找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

HYMP112S64MP8-E4

型号:

HYMP112S64MP8-E4

描述:

DDR2 SDRAM SO -DIMM[ DDR2 SDRAM SO-DIMM ]

品牌:

HYNIX[ HYNIX SEMICONDUCTOR ]

页数:

17 页

PDF大小:

406 K

128Mx64 bits  
DDR2 SDRAM SO-DIMM  
HYMP112S64(L)MP8  
Revision History  
No.  
History  
Date  
Remark  
1) Defined target spec.  
2) Corrected Pin assignment table  
0.1  
July 2004  
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any  
responsibility for use of circuits described. No patent licenses are implied.  
Rev. 0.1/ July 2004  
1
128Mx64 bits  
DDR2 SDRAM SO-DIMM  
HYMP112S64(L)MP8  
DESCRIPTION  
Hynix HYMP112S64MP8 series is unbuffered 200-pin double data rate 2 Synchronous DRAM Small Outline Dual In-Line Memory Mod-  
ules (DIMMs) which are organized as 128Mx64 high-speed memory arrays. Hynix HYMP112S64MP8 series consists of eight 128Mx8  
DDR2 SDRAMs in 63 ball FBGA Dual Die Pacakge(DDP)s. Hynix HYMP112S64MP8 series provide a high performance 8-byte interface  
in 67.60mm X 30.00mm form factor of industry standard. It is suitable for easy interchange and addition.  
Hynix HYMP512S64MP8 series is designed for high speed and offers fully synchronous operations referenced to both rising and falling  
edges of differential clock inputs. While all addresses and control inputs are latched on the rising edges of the clock, Data, Data  
strobes and Write data masks inputs are sampled on both rising and falling edges of it. The data paths are internally pipelined and 4-  
bit prefetched to achieve very high bandwidth. All input and output voltage levels are compatible with SSTL_1.8. High speed frequen-  
cies, programmable latencies and burst lengths allow variety of device operation in high performance memory system.  
Hynix HYMP512S64MP8 series incorporates SPD(serial presence detect). Serial presence detect function is implemented via a serial  
2,048-bit EEPROM. The first 128 bytes of serial PD data are programmed by Hynix to identify DIMM type, capacity and other the  
information of DIMM and the last 128 bytes are available to the customer.  
FEATURES  
1GB (128M x 64) Unbuffered DDR2 SO - DIMM based on  
128Mx8 DDR2 DDP SDRAMs  
Programmable Burst Length 4 / 8 with both sequential and  
interleave mode  
JEDEC standard Double Data Rate2 Synchronous DRAMs  
(DDR2 SDRAMs) with 1.8V +/- 0.1V Power Supply  
Auto refresh and self refresh supported  
7.8us refresh period at Lower than TCASE 85, 3.9us( 85  
℃ < TCASE ≤ 95℃)  
All inputs and outputs are compatible with SSTL_1.8 inter-  
face  
Serial Presence Detect(SPD) with EEPROM  
Lead free product  
OCD (Off-Chip Driver Impedance Adjustment) and ODT  
(On-Die Termination)  
Fully differential clock operations (CK & /CK)  
Programmable CAS Latency 3 / 4 /5 supported  
ORDERING INFORMATION  
Type  
Part No.  
Description  
CL-tRCD-tRP  
Form Factor  
HYMP112S64(L)MP8-E4  
HYMP112S64(L)MP8-E3  
HYMP112S64(L)MP8-C5  
HYMP112S64(L)MP8-C4  
4-4-4  
3-3-3  
5-5-5  
4-4-4  
PC2-3200 (DDR2-400)  
200pin Unbuffered SO-  
DIMM  
67.60 mm x 30,00 mm  
(MO-224)  
2 rank 1GB  
Lead-free SO-DIMM  
PC2-4300 (DDR2-533)  
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any  
responsibility for use of circuits described. No patent licenses are implied.  
Rev. 0.1/ July 2004  
2
HYMP112S64(L)MP8  
PIN Functional Description  
Symbol  
Type  
Polarity  
Pin Description  
The system clock inputs. All adress an commands lines are sampled on the cross point of  
the rising edge of CK and falling edge of CK. A Delay Locked Loop(DLL) circuit is driven  
from the clock inputs and output timing for read operations is synchronized to the input  
clock.  
CK[1:0],  
CK[1:0]  
Input  
Cross Point  
Activates the DDR2 SDRAM CK signal when high and deactivates the CK signal when low.  
CKE[1:0]  
Input  
Input  
Active High By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refresh  
mode.  
Enables the associated DDR2 SDRAM command decoder when low and disables the com-  
mand decoder when high. When the command decoder is disabled, new commands are  
ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is selected by  
/S[1:0]  
Active Low  
S1  
/RAS, /CAS,  
/WE  
When sampled at the cross point of the rising edge of CK and falling edge of CK, CAS, RAS  
Active Low  
Input  
Input  
Input  
and WE define the operation to be excecuted by the SDRAM.  
BA[1:0]  
Selects which DDR2 SDRAM internal bank of four or eight is activated.  
Asserts on-die termination for DQ, DM, DQS and DQS signals if enabled via the DDR2  
SDRAM mode register.  
ODT[1:0]  
Active High  
During a Bank Activate command cycle, difines the row address when sampled at the cross  
point of the rising edge of CK and falling edge of CK. During a Read or Write command  
cycle, defines the column address when sampled at the cross point of the rising edge of CK  
and falling edge of CK. In addition to the column address, AP is used to invoke autopre-  
charge operation at the end of the burst read or write cycle. If AP is high., autoprecharge  
is selected and BA0-BAn defines the bank to be precharged. If AP is low, autoprecharge is  
disabled. During a Precharge command cycle., AP is used in conjunction with BA0-BAn to  
control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of  
the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to  
precharge.  
A[9:0], A10/  
AP, A[15:11]  
Input  
DQ[63:0]  
DM[7:0]  
In/Out  
Input  
Data Input/Output pins.  
The data write masks, associated with one data byte. In Write mode, DM operates as a  
Active High byte mask by allowing input data to be written if it is low but blocks the write operation if  
it is high. In Read mode, DM lines have no effect.  
The data strobe, associated with one data byte, sourced whit data transfers. In Write  
mode, the data strobe is sourced by the controller and is centered in the data window. In  
Read mode, the data strobe is sourced by the DDR2 SDRAMs and is sent at leading edge of  
DQS[7:0],  
DQS[7:0]  
In/Out Cross point the data window. DQS signals are complements, and timing is relative to the crosspoint of  
respective DQS and DQS. If the module is to be operated in single ended strobe mode, all  
DQS signals must be tied on the system board to VSS and DDR2 SDRAM mode registers  
programmed approriately.  
When hign, the PLL outputs are always driven when the PLL input clock is active. When  
low, the PLL remains locked on the input clock, if active, but output clocks are stopped.  
Pulled high via 10Kߟ resistor on the SO-DIMM . Only used on DDR2 SO-DIMMs with a  
PLL.  
RESET  
Input  
Active Low  
VDD  
VDDSPD,VSS  
,
Supply  
In/Out  
Power supplies for core, I/O, Serial Presense Detect, and ground for the module.  
This is a bidirectional pin used to transfer data into or out of the SPD EEPROM. A resister  
must be connected to VDD to act as a pull up.  
SDA  
This signals is used to clock data into and out of the SPD EEPROM. A resistor may be con-  
nected from SCL to VDD to act as a pull up.  
SCL  
Input  
Input  
In/Out  
SA[1:0]  
TEST  
Address pins used to select the Serial Presence Detect base address.  
The TEST pin is reserved for bus analysis tools and is not connected on normal memory  
modules(SODIMMs).  
Rev. 0.1/ July 2004  
3
HYMP112S64(L)MP8  
PIN ASSIGNMENT  
Back  
Side  
Front  
Side  
Pin  
Front  
Side  
Back  
Side  
Pin  
NO.  
Front  
Side  
Pin  
NO.  
Back  
Side  
Pin  
NO.  
Front  
Side  
Pin  
NO.  
Pin  
NO.  
Pin  
NO.  
Back  
Side  
Pin  
NO.  
NO.  
1
VREF  
VSS  
2
VSS  
DQ4  
DQ5  
VSS  
DM0  
VSS  
DQ6  
DQ7  
VSS  
DQ12  
DQ13  
VSS  
DM1  
VSS  
CK0  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
73  
75  
77  
79  
81  
83  
85  
87  
89  
91  
93  
95  
97  
99  
DQS2  
VSS  
DQ18  
DQ19  
VSS  
DQ24  
DQ25  
VSS  
DM3  
NC  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
100  
DM2  
VSS  
101  
103  
105  
107  
109  
111  
113  
115  
117  
A1  
VDD  
A10/AP  
BA0  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
A0  
151  
153  
155  
157  
159  
161  
163  
165  
167  
169  
171  
173  
175  
177  
179  
181  
183  
185  
187  
189  
191  
193  
195  
197  
199  
DQ42  
DQ43  
VSS  
152  
154  
156  
158  
160  
162  
DQ46  
DQ47  
VSS  
3
4
VDD  
BA1  
5
DQ0  
6
DQ22  
DQ23  
VSS  
7
DQ1  
8
RAS  
S0  
DQ48  
DQ49  
VSS  
DQ52  
DQ53  
VSS  
9
VSS  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
WE  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
DQS0  
DQS0  
VSS  
DQ28  
DQ29  
VSS  
VDD  
CAS  
VDD  
ODT0  
A13  
NC,TEST 164  
CK1  
NC/S1  
VDD  
VSS  
DQS6  
DQS6  
VSS  
166  
168  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
194  
196  
198  
CK1  
DQ2  
DQS3  
DQS3  
VSS  
VDD  
NC  
VSS  
DQ3  
119 NC/ODT1  
DM6  
VSS  
VSS  
VSS  
DQ26  
DQ27  
VSS  
CKE0  
VDD  
NC  
121  
123  
125  
127  
VSS  
DQ32  
DQ33  
VSS  
VSS  
DQ36  
DQ37  
VSS  
DM4  
VSS  
DQ38  
DQ39  
VSS  
DQ44  
DQ45  
VSS  
DQS5  
DQS5  
VSS  
DQ8  
DQ30  
DQ31  
VSS  
DQ50  
DQ51  
VSS  
DQ54  
DQ55  
VSS  
DQ9  
VSS  
DQS1  
DQS1  
VSS  
NC/CKE1 129  
DQS4  
DQS4  
VSS  
DQ56  
DQ57  
VSS  
DQ60  
DQ61  
VSS  
CK0  
VDD  
NC/A15  
NC/A14  
VDD  
A11  
131  
133  
135  
137  
139  
141  
143  
145  
147  
149  
VSS  
DQ14  
DQ15  
VSS  
VSS  
DQ20  
DQ21  
VSS  
NC  
DQ10  
DQ11  
VSS  
BA2  
VDD  
A12  
DQ34  
DQ35  
VSS  
DM7  
DQS7  
DQS7  
VSS  
VSS  
DQ58  
DQ59  
VSS  
VSS  
A9  
A7  
DQ40  
DQ41  
VSS  
DQ62  
DQ63  
VSS  
DQ16  
DQ17  
VSS  
A8  
A6  
VDD  
A5  
VDD  
A4  
SDA  
DM5  
SCL  
SA0  
DQS2  
A3  
A2  
VSS  
VDDSPD 200  
SA1  
Pin Location  
200  
42  
2
40  
Back  
Front  
1
199  
39  
41  
Rev. 0.1/ July 2004  
4
HYMP112S64(L)MP8  
FUNCTIONAL BLOCK DIAGRAM  
3+/− 5%  
CKE1  
ODT1  
/S1  
CKE0  
ODT0  
/S0  
DQS0  
/DQS0  
DM0  
DQS4  
/DQS4  
DM4  
DQS  
/DQS  
DM  
DQS  
/DQS  
DM  
/CS0 ODT0 CKE0 /CS1 ODT1 CKE1  
/CS0 ODT0 CKE0 /CS1 ODT1 CKE1  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
DQ0  
DQ1  
DQ2  
DQ3  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
D0,D8(DDP)  
D4,D12(DDP)  
DQ4  
DQ5  
DQ6  
DQ7  
DQ37  
DQ38  
DQ39  
I/O 6  
I/O 7  
I/O 6  
I/O 7  
DQS1  
/DQS1  
DM1  
/CS0 ODT0 CKE0 /CS1 ODT1 CKE1  
DQS5  
/DQS5  
DM5  
/CS0 ODT0 CKE0 /CS1 ODT1 CKE1  
DQS  
/DQS  
DM  
DQS  
/DQS  
DM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
DQ8  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
D1,D9(DDP)  
D5,D13(DDP)  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 6  
I/O 7  
I/O 6  
I/O 7  
DQS2  
/DQS2  
DM2  
DQS6  
/DQS6  
DM6  
/CS0 ODT0 CKE0 /CS1 ODT1 CKE1  
DQS  
/DQS  
DM  
DQS  
/DQS  
DM  
/CS0 ODT0 CKE0 /CS1 ODT1 CKE1  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ16  
DQ17  
DQ18  
DQ19  
DQ48  
DQ49  
DQ50  
DQ51  
D2,D10(DDP)  
D6,D14(DDP)  
I/O 4  
I/O 5  
I/O 4  
I/O 5  
DQ20  
DQ21  
DQ22  
DQ23  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 6  
I/O 7  
I/O 6  
I/O 7  
DQS3  
/DQS3  
DM3  
DQS7  
/DQS7  
DM7  
/CS0 ODT0 CKE0 /CS1 ODT1 CKE1  
DQS  
/DQS  
DM  
DQS  
/DQS  
DM  
/CS0 ODT0 CKE0 /CS1 ODT1 CKE1  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
DQ24  
DQ25  
DQ26  
DQ27  
DQ56  
DQ57  
DQ58  
DQ59  
D3,D11(DDP)  
D7,D15(DDP)  
DQ28  
DQ29  
DQ30  
DQ31  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 6  
I/O 7  
I/O 6  
I/O 7  
SCL  
SCL  
A0  
A1  
SDA  
SDA  
3+/- 5%  
SA0  
SA1  
Serial PD  
WP  
BA0-BA2  
SDRAMS D0-15  
SDRAMS D0-15  
SDRAMS D0-15  
SDRAMS D0-15  
SDRAMS D0-15  
A0-AN  
/RAS  
/CAS  
/WE  
A2  
Notes :  
1. Unless otherwise noted, resistor values are 22 ± 5%  
2. DQ wring may differ form that described in this drawing; however ,  
DQ,DM,DQS,/DQS relationships are maintained as shown.  
CK0  
VDD SPD  
VREF  
Serial PD  
4
4
loads  
/CK0  
SDRAMS DO-D15  
CK1  
VDD  
SDRAMS DO-D15, VDD and VDD  
SDRAMS DO-D15, SPD  
Q
loads  
/CK1  
VSS  
Rev. 0.1/ July 2004  
5
HYMP112S64(L)MP8  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
TOPR  
Value  
0 ~ +55  
Unit  
Note  
oC  
Operating temperature(ambient)  
DRAM Component Case Temperature Range  
Operating Humidity(relative)  
1
2
1
1
1
oC  
%
TCASE  
HOPR  
0 ~+95  
10 to 90  
-50 ~ +100  
5 to 95  
oC  
oC  
Storage Temperature  
TSTG  
HSTG  
PBAR  
Storage Humidity(without condensation)  
Barometric Pressure(operating & storage)  
105 to 69  
K Pascal  
1,3  
Note :  
1. Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and device functional  
operation at or above the conditions indicated is not implied. Expousure to absolute maximum rating conditions for extended  
periods may affect reliablility.  
2. If the DRAM case temperature is Above 85oC, the Auto-Refresh command interval has to be reduced to tREFI=3.9㎲.  
For Measurement conditions of TCASE, please refer to the JEDEC document JESD51-2.  
3. Up to 9850 ft.  
Operating Condtions(AC&DC)  
DC OPERATING CONDITIONS (SSTL_1.8)  
Parameter  
Symbol  
VDD  
Min  
Max  
Unit  
Note  
1.7  
1.7  
1.9  
1.9  
V
V
V
V
V
Power Supply Voltage  
VDDQ  
VREF  
1
2
Input Reference Voltage  
EEPROM Supply Voltage  
0.49 x VDDQ  
1.7  
0.51 x VDDQ  
3.6  
VDDSPD  
VTT  
VREF+0.04  
3
VREF-0.04  
Termination Voltage  
Note :  
1. VDDQ must be less than or equal to VDD  
.
2. Peak to peak ac noise on VREF may not exeed +/-2% VREF(dc)  
3. VTT of transmitting device must track VREF of receiving device.  
Input DC Logic Level  
Parameter  
Input High Voltage  
Symbol  
Min  
Max  
Unit  
Note  
VIH(DC)  
VIL(DC)  
VREF + 0.125  
-0.30  
VDDQ + 0.3  
VREF - 0.125  
V
V
Input Low Voltage  
Rev. 0.1/ July 2004  
6
HYMP112S64(L)MP8  
Input AC Logic Level  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
AC Input logic High  
AC Input logic Low  
VIH(AC)  
VIL(AC)  
VREF + 0.250  
-
-
V
V
VREF - 0.250  
AC Input Test Conditions  
Symbol  
VREF  
Condition  
Input reference voltage  
Value  
Units  
Notes  
0.5 * VDDQ  
1.0  
V
1
1
VSWING(MAX)  
SLEW  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
V
1.0  
V/ns  
2, 3  
Notes:  
1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.  
2. The input signal minimum slew rate is to be maintained over the range from VIL(dc) max to VIH(ac) min for rising edges and the  
range from VIH(dc) min to VIL(ac) max for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to  
VIL(ac) on the negative transitions.  
Start of Rising Edge Input Timing  
Start of Falling Edge Input Timing  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
V
SWING(MAX)  
max  
max  
IL(dc)  
IL(ac)  
SS  
delta TF  
V
delta TR  
Rising Slew =  
V
min - V  
max  
min -  
V
max  
IL(ac)  
IH(ac)  
IL(dc)  
IH(dc)  
Falling Slew =  
delta TR  
delta TF  
< Figure : AC Input Test Signal Waveform >  
Rev. 0.1/ July 2004  
7
HYMP112S64(L)MP8  
Differential Input AC logic Level  
Symbol  
Parameter  
ac differential input voltage  
ac differential cross point voltage  
Min.  
Max.  
Units  
Notes  
VID (ac)  
0.5  
VDDQ + 0.6  
V
1
V
IX (ac)  
0.5 * VDDQ - 0.175  
0.5 * VDDQ + 0.175  
V
2
Note:  
1. VIN(DC) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS, LDQS, LDQS, UDQS  
and UDQS.  
2. VID(DC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input (such as CK, DQS,  
LDQS or UDQS) level and VCP is the complementary input (such as CK, DQS, LDQS or UDQS) level. The minimum value is equal to  
VIH(DC) - V IL(DC).  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
Notes:  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK,  
DQS, LDQS or UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to  
VIH(AC) - V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations  
in VDDQ . VIX(AC) indicates the voltage at whitch differential input signals must cross.  
Differential AC output parameters  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VOX (ac)  
0.5 * VDDQ - 0.125  
0.5 * VDDQ + 0.125  
V
1
ac differential cross point voltage  
Notes:  
1. The typical value of VOX(AC) is expected to be about 0.5 * V DDQ of the transmitting device and VOX(AC) is expected to track  
variations in VDDQ . VOX(AC) indicates the voltage at whitch differential output signals must cross.  
Rev. 0.1/ July 2004  
8
HYMP112S64(L)MP8  
Output Buffer Levels  
Output AC Test Conditions  
Symbol  
VOH  
Parameter  
SSTL_18 Class II  
VTT + 0.603  
Units  
Notes  
Minimum Required Output Pull-up under AC Test Load  
Maximum Required Output Pull-down under AC Test Load  
Output Timing Measurement Reference Level  
V
V
V
VOL  
VTT - 0.603  
VOTR  
0.5 * VDDQ  
1
1. The VDDQ of the device under test is referenced.  
Output DC Current Drive  
Symbol  
IOH(dc)  
IOL(dc)  
Parameter  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
SSTl_18 Class II  
Units  
mA  
Notes  
1, 3, 4  
2, 3, 4  
- 13.4  
13.4  
mA  
1. VDDQ = 1.7 V; VOUT = 1420 mV. (VOUT - VDDQ)/IOH must be less than 21 ohm for values of VOUT between VDDQ and VDDQ - 280 mV.  
2. VDDQ = 1.7 V; VOUT = 280 mV. VOUT/IOL must be less than 21 ohm for values of VOUT between 0 V and 280 mV.  
3. The dc value of VREF applied to the receiving device is set to VTT  
4. The values of IOH(dc) and IOL(dc) are based on the conditions given in Notes 1 and 2. They are used to test device drive current  
capability to ensure VIH min plus a noise margin and VIL max minus a noise margin are delivered to an SSTL_18 receiver. The actual  
current values are derived by shifting the desired driver operating point (see Section 3.3) along a 21 ohm load line to define a  
convenient driver current for measurement.  
OCD defalut characteristics  
Description  
Parameter  
Min  
12.6  
Nom  
Max  
23.4  
4
Unit  
ohms  
ohms  
V/ns  
Notes  
1,2  
Output impedance  
18  
Pull-up and pull-down mismatch  
Output slew rate  
0
1,2,3  
Sout  
1.5  
-
5
1,4,5,6  
Note:  
1. Absolute Specifications (0°C TCASE +95°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
2. Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/Ioh must be less  
than 23.4 ohms for values of VOUT between VDDQ and VDDQ-280mV. Impedance measurement condition for output sink dc current:  
VDDQ = 1.7V; VOUT = 280mV; VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from vil(ac) to vih(ac).  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC.  
6. DRAM output slew rate specification applies to 400MT/s & 533MT/s speed bins. Output slew rate at 667&800MT/s will be added with  
JEDEC process.  
Rev. 0.1/ July 2004  
9
HYMP112S64(L)MP8  
PIN Capacitance (VDD=1.8V,VDDQ=1.8V, TA=25℃. f=1MHz )  
Parameter  
Pin  
Symbol  
Min,  
Max,  
Unit  
Input Capacitance  
Input Capacitance  
Input Capacitance  
Input Capacitance  
CK0, /CK0  
CKE0, /CS  
CCK  
CI1  
CI2  
CIO  
15  
44  
27  
8
33  
65  
65  
12  
pF  
pF  
pF  
pF  
Address, /RAS, /CAS, /WE  
DQ,DM,DQS, /DQS  
Note :  
1. Pins not under test are tied to GND.  
2. These value are guaranteed by design and tested on a sample basis only.  
IDD Specifications  
HYMP112S64(L)MP8  
PC2 3200  
PC2 4300  
Unit Note  
Parameter  
Symbol  
max.  
max.  
Operating one bank active-precharge current  
IDD0  
920  
1040  
mA  
mA  
Operating one bank active-read-precharge  
current  
IDD1  
1000  
1120  
Precharge power-down current  
Precharge quiet standby current  
Precharge standby current  
IDD2P  
IDD2Q  
IDD2N  
IDD3P(F)  
IDD3P(S)  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD6  
48  
520  
560  
240  
48  
64  
600  
640  
320  
64  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Active power-down current  
Active Standby Current  
Operating burst read current  
Operating Current  
720  
1320  
1320  
1560  
80  
840  
1440  
1440  
1600  
80  
Burst auto refresh current  
Self Refresh Current  
IDD6(L)  
IDD7  
48  
48  
Operating bank interleave read current  
1960  
2160  
Rev. 0.1/ July 2004  
10  
HYMP112S64(L)MP8  
IDD Meauarement Conditions  
Symbol  
Conditions  
Units  
t
t
t
t
t
t
Operating one bank active-precharge current; CK = CK(IDD), RC = RC(IDD), RAS = RAS-  
min(IDD);CKE is HIGH, CS is HIGH between valid commands;Address bus inputs are SWITCHING;Data bus  
inputs are SWITCHING  
IDD0  
IDD1  
mA  
mA  
Operating one bank active-read-precharge curren ; IOUT = 0mA;BL = 4, CL = CL(IDD), AL = 0;  
t
t
t
t
t
t
t
t
CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD = RCD(IDD) ; CKE is HIGH, CS is HIGH  
between valid commands ; Address bus inputs are SWITCHING ; Data pattern is same as IDD4W  
t
t
Precharge power-down current ; All banks idle ; CK = CK(IDD) ; CKE is LOW ; Other control and address  
IDD2P  
IDD2Q  
IDD2N  
mA  
mA  
mA  
bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge quiet standby current;All banks idle; CK = CK(IDD);CKE is HIGH, CS is HIGH; Other control  
and address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge standby current; All banks idle; CK = CK(IDD); CKE is HIGH, CS is HIGH; Other control and  
address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
mA  
mA  
Active power-down current; All banks open; CK = CK(IDD); CKE is  
LOW; Other control and address bus inputs are STABLE; Data bus inputs are  
FLOATING  
Fast PDN Exit MRS(12) = 0  
Slow PDN Exit MRS(12) = 1  
IDD3P  
IDD3N  
IDD4W  
IDD4R  
t
t
t
t
t
t
Active standby current; All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is  
HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus  
inputs are SWITCHING  
mA  
mA  
mA  
Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0;  
t
t
t
t
t
t
CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH between valid commands;  
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL =  
t
t
t
t
t
t
CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH between  
valid commands; Address bus inputs are SWITCHING;; Data pattern is same as IDD4W  
t
t
t
Burst refresh current; CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is HIGH, CS is  
HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are  
SWITCHING  
IDD5B  
IDD6  
mA  
mA  
Self refresh current; CK and CK at 0V; CKE £ 0.2V; Other control and address bus inputs are FLOATING;  
Data bus inputs are FLOATING  
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD),  
t
t
t
t
t
t
t
t
t
t
AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC = RC(IDD), RRD = RRD(IDD), RCD = 1* CK(IDD); CKE  
is HIGH, CS is HIGH between valid commands; Address bus inputs are STABLE during DESELECTs; Data pat-  
tern is same as IDD4R; - Refer to the following page for detailed timing conditions  
IDD7  
mA  
Note:  
1. IDD specifications are tested after the device is properly initialized  
2. Input slew rate is specified by AC Parametric Test Condition  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met with all combinations  
of EMRS bits 10 and 11.  
5. Definitions for IDD  
LOW is defined as Vin VILAC(max)  
HIGH is defined as Vin VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including masks or strobes.  
Rev. 0.1/ July 2004  
11  
HYMP112S64(L)MP8  
Electrical Characteristics & AC Timings  
Speed Bins and CL,tRCD,tRP,tRC and tRAS for Corresponding Bin  
Speed  
Bin(CL-tRCD-tRP)  
Parameter  
CAS Latency  
tRCD  
DDR2-533(C4)  
DDR2-533(C5)  
DDR2-400(C3)  
DDR2-400(C4)  
Unit  
4-4-4  
min  
4
5-5-5  
min  
3-3-3  
min  
3
4-4-4  
min  
4
5
ns  
ns  
ns  
ns  
ns  
15  
18.75  
18.75  
63.75  
45  
15  
20  
tRP  
15  
15  
20  
tRC  
60  
55  
65  
tRAS  
45  
40  
45  
AC Timing Parameters by Speed Grade  
DDR2-400  
Max  
DDR2-533  
Parameter  
Symbol  
Unit Note  
Min  
-600  
-500  
0.45  
0.45  
Min  
-500  
-500  
0.45  
0.45  
Max  
500  
Data-Out edge to Clock edge Skew  
DQS-Out edge to Clock edge Skew  
Clock High Level Width  
tAC  
tDQSCK  
tCH  
600  
500  
ps  
ns  
450  
0.55  
0.55  
0.55  
0.55  
CK  
CK  
Clock Low Level Width  
tCL  
min  
(tCL,tCH)  
min  
(tCL,tCH)  
Clock Half Period  
tHP  
-
-
ns  
ps  
System Clock Cycle Time  
DQ and DM input hold time  
DQ and DM input setup time  
tCK  
tDH  
tDS  
5000  
400  
8000  
3750  
350  
8000  
-
-
-
-
ps  
ps  
1
1
400  
350  
Control & Address input Pulse Width for  
each input  
tIPW  
tDIPW  
tHZ  
0.6  
-
-
0.6  
-
-
tCK  
tCK  
DQ and DM input pulse witdth for each input  
pulse width for each input  
0.35  
0.35  
Data-out high-impedance window  
from CK, /CK  
-
tAC max  
-
tAC max  
ps  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
tLZ(DQS)  
tLZ(DQ)  
tAC min  
tAC max  
tAC max  
tAC min  
tAC max  
tAC max  
ps  
ps  
2*tAC min  
2*tAC min  
DQS-DQ skew for DQS and associated DQ  
signals  
tDQSQ  
-
350  
-
300  
ps  
DQ hold skew factor  
tQHS  
tQH  
-
450  
-
-
400  
-
ps  
ps  
DQ/DQS output hold time from DQS  
tHP - tQHS  
tHP - tQHS  
Write command to first DQS latching  
transition  
tDQSS  
WL - 0.25  
WL + 0.25  
WL - 0.25  
WL + 0.25 tCK  
DQS input high pulse width  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
-
-
-
-
-
0.35  
0.35  
0.2  
0.2  
2
-
-
-
-
-
tCK  
tCK  
tCK  
tCK  
tCK  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
tDSH  
tMRD  
Rev. 0.1/ July 2004  
12  
HYMP112S64(L)MP8  
- continued -  
DDR2 400  
DDR2 533  
Unit Note  
Parameter  
Write postamble  
Symbol  
Min  
Max  
Min  
Max  
tWPST  
tWPRE  
tIH  
0.4  
0.25  
600  
600  
0.9  
0.6  
-
0.4  
0.25  
500  
500  
0.9  
0.6  
-
tCK  
tCK  
ps  
Write preamble  
Address and control input hold time  
Address and control input setup time  
Read preamble  
-
-
tIS  
-
-
ps  
tRPRE  
tRPST  
tRFC  
1.1  
0.6  
-
1.1  
0.6  
-
tCK  
tCK  
ns  
Read postamble  
0.4  
0.4  
Auto-Refresh to Active/Auto-Refresh  
command period  
105  
105  
Row Active to Row Active Delay  
tRRD  
7.5  
-
7.5  
-
ns  
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
2
tCK  
ns  
15  
-
-
15  
-
-
(tWR/tCK)  
+
(tRP/tCK)  
(tWR/tCK)  
+
(tRP/tCK)  
Auto Precharge Write Recovery +  
Precharge Time  
tDAL  
tCK  
Write to Read Command Delay  
tWTR  
10  
-
ns  
7.5  
-
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tRTP  
tXSNR  
tXSRD  
tXP  
7.5  
tRFC + 10  
200  
7.5  
tRFC + 10  
200  
ns  
ns  
-
-
-
-
tCK  
tCK  
Exit precharge power down to any non-  
read command  
2
2
Exit active power down to read command  
Exit active power down to read command  
tXARD  
2
2
tCK  
tCK  
tXARDS  
6 - AL  
6 - AL  
(Slow exit, Lower power)  
CKE minimum pulse width  
(high and low pulse width)  
tCKE  
3
3
tCK  
tAOND  
tAON  
ODT turn-on delay  
ODT turn-on  
2
2
2
2
tCK  
ns  
tAC(min)  
tAC(max)+1  
tAC(min)  
tAC(max)+1  
2tCK+  
tAC(max)+1  
2tCK+  
tAC(max)+1  
tAONPD  
tAOFD  
tAOF  
ODT turn-on(Power-Down mode)  
ODT turn-off delay  
tAC(min)+2  
2.5  
tAC(min)+2  
2.5  
ns  
tCK  
ns  
2.5  
2.5  
tAC(max)+  
0.6  
tAC(max)+  
0.6  
ODT turn-off  
tAC(min)  
tAC(min)  
2.5tCK+  
tAC(max)+1  
2.5tCK+  
tAC(max)+1  
tAOFPD  
ODT turn-off (Power-Down mode)  
tAC(min)+2  
tAC(min)+2  
ns  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
Minimum time clocks remains ON after CKE  
asynchronously drops LOW  
tDelay  
tIS+tCK+tIH  
tIS+tCK+tIH  
ns  
tREFI  
tREFI  
-
-
7.8  
3.9  
-
-
7.8  
3.9  
us  
us  
2
3
Average periodic Refresh Interval  
Note :  
1. For details and notes, please refer to the relevant HYNIX component datasheet(HY5PS1G821(L)M).  
2. C TCASE ≤ 85°C  
3. 85°C TCASE ≤ 95°C  
Rev. 0.1/ July 2004  
13  
HYMP112S64(L)MP8  
PACKAGE OUTLINE  
Front  
Side  
3.8 max  
67.60  
20.00 Min  
4.00 +/-0.10  
30.00  
20.00  
PIN  
1
PIN  
41  
PIN  
39  
PIN  
199  
1.00 +/- 0.10  
11.40  
2.70  
4.20  
Back  
47.40  
2.45  
11.40  
2.40  
4.20  
PIN  
40  
PIN  
42  
PIN  
200  
PIN  
2
note:  
1. all dimension Units are millimeters.  
2. all outline dimensions and tolerances match up to the JEDEC standard.  
Rev. 0.1/ July 2004  
14  
SERIAL PRESENCE DETECT  
SPD SPECIFICATION  
(128Mx64 Unbuffered Lead-free DDR2 SO-DIMM)  
Rev. 0.1/ July 2004  
15  
HYMP112S64(L)MP8  
SERIAL PRESENCE DETECT  
Bin Sort : E3(DDR2 400 3-3-3), E4(DDR2 400 4-4-4),  
C4(DDR2 533 4-4-4), C5(DDR2 533 5-5-5)  
Speed  
Grade  
Function  
Supported  
Hexa  
Value  
Byte#  
Function Description  
Note  
0
1
2
3
4
5
6
7
8
Number of bytes utilized by module manufacturer  
Total number of Bytes in SPD device  
Fundamental memory type  
Number of row address on this assembly  
Number of column address on this assembly  
Number of DIMM ranks  
Module data width  
Module data width (continued)  
Voltage Interface level of this assembly  
all  
all  
all  
all  
all  
all  
all  
all  
all  
E3,E4  
C4,C5  
E3,E4  
C4,C5  
all  
all  
all  
128 Bytes  
256 Bytes  
DDR2 SDRAM  
14  
80  
08  
08  
0E  
0A  
71  
40  
00  
05  
50  
3D  
60  
50  
00  
82  
08  
00  
00  
0C  
04  
38  
00  
04  
00  
00  
50  
3D  
60  
50  
50  
00  
60  
00  
3C  
50  
4B  
1E  
3C  
50  
4B  
28  
2D  
80  
60  
50  
60  
50  
40  
35  
40  
35  
3C  
28  
1E  
1E  
00  
00  
50  
37  
3C  
41  
3F  
1
1
10  
30.0mm/stack/2rank  
64 Bits  
-
SSTL 1.8V  
5.0 ns  
2
2
9
DDR SDRAM cycle time at CL=5  
3.75 ns  
+/-0.6ns  
+/-0.5ns  
non-ECC  
7.8us & Self refresh  
x8  
10  
DDR SDRAM access time from clock (tAC)  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
DIMM Configuration type  
Refresh Rate and Type  
Primary DDR SDRAM width  
Error Checking DDR SDRAM data width  
Reserved  
Burst Lengths Supported  
Number of banks on each SDRAM Device  
CAS latency supported  
Reserved  
DIMM Type  
DDR SDRAM module attributes  
DDR SDRAM device attributes : General  
all  
None  
-
4,8  
4
3, 4, 5  
-
SO-DIMM  
Normal  
-
all  
all  
all  
all  
all  
all  
E3,E4,C5  
C4  
E3,E4,C5  
C4  
E3,C4  
E4,C5  
E3,C4  
E4,C5  
E3, C4  
E4  
C5  
all  
E3, C4  
E4  
C5  
5.0ns  
23  
24  
25  
26  
DDR SDRAM cycle time at CL=4(tCK)  
2
2
2
2
3.75ns  
+/-0.6ns  
+/-0.5ns  
5.0ns  
Undefined  
+/-0.6ns  
Undefined  
15ns  
20ns  
18.75ns  
7.5ns  
15ns  
20ns  
18.75ns  
40ns  
45ns  
512MB  
0.6ns  
0.5ns  
0.6ns  
0.5ns  
0.40ns  
0.35ns  
0.40ns  
0.35ns  
15ns  
DDR SDRAM access time from clock at CL=4(tAC)  
DDR SDRAM cycle time at CL=3(tCK)  
DDR SDRAM access time from clock at CL=3(tAC)  
27  
28  
29  
Minimum Row Precharge Time(tRP)  
Minimum Row Activate to Row Active delay(tRRD)  
Minimum RAS to CAS delay(tRCD)  
E3  
E4,C4,C5  
all  
30  
31  
32  
Minimum active to precharge time(tRAS)  
Module rank density  
E3, E4  
C4, C5  
E3, E4  
C4, C5  
E3, E4  
C4, C5  
E3, E4  
C4, C5  
all  
Address and command input setup time before clock (tIS)  
33  
34  
Address and command input hold time after clock (tIH)  
Data input setup time before clock (tDS)  
35  
36  
37  
Data input hold time after clock (tDH)  
Write recovery time(tWR)  
E3, E4  
C4, C5  
all  
10ns  
7.5ns  
7.5ns  
Internal write to read command delay(tWTR)  
38  
39  
Internal read to precharge command delay(tRTP)  
Memory analysis probe characteristics  
Undefined  
Undefined  
tRC extended  
55ns  
60ns  
65ns  
63.75ns  
E3,E4,C4  
40  
Extension of byte 41 tRC and byte 42 tRFC  
C5  
E3  
C4  
E4  
C5  
41  
Minimum active / auto-refresh time ( tRC)  
Rev. 0.1/ July 2004  
16  
HYMP112S64(L)MP8  
- continued -  
Speed  
Grade  
Function  
Supported  
Hexa  
Value  
Byte#  
Function Description  
Note  
Minimum auto-refresh to active/auto-refresh  
command period(tRFC)  
Maximum cycle time (tCK max)  
42  
43  
44  
all  
105ns  
69  
all  
8.0ns  
0.35ns  
0.30ns  
0.45ns  
0.40ns  
No PLL  
Undefined  
80  
23  
1E  
2D  
28  
00  
00  
10  
C5  
4C  
3F  
23  
AD  
00  
0*  
1*  
2*  
3*  
4*  
5*  
48  
59  
4D  
50  
31  
31  
32  
53  
36  
34  
4D  
50  
38  
2D  
45  
43  
33  
34  
35  
20  
E3, E4  
C4, C5  
E3, E4  
C4, C5  
Maximim DQS-DQ skew time(tDQSQ)  
45  
46  
Maximum read data hold skew factor(tQHS)  
PLL Relock time  
47~61 Superset information(may be used in future)  
62  
63  
64  
SPD Revision code  
1.0  
-
-
-
E3  
E4  
C4  
C5  
Checksum for Bytes 0~62  
-
Manufacturer JEDEC ID Code  
65~71 --------- Manufacturer JEDEC ID Code  
Hynix JEDEC ID  
-
Hynix(Korea Area)  
HSA(United States Area)  
HSE(Europe Area)  
HSJ(Japan Area)  
72  
Manufacturing location  
6
Singapore  
Asia Area  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
Manufacture part number(Hynix Memory Module)  
-------- Manufacture part number(Hynix Memory Module)  
-------- Manufacture part number(Hynix Memory Module)  
Manufacture part number (DDR2 SDRAM)  
---------Manufacture part number(Memory density)  
Manufacture part number(Module Depth)  
------- Manufacture part number(Module Depth)  
Manufacture part number(Module type)  
Manufacture part number(Data width)  
-------Manufacture part number(Data width)  
Manufacture part number(Package type)  
Manufacture part number(Package material)  
Manufacture part number(Component configuration)  
Manufacture part number(Hyphen)  
H
Y
M
P
1
1
2
S
6
4
M
P
8
‘-’  
E
C
3
4
5
E3, E4  
C4, C5  
E3  
E4,C4  
C5  
87  
Manufacture part number(Minimum cycle time)  
88  
-------Manufacture part number(Minimum cycle time)  
89~90 Manufacture part number(T.B.D)  
Blank  
91  
92  
93  
94  
Manufacture revision code(for Component)  
Manufacture revision code (for PCB)  
Manufacturing date(Year)  
3
3
4
5
5
Manufacturing date(Week)  
95~98 Module serial number  
99~127 Manufacturer specific data (may be used in future)  
128~255 Open for customer use  
Undefined  
Undefined  
00  
00  
Note :  
1. The bank address is excluded  
2. This value is based on the component specification  
3. These bytes are programmed by code of date week & date year  
4. These bytes apply to Hynix’s own Module Serial Number System  
5. These bytes undefined and coded as ‘00h’  
6. Refer to Hynix Web Site  
Byte 83~84, Low Power Part  
Speed  
Grade  
Hexa  
Value  
Byte #  
Function Description  
Function Supported  
Note  
83  
84  
Manufacture part number(Low power part)  
Manufacture part number(Package type)  
L
M
4C  
4D  
Rev. 0.1/ July 2004  
17  
厂商 型号 描述 页数 下载

ETC

HYM22100S-60 X8快速页模式DRAM模块\n[ x8 Fast Page Mode DRAM Module ] 9 页

ETC

HYM22100S-70 X8快速页模式DRAM模块\n[ x8 Fast Page Mode DRAM Module ] 9 页

ETC

HYM22100S-80 X8快速页模式DRAM模块\n[ x8 Fast Page Mode DRAM Module ] 9 页

INFINEON

HYM321000GS-50 1M ×32位动态RAM模块2M ×16位动态RAM模块[ 1M x 32-Bit Dynamic RAM Module 2M x 16-Bit Dynamic RAM Module ] 10 页

INFINEON

HYM321000GS-60 1M ×32位动态RAM模块2M ×16位动态RAM模块[ 1M x 32-Bit Dynamic RAM Module 2M x 16-Bit Dynamic RAM Module ] 10 页

INFINEON

HYM321000S 1M ×32位动态RAM模块2M ×16位动态RAM模块[ 1M x 32-Bit Dynamic RAM Module 2M x 16-Bit Dynamic RAM Module ] 10 页

INFINEON

HYM321000S-50 1M ×32位动态RAM模块2M ×16位动态RAM模块[ 1M x 32-Bit Dynamic RAM Module 2M x 16-Bit Dynamic RAM Module ] 10 页

INFINEON

HYM321000S-60 1M ×32位动态RAM模块2M ×16位动态RAM模块[ 1M x 32-Bit Dynamic RAM Module 2M x 16-Bit Dynamic RAM Module ] 10 页

INFINEON

HYM321005GS-50 1M ×32位动态RAM模块[ 1M x 32-Bit Dynamic RAM Module ] 10 页

INFINEON

HYM321005GS-60 1M ×32位动态RAM模块[ 1M x 32-Bit Dynamic RAM Module ] 10 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.164082s