS DEVM  
–10  
10  
20  
35  
30  
10  
13  
25  
20  
kHz  
%
%
%
–10  
kHz  
%
8-DPSK Peak DEVM  
%
8-DPSK 99% DEVM  
%
In-Band Spurious Emissions  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
|M – N| > 2.5 MHz  
–26  
–20  
–40  
dBc  
dBm  
dBm  
Document Number: 002-14815 Rev. *D  
Page 34 of 49  
PRELIMINARY  
CYW20719  
Table 22. BLE RF Specifications  
Parameter  
Conditions  
Minimum  
Typical  
–95.0b  
–94.5b  
4.0  
Maximum  
Unit  
MHz  
dBm  
dBm  
dBm  
kHz  
%
Frequency range  
RX sensitivity (QFN)a  
RX sensitivity (WLCSP)a  
TX power  
N/A  
2402  
2480  
LE GFSK, 0.1% BER, 1 Mbps  
LE GFSK, 0.1% BER, 1 Mbps  
N/A  
Mod Char: Delta F1 average N/A  
225  
99.9  
0.8  
255  
275  
Mod Char: Delta F2 maxc  
N/A  
N/A  
Mod Char: Ratio  
0.95  
%
a. Dirty Tx is Off  
b. Up to 1dB of variation may potentially be seen from typical sensitivity specs due to the chip, board and associated variations  
c. At least 99.9% of all delta F2 max frequency values recorded over 10 packets must be greater than 185 kHz.  
Table 23. BLE2M RF Specifications  
Parameter  
Frequency Range  
RX Sensitivitya  
Condition  
Min.  
2402  
-
Typ.  
Max.  
Unit  
MHz  
dBm  
dBm  
KHz  
N/A  
2480  
255 Packets  
N/A  
-90.5  
-
-
TX Power  
-
4
Mod Char: Delta F1 average  
Mod Char: Delta F2 max  
Mod Char: Ratio  
Frequency Drift  
N/A  
450  
370  
0.8  
-50  
-20  
500  
550  
-
N/A  
-
-
-
-
KHz  
N/A  
-
%
N/A  
50  
20  
KHz  
Drift Rate  
N/A  
KHz/50μs  
a. Dirty TX is OFF.  
Table 24. CYW20719 GPS and GLONASS Band Spurious Emission  
Parameter Condition  
1570-1580 MHz  
1592-1610 MHz  
Min.  
Typ.  
–160  
–159  
Max.  
Unit  
GPS  
dBm/Hz  
dBm/Hz  
GLONASS  
Document Number: 002-14815 Rev. *D  
Page 35 of 49  
PRELIMINARY  
CYW20719  
10.3 Timing and AC Characteristics  
In this section, use the numbers listed in the Reference column of each table to interpret the following timing diagrams.  
10.3.1 UART Timing  
Table 25. UART Timing Specifications  
Reference  
Characteristics  
Min.  
Typ.  
Max.  
1.50  
0.67  
1.33  
Unit  
1
2
3
Delay time, UART_CTS_N low to UART_TXD valid  
Setup time, UART_CTS_N high before midpoint of stop bit  
Delay time, midpoint of stop bit to UART_RTS_N HIGH  
Bit periods  
Bit periods  
Bit periods  
Figure 8. UART Timing  
UART_CTS_N  
2
1
UART_TXD  
M idpoint of STOP bit  
M idpoint of STOP bit  
UART_RXD  
3
UART_RTS_N  
Document Number: 002-14815 Rev. *D  
Page 36 of 49  
PRELIMINARY  
CYW20719  
10.3.2 SPI Timing  
The SPI interface can be clocked up to 24 MHz.  
Table 26 and Figure 9 show the timing requirements when operating in SPI Mode 0 and 2.  
Table 26. SPI Mode 0 and 2  
Reference  
Characteristics  
Time from master assert SPI_CSN to first clock edge  
Hold time for MOSI data lines  
Min.  
45  
Max.  
Unit  
ns  
1
2
3
4
5
½ SCK  
100  
12  
ns  
Time from last sample on MOSI/MISO to slave deassert SPI_INT  
Time from slave deassert SPI_INT to master deassert SPI_CSN  
Idle time between subsequent SPI transactions  
0
ns  
0
ns  
1 SCK  
ns  
Figure 9. SPI Timing, Mode 0 and 2  
5
SPI_CSN  
SPI_INT  
(DirectWrite)  
SPI_INT  
(DirectRead)  
1
SPI_CLK  
(Mode 0)  
SPI_CLK  
(Mode 2)  
2
First Bit  
Second Bit  
Second Bit  
Last bit  
Last bit  
SPI_MOSI  
SPI_MISO  
First Bit  
Not Driven  
Not Driven  
Table 27 and Figure 10 show the timing requirements when operating in SPI Mode 0 and 2.  
Table 27. SPI Mode 1 and 3  
Reference  
Characteristics  
Time from master assert SPI_CSN to first clock edge  
Hold time for MOSI data lines  
Min.  
45  
Max.  
Unit  
ns  
1
2
3
4
5
½ SCK  
100  
12  
ns  
Time from last sample on MOSI/MISO to slave deassert SPI_INT  
Time from slave deassert SPI_INT to master deassert SPI_CSN  
Idle time between subsequent SPI transactions  
0
ns  
0
ns  
1 SCK  
ns  
Document Number: 002-14815 Rev. *D  
Page 37 of 49  
PRELIMINARY  
CYW20719  
Figure 10. SPI Timing, Mode 1 and 3  
SPI_CSN  
5
SPI_INT  
(DirectWrite)  
4
3
SPI_INT  
(DirectRead)  
SPI_CLK  
(Mode 1)  
1
SPI_CLK  
(Mode 3)  
2
Invalid bit  
Invalid bit  
First bit  
Last bit  
Last bit  
SPI_MOSI  
SPI_MISO  
Not Driven  
Not Driven  
First bit  
Document Number: 002-14815 Rev. *D  
Page 38 of 49  
PRELIMINARY  
CYW20719  
10.3.3 I2C Compatible Interface Timing  
The specifications in Table 28 references Figure 11.  
Table 28. I2C Compatible Interface Timing Specifications (up to 1 MHz)  
Reference  
Characteristics  
Minimum  
Maximum  
Unit  
1
Clock frequency  
100  
400  
800  
1000  
kHz  
2
3
START condition setup time  
START condition hold time  
Clock low time  
650  
280  
650  
280  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
5
Clock high time  
6
Data input hold timea  
Data input setup time  
STOP condition setup time  
Output valid from clock  
Bus free timeb  
7
100  
280  
8
9
400  
10  
650  
a. As a transmitter, 125 ns of delay is provided to bridge the undefined region of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
b. Time that the CBUS must be free before a new transaction can start.  
Figure 11. I2C Interface Timing Diagram  
1
5
SCL  
2
8
6
4
3
7
SDA  
IN  
10  
9
SDA  
OUT  
Document Number: 002-14815 Rev. *D  
Page 39 of 49  
PRELIMINARY  
CYW20719  
Table 29. Timing for I2S Transmitters and Receivers  
Transmitter  
Lower LImit Upper Limit  
Min Max Min Max  
Ttr  
Master Mode: Clock generated by transmitter or receiver  
Receiver  
Lower Limit Upper Limit  
Min Max  
Tr  
Notes  
Min  
Max  
a
Clock Period T  
b
b
HIGH tHC  
LOWtLC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
Slave Mode: Clock accepted by transmitter or receiver  
c
c
d
HIGH tHC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
LOW tLC  
Rise time tRC  
0.15Ttr  
Transmitter  
e
d
Delay tdtr  
0
0.8T  
Hold time thtr  
Receiver  
f
f
Setup time tsr  
0.2Ttr  
0.2Ttr  
Hold time thr  
a. The system clock period T must be greater than T and T because both the transmitter and receiver have to be able to handle the data transfer rate.  
tr  
r
b. At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space ratio. For this reason, t and t are specified with  
HC  
LC  
respect to T.  
c. In slave mode, the transmitter and receiver need a clock signal with minimum HIGH and LOW periods so that they can detect the signal. So long as the minimum  
periods are greater than 0.35T , any clock that meets the requirements can be used.  
r
d. Because the delay (t ) and the maximum transmitter speed (defined by T ) are related, a fast transmitter driven by a slow clock edge can result in t not exceeding  
dtr  
tr  
dtr  
t
t
which means t becomes zero or negative. Therefore, the transmitter has to guarantee that t is greater than or equal to zero, so long as the clock rise-time  
RC  
RC  
h
t
r
h
t
r
is not more than t  
, where t  
is not less than 0.15T  
RCmax  
RCmax tr  
e. To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the clock signal and T, always giving the receiver sufficient  
setup time.  
f. The data setup and hold time must not be less than the specified receiver setup and hold time.  
Document Number: 002-14815 Rev. *D  
Page 40 of 49  
PRELIMINARY  
CYW20719  
Figure 12. I2S Transmitter Timing  
T
tRC*  
tLC > 0.35T  
tHC > 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr > 0  
totr < 0.8T  
SD and WS  
T = Clock period  
Ttr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
Figure 13. I2S Receiver Timing  
T
tLC > 0.35T  
tHC > 0.35  
VH = 2.0V  
VL = 0.8V  
SCK  
tsr > 0.2T  
thr > 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
Document Number: 002-14815 Rev. *D  
Page 41 of 49  
PRELIMINARY  
CYW20719  
11. Mechanical Information  
11.1 40-Pin QFN Package  
Figure 14. CYW20719 5.0 mm x 5.0 mm 40-Pin QFN Package  
Document Number: 002-14815 Rev. *D  
Page 42 of 49  
PRELIMINARY  
CYW20719  
11.2 WLCSP Package  
Figure 15. CYW20719 WLCSP Package  
NOTES:  
DIMENSIONS  
SYMBOL  
1. ALL DIMENSIONS AND TOLERANCES CONFORM TO ASME Y14.5M-1994.  
NOTES: UNLESS OTHERWISE SPECIFIED  
2. BUMP POSITION DESIGNATION PER JESD 95-1, SPP-010  
3. REFER TO CYPRESS APPLICATION NOTE "WAFER-SCALE CHIP-SIZED  
PACKAGE (WSCSP) OVERVIEW AND ASSEMBLY GUIDELINES FOR DESIGN,  
IMPLEMENTATION, AND MANUFACTURING RECOMMENDATIONS AND GUIDELINES.  
4. MINIMUM BUMP PITCH IS 0.200MM  
MIN.  
NOM.  
MAX.  
0.33  
A
-
0.075  
3.270  
-
0.090  
3.310  
0.105  
3.350  
3.260  
A1  
D
E
3.180  
3.220  
2.84 BSC  
2.83 BSC  
134  
DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER,  
5
D1  
E1  
N
PARALLEL TO PRIMARY DATUM Z.  
PRIMARY DATUM Z AND SEATING PLANE ARE DEFINED BY  
6
THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
0.100  
0.115  
0.130  
b
Document Number: 002-14815 Rev. *D  
Page 43 of 49  
PRELIMINARY  
CYW20719  
11.3 WLCSP Package Keep-out  
Figure 16. CYW20719YB1 WLCSP Keep-out Model  
3310.0000  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
29 30 31 32 33 34 35 36 37 38 39 40 41 42  
43 44 45 46 47  
56 57 58 59  
48 49 50 51 52 53 54 55  
60 61 62  
69  
63 64 65 66  
70 71 72 73  
80 81 82 83  
88 89 90 91  
67 68  
75 76 77 78 79  
84 85 86 87  
92  
74  
3220.0000  
93 94 95 96 97 98  
100101102103  
99  
104105  
106  
107  
108109  
110  
115  
Bump Origin  
111112113  
114  
120121122  
126127128129130131  
116  
117118  
123  
119  
125  
124  
132  
133134  
Routing Keep-Out  
Note: Figure 16 shows the top view of the WLCSP package (Bumps facing down).  
11.4 Tape Reel and Packaging Specifications  
Table 30. CYW20719 Tape Reel Specifications  
Parameter  
Quantity per reel  
Reel diameter  
Value  
5000  
13 inches  
4 inches  
12 mm  
8 mm  
Hub diameter  
Tape width  
Tape pitch  
The top-left corner of the CYW20719 package is situated near the sprocket holes, as shown in Figure 17.  
Figure 17. Pin 1 Orientation  
Pin 1: Top left corner of package toward sprocket holes  
Document Number: 002-14815 Rev. *D  
Page 44 of 49  
PRELIMINARY  
CYW20719  
12. Ordering Information  
Table 31. Ordering Information  
Part Number  
CYW20719B1KWB9G  
CYW20719B1KUMLG  
Package  
Ambient Operating Temperature  
3.2 x 3.1 134-Ball WLCSP  
5x5 40-pin QFN  
-30°C to 85°C  
-30°C to 85°C  
13. Additional Information  
13.1 Acronyms and Abbreviations  
The following list of acronyms and abbreviations may appear in this document.  
Term  
Description  
Term  
Description  
adaptive frequency hopping  
Attribute Protocol  
PBF  
PDM  
PDS  
PLL  
packet boundary flag  
AFH  
ATT  
BBC  
BDR  
BLE  
BR  
pulse density modulation  
Power down sleep  
Bluetooth Baseband Core  
basic data rate  
phase locked loop  
PMU  
POR  
power management unit  
power-on reset  
Bluetooth low energy  
basic data rate  
PRBS  
PWM  
Pseudo Random Binary Sequence  
pulse width modulation  
quad flat no-lead  
BQS  
CRC  
ED  
Bluetooth Qualification Body  
cyclic redundancy check  
erroneous data  
QFN  
QoS  
quality of service  
EIR  
extended inquiry response  
encryption pause resume  
forward error correction  
floating point unit  
RAM  
random access memory  
EPR  
FEC  
FPU  
RC oscillator  
A resistor-capacitor oscillator is a circuit  
composed of an amplifier, which provides  
the output signal, and a resistor-capacitor  
network, which controls the frequency of  
the signal.  
GATT  
GAP  
GFSK  
GPIO  
HCI  
Generic Attribute Profile  
generic access profile  
Gaussian Frequency Shift Keying  
general-purpose I/O  
RF  
radio frequency  
ROM  
RX/TX  
SCO  
SDP  
SDS  
SPI  
read-only memory  
receive/transmit  
host control interface  
intermediate frequency  
Joint Test Action Group  
synchronous connection-oriented  
Service Discovery Protocol  
Shut Down Sleep  
IF  
JTAG  
L2CAP  
Logical Link Control and Adaptation  
Protocol  
serial peripheral interface  
serial peripheral interface fully functional  
secure simple pairing  
sniff subrating  
SPIFFY  
SSP  
LCU  
LDO  
LE  
link control unit  
low drop-out  
SSR  
SWD  
TSSI  
UART  
low energy  
serial wire debug  
LM  
Link Manager  
transmit signal strength indicator  
LO  
local oscillator  
universal asynchronous receiver/trans-  
mitter  
LPO  
LSTO  
PA  
low power oscillator  
link supervision time out  
power amplifier  
WLCSP  
wafer level chip scale package  
Document Number: 002-14815 Rev. *D  
Page 45 of 49  
PRELIMINARY  
CYW20719  
Document History Page  
Document Title: CYW20719 Enhanced Low Power, BR/EDR/BLE Bluetooth 5.0 SOC  
Document Number: 002-14815  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
**  
UTSV  
05/03/2016  
20719-DS100-R  
Initial release  
*A  
*B  
5441953  
5889849  
UTSV  
MILI  
10/05/2016  
09/28/2017  
Updated to Cypress template  
Added Cypress part numbering scheme  
Added 134-Ball WLCSP in “Features” on page 2.  
Added VBAT* in the Figure 2 on page 7.  
Added “The Bypass LDO is activated when the VBAT input voltage falls below  
2.1V” in the Section “Power Management Unit” on page 8.  
Removed Figure 3. Power Management Unit.  
Updated the title and Figure 4 from Usage Mode 1: RF Powered from LDO  
(Default) to “Default usage Mode” on page 8.  
Removed ZA_STRAP, and ZINC_air_strap from Figure 2 on page 8.  
Removed 1.4.2. Usage Mode 2 and 1.4.3. Usage Mode 3.  
Changed the title “1.6.1 Cypress Serial Communication Interface” to “I2C  
Compatible Master” on page 10.  
Replaced BSC to I2C in the datasheet.  
Removed second para from the section “UART Interface” on page 10 and  
added “The Firmware's UART driver allows applications to select different  
baud rates”.  
Removed “Table: Common Baud Rate Examples” and the corresponding  
sentences from the section “UART Interface” on page 10.  
Updated Figure 2: Replaced 22pF with CL1 and 20pF with CL2.  
Updated Table 3 on page 11.  
Removed 1.9.2 HID Peripheral Block  
Added “Those pins include PWM functionality which can be used for LED  
dimming” in the section GPIO Ports on page 12 and also the “Note: On the  
double and triple bonded pins, only one of the GPIO can be used at a given  
time. When a certain GPIO is selected, the other GPIOs bonded to the same  
pin must be configured to input and output disable”.  
Replaced “PAVDD2P5” to “PAVDD” throughout the document.  
Added “The 20719 includes one double-axis and one single axis quadrature  
decoders. There are two input lines for each axis and a programmable control  
signal that can be active high or low.  
The application can access the quadrature interface via the driver included in  
the firmware.” in the Mouse Quadrature Signal Decoder on page 13.  
Removed 1.17 Infrared Modulator and 1.18 Infrared Learning.  
Added Table 7 on page 25 and Table 8 on page 28.  
Updated the title to “Enhanced Low Power Bluetooth 5.0/BLE/2 Mbps  
LE/EDR/Integrated SOC”.  
Updated Table 12 on page 33 and Table 13 on page 34.  
Removed Table: Cypress Part Numbering Scheme from Page 1.  
Document Number: 002-14815 Rev.*D  
Page 46 of 49  
PRELIMINARY  
CYW20719  
Document History Page  
Document Title: CYW20719 Enhanced Low Power, BR/EDR/BLE Bluetooth 5.0 SOC  
Document Number: 002-14815  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Updated Figure 1 and Figure 2.  
Change  
Date  
*C  
6075109  
SGUP  
03/09/2018  
Added Features and Applications section.  
Created a table for Bluetooth Features.  
Updated with “The CYW20719 includes a Cortex M4 processor with 2 Mbyte  
of program ROM, 448 KB of data RAM, 64 KB of patch RAM, and 1 Mbyte of  
on-chip flash. The M4 has a maximum speed of 96 MHz. The 1 Mbyte of flash  
is supported by an 8KB cache allowing direct code execution from flash at  
near maximum speed and low power consumption. The CM4 also includes a  
single precision IEEE 754 compliant floating point unit (FPU).The CM4 runs  
all the BT layers as well as application code. The ROM includes LM, HCI,  
L2CAP, GATT, as well as other stack layers freeing up the flash for  
application usage. A standard serial wire debug (SWD) interface provides  
debugging support.” in MCU.  
Changed the title I2C to I2C Compatible Master and UART Interface to HCI  
UART Interface.  
Updated Table 2, Table 4, Table 9, Table 12, Table 14, Table 17, Table 16,  
Table 17, Table 20, Table 21 and Table 22.  
Updated GPIO Ports, ADC, PWM, Serial Peripheral Interface block.  
Created Table 6 and Table 7.  
Added the terms BQS, PRBS and SPIFFY to Acronyms and Abbreviations  
table.  
Removed all references of “LHL”.  
Added Table 18 in the ADC Electrical Characteristics section.  
Replaced “CSC” as “I2C” throughout the document.  
Table 20 and Table 22: Updated footnote Up to 1dB of variation is expected  
from typical sensitivity specs due to the chip and board variation.  
Added ADC Electrical Characteristics.  
Added Random Number Generator section.  
Updated Power Modes section.  
Table 5: Removed the description “Quadrature, Peripheral UART, SPI_1,  
I2C, Keyboard Scan output and External T/R switch control”.  
Removed Figure: Reset Timing.  
Added “I2C1 is Master Only; I2C2 is Master/Slave. The Slave support is  
subject to driver support in WICED Studio” to I2C Compatible Master section.  
Added “P15 is Bonded to the same pin as XTALI_32K on the QFN package  
(Pin 32). If External 32.768KHz crystal is not used, then this pin can be used  
as GPIO P15” to GPIO Ports section.  
Table 3: Added “External AC Input Amplitude” Parameter.  
Removed tables: Digital LDO and RF LDO.  
Table 17: Added UART_TXD VOL and UART_TXD VOH characteristics.  
Table 18: Removed “Analog supply Voltage”, “Analog core supply” and  
“Audio supply” Parameters.  
Document Number: 002-14815 Rev.*D  
Page 47 of 49  
PRELIMINARY  
CYW20719  
Document History Page  
Document Title: CYW20719 Enhanced Low Power, BR/EDR/BLE Bluetooth 5.0 SOC  
Document Number: 002-14815  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
*D  
6222848  
MILI  
07/12/2018  
Table 4: Updated QFN-40 value as 26 for the Reserved Pin and removed the  
QFN value for BT_VDDO and added a row for “Reserved, Connect to GND”.  
Table 8: Updated “VSSO_0” to “Reserved, Connect to GND” and added a row  
for “ BT_VSSC”.  
Figure 6: Changed BT_VDDC to RSVD.  
Updated Table 7, Table 14 and Table 18.  
Added a Table 23.BLE2M RF Specifications on page 35.  
Figure 1: Removed “Programmable wait states”.  
Table 11: Added note “Lowest operating temperature for the 32 KHz xtal is  
-10°C.  
Updated I2S Interface and PCM Interface sections.  
Updated Acronyms and Abbreviations section.  
Document Number: 002-14815 Rev.*D  
Page 48 of 49  
PRELIMINARY  
CYW20719  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
49  
© Cypress Semiconductor Corporation, 2016-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,  
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product  
to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any  
liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming  
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this  
information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons  
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances  
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device  
or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you  
shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from  
and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress product.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number 002-14815 Rev. *D  
Revised July 12, 2018  
Page 49 of 49  
厂商 型号 描述 页数 下载

CYPRESS

CYW134MOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134MOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

SPECTRALINEAR

CYW137OXC FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SPECTRALINEAR

CYW137OXCT FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SILICON

CYW150 [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXC [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXCT [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

CYPRESS

CYW15G0101DXB 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.222931s