找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

SZA1015TT

型号:

SZA1015TT

品牌:

PHILIPS[ PHILIPS SEMICONDUCTORS ]

页数:

20 页

PDF大小:

101 K

INTEGRATED CIRCUITS  
DATA SHEET  
SZA1015  
Brushless Motor Controller  
(BMC12)  
Product specification  
2001 Jul 11  
Supersedes data of 2000 Sep 19  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
FEATURES  
It uses a 5 V supply for the internal control circuit and a  
5 to 12 V supply for the motor driver.  
Direct full bridge driving system  
The switching PWM output is highly efficient resulting in a  
low power dissipation for forward torque acceleration as  
well as for reverse torque brake (PWM controlled reverse  
torque).  
No external series resistor required in motor supply line  
Adjustable output current up to 2.1 A (over 20X DVD  
and over 50X CD)  
D-MOSFET output with a total on-resistance of 0.7 Ω  
(typical)  
Sensitive Hall sensor amplifiers with a very low offset are  
integrated which can operate on very small Hall signals.  
PWM controlled commutation  
The current limiter circuit requires no external series  
resistor in the power ground which increases efficiency.  
The limiting current can be adjusted by means of an  
external resistor at pin RLIM (not in series with motor  
supply line). The current limiter is active during  
accelerating as well as during braking.  
Internal compensation for EMF of motor  
(EMF regenerator)  
Start/stop function with built-in power saving circuit  
Hall amplifiers with a minimum input level of 25 mV  
Built-in frequency generator (FG output)  
Adjustable motor current limiter  
The EMF voltage of the motor is internally measured and  
is used to compensate for the PWM commutation.  
A scaling factor can be set by means of an external  
resistor at pin REMF.  
Built-in thermal shutdown  
Reverse torque brake function (full bridge)  
Built-in reverse rotation protection circuit  
32 mA Hall bias circuit  
The tacho-generator can be used to measure the  
rotational speed of the disk. It shows the triple frequency  
of the Hall signals.  
Few external components  
Interfaces to 3 V and 5 V logic  
A thermal shutdown circuit with a small hysteresis protects  
the IC from overheating.  
Package with very low thermal resistance from junction  
to heatsink (reflowable die pad).  
A heatsink at the bottom of the chip with a very low thermal  
resistance enables effective cooling.  
GENERAL DESCRIPTION  
The start/stop function reduces current consumption of  
the IC to a minimum when the motor is stopped (stop  
mode) and also turns off the Hall sensor bias in the stop  
mode.  
The BMC12 is a 3-phase Brushless Motor Controller  
(BMC) for Hall commutated spindle motors in CD and DVD  
drives suitable for DVD speeds over 20X and CD speeds  
over 50X.  
ORDERING INFORMATION  
PACKAGE  
TYPE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SZA1015TT  
HTSSOP32  
plastic, heatsink thin shrink small outline package; 32 leads;  
body width 6.1 mm; lead pitch 0.65 mm  
SOT549-1  
2001 Jul 11  
2
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
QUICK REFERENCE DATA  
SYMBOL  
VDD  
PARAMETER  
MIN.  
4.5  
TYP.  
5.0  
MAX.  
5.5  
UNIT  
supply voltage  
V
VDDM  
IDDM  
Rds(on)  
Ptot  
motor supply voltage  
motor current  
4.5  
12.0  
14.5  
2.1  
V
A
D-MOSFET on-resistance (high or low)  
total power dissipation  
0.35  
W
3.0  
85  
Tamb  
ambient temperature  
0
°C  
2001 Jul 11  
3
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
BLOCK DIAGRAM  
GM1T8  
d
2001 Jul 11  
4
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
PINNING  
SYMBOL PIN  
DESCRIPTION  
VSSA  
BIAS  
ROSC  
REMF  
RLIM  
FG  
1
2
3
4
5
6
7
8
motor control ground supply  
Hall element bias  
handbook, halfpage  
V
COSC  
i.c.  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
SSA  
external resistor for internal oscillator  
external resistor for EMF regeneration  
external resistor for current limiting  
frequency generator output  
output current control pin  
BIAS  
ROSC  
REMF  
RLIM  
FG  
WN  
WP  
VN  
3
4
5
EC  
VP  
6
ECR  
output current control reference  
voltage pin  
EC  
UN  
7
i.c.  
9
internally connected (leave  
open-circuit)  
ECR  
i.c.  
UP  
8
SZA1015  
V
9
DD  
CP1  
CP2  
CAPY  
VDDM  
W
10 booster capacitor connection 1  
11 booster capacitor connection 2  
12 booster output  
CP1  
START  
10  
11  
12  
13  
14  
15  
16  
CP2  
V
DDM  
13 motor supply voltage  
14 motor terminal W  
CAPY  
U
V
GND  
V
DDM  
GND  
VDDM  
GND  
n.c.  
15 ground supply  
W
16 motor supply voltage  
17 ground supply  
GND  
n.c.  
GND  
V
DDM  
18 not connected  
MGT189  
V
19 motor terminal V  
GND  
U
20 ground supply  
21 motor terminal U  
VDDM  
START  
VDD  
UP  
22 motor supply voltage  
23 start/stop control pin  
24 system supply voltage  
25 positive Hall input U  
26 negative Hall input U  
27 positive Hall input V  
28 negative Hall input V  
29 positive Hall input W  
30 negative Hall input W  
Fig.2 Pin configuration.  
UN  
VP  
VN  
WP  
WN  
i.c.  
31 internally connected (leave  
open-circuit)  
COSC  
32 external capacitor for internal oscillator  
2001 Jul 11  
5
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
FUNCTIONAL DESCRIPTION  
Motor control  
handbook, halfpage  
V
M1  
The control input voltage EC is converted into a digital  
value (DC) by the ADC where voltage ECR is the midpoint  
reference for EC (see Fig.3).  
I
MACC  
R
M
V
(I  
×
M
)
RM  
2
I
+
MBR  
V
EMF  
2
+
V
EMF  
2
I
= I  
I
= 0  
I
= +I  
M LIM  
handbook, halfpage  
M
LIM  
M
R
M
V
(I  
×
)
RM  
M
2
forward torque  
(+D  
reverse torque brake  
)
(D  
)
MGT191  
V
C
C
M2  
E
= 0 V  
E
= E  
E
= 2 × E  
C CR  
C
C
CR  
Fig.4 Simplified motor schematic.  
MGT190  
Fig.3 Motor control.  
handbook, halfpage  
The gain from input voltage (EC) to motor current (IM) is  
V
V
DDM  
M1  
ILIM/ECR (A/V). The motor current can be determined with  
V
EMF  
2
ILIM  
V
RM  
V
the following formula: IM  
=
× (E C E CR)  
----------  
ECR  
M
The maximum motor current ILIM is set by the motor  
current limiter. When the rotational speed of the motor has  
become zero the motor current is switched off and all  
driver outputs (pins U, V and W) are connected to ground.  
This prevents the motor of spinning backwards.  
V
DDM  
2
k
V
RM  
V
EMF  
2
V
Internal motor voltage generation  
M2  
ω (rad/s)  
The simplified motor schematic in Fig.4 shows the series  
resistance and back-EMF voltage of the motor.  
MGT192  
Fig.5 Motor voltage when accelerating.  
If we assume that IMACC is used to accelerate and IMBR is  
used to brake we can draw two pictures shown in Figs 5  
(accelerate) and 6 (brake).  
2001 Jul 11  
6
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
MGT194  
100  
handbook, halfpage  
handbook, halfpage  
V
DDM  
% of I  
MAX  
V
EMF  
2
80  
60  
40  
20  
V
M
V
V
V
M1  
RM  
RM  
V
DDM  
2
k
V
M2  
V
EMF  
2
ω (rad/s)  
MGT193  
0
0
10  
20  
30  
40  
50  
R
(k)  
LIM  
Fig.6 Motor voltage when actively braking.  
ROSC = 47 k.  
Fig.7 Maximum output current as a function of  
RLIM  
.
The BMC12 regenerates VEMF and superimposes  
VM (0 IM ILIM) which depends on the EC (gain) input  
voltage. VRM (IM) can be positive (accelerate) or negative  
(brake).  
The formula to determine the limiting current is as follows:  
RLIM  
Motor current limiting function  
ILIM  
=
× I  
MAX  
-------------  
ROSC  
The maximum motor current is determined with the  
VDDM  
following formula: IMAX  
=
-------------------------------------------------------  
motor + Rswitches(min)  
R
Back-EMF regeneration  
The back-EMF voltage is internally regenerated. The ratio  
between REMF and ROSC can be used to scale the internal  
EMF regeneration. The value of resistor REMF depends on  
the type of motor (k-factor, number of pole pairs) and the  
motor supply voltage used. This is shown in the following  
ILIM is a fraction of the maximum motor current IMAX  
During accelerating and braking the motor current will not  
exceed the limiting current set by RLIM  
.
.
k × 2.6 × 103 × ROSC  
formula: REMF  
=
------------------------------------------------------  
N
PP × VDDM  
For noise reduction the Hall signals are internally filtered.  
2001 Jul 11  
7
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
FG generator  
Start/stop function  
The FG generator output shows a frequency which  
depends on the number of Hall signals (three) and the  
number of pole pairs (NPP). The formula to determine the  
At pin START = LOW, the BMC12 can be set to a power  
saving mode, reducing the current consumption. In the  
power saving mode the outputs will be in 3-state.  
FG  
3 × NPP  
motor frequency is as follows: fmotor  
=
-------------------  
DC-DC converter  
The on-board DC-DC converter generates a voltage of  
approximately 2 × VDDM 1.2 V with a maximum voltage  
of 19.3 V typical (internal clamp circuit). This voltage is  
used internal to switch the upper drivers of the U, V and W  
outputs.  
The FG has an open-drain output for easy interfacing to  
3 V and 5 V logic.  
Thermal shutdown  
The thermal shutdown block sets all outputs to 3-state  
mode if the junction temperature of the BMC12 exceeds  
155 °C (typical). There is a hysteresis of 15 °C (typical)  
between the temperatures at which the thermal shutdown  
activates and deactivates. As soon as the thermal  
shutdown deactivates, the commutation control continues  
its operation.  
Oscillator  
The RC oscillator uses two external components  
(ROSC and COSC) to fix its frequency. To ensure a stable  
oscillator frequency the oscillator and ROSC both use a  
reference current made by the current reference block.  
The nominal frequency is 3 MHz with ROSC = 47 kΩ  
(2% tolerance) and COSC = 100 pF (5% tolerance). The  
values of the external components for the oscillator are  
fixed. The oscillator can be overruled by applying a 3 MHz  
clock to pin COSC (ROSC is used to determine  
ILIM and REMF and should always be connected).  
2001 Jul 11  
8
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
UP-UN  
WP-WN  
VP-VN  
(3)  
(1)  
12 V  
(4)  
U
0 V  
12 V  
V
(2)  
0 V  
12 V  
W
0 V  
MGT196  
(1) In this example, a PWM output signal with a 25% duty cycle is drawn as a thin line. The average motor voltage (drawn with a thicker line width) is  
25% × VDDM, i.e. 3.0 V. At the opposite side of the coil (in this drawing pin W) the duty cycle is 75%, so the average voltage on pin W is 9.0 V. The  
differential voltage over the motor pins then is: 9 3 = 6 V.  
(2) There is still a current flowing from pin U into the motor. The lower flyback diode starts conducting, and causes a flyback voltage of around 0.7 V  
below GND, until the current is zero.  
(3) There is still a current flowing from the motor into pin U. The upper flyback diode starts conducting, and causes a flyback voltage of around 0.7 V  
above VDDM, until the current is zero.  
(4) During this phase, the driver output is 3-state. Because there is no current flowing through pin U, the back-EMF of the motor is seen.  
Fig.8 Phase condition of Hall input and output voltage (motor running with EC > ECR).  
2001 Jul 11  
9
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VDD  
PARAMETER  
MIN.  
0.5  
MAX.  
+6.5  
UNIT  
supply voltage  
V
VDDM  
IDDM  
Ptot  
motor supply voltage  
motor current  
0.5  
+15  
2.1  
V
A
total power dissipation  
storage temperature  
ambient temperature  
3.0  
W
Tstg  
55  
0
+150  
85  
°C  
°C  
Tamb  
MGT197  
4
handbook, halfpage  
P
tot  
(W)  
3
2
1
0
0
50  
100  
150  
T
(°C)  
amb  
The IC is thermally connected with its heatsink to an external heatsink at ambient temperature, with  
a total thermal resistance of 35 K/W (10 K/W junction to case plus 25 K/W case to surrounding).  
Fig.9 Maximum dissipation as a function of the ambient temperature.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-c)  
PARAMETER  
VALUE  
UNIT  
thermal resistance from junction to case  
10  
K/W  
CHARACTERISTICS  
VDD = 5 V; VDDM = 12 V; GND = 0 V; Tamb = 25 °C; ROSC = 47 k, COSC = 100 pF; unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
supply voltage  
4.5  
5.0  
5.5  
V
V
A
VDDM  
IDDM  
motor supply voltage  
motor current  
4.5  
12.0  
14.5  
2.1  
2001 Jul 11  
10  
-------  
                                                                                   
-
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
SYMBOL  
IDD  
PARAMETER  
supply current  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
mA  
START = HIGH  
START = LOW  
15  
IDD(q)  
quiescent current in power saving  
mode  
1
mA  
Ptot  
total power dissipation  
ambient temperature  
3.0  
85  
W
Tamb  
0
°C  
Hall amplifier inputs (pins UN, UP, VN, VP, WN and WP)  
VIO  
input offset voltage  
input voltage range  
3.5  
0
+3.5  
4.0  
mV  
V
Vi  
Vi(dif)(p-p)  
Hall amplifier input voltage  
(peak-to-peak value)  
25  
mV  
Hall elements bias (pin BIAS)  
Ibias  
bias current  
bias voltage  
32  
mA  
V
Vbias  
Ibias = 32 mA  
note 1  
0.1  
0.5  
Oscillator  
fosc  
oscillator frequency  
3.0  
MHz  
Thermal shutdown circuit  
TSD  
thermal shutdown operating  
temperature  
140  
155  
170  
°C  
Power switches  
Rds(on)  
D-MOSFET on-resistance (high or VDDM = 12 V  
0.25  
0.35  
0.35  
0.50  
0.50  
0.71  
low)  
VDDM = 5 V  
Booster  
VCAPY  
booster output voltage  
note 2  
note 3  
19  
19.3  
19.6  
V
Torque control (pins EC and ECR)  
VECR  
VEC  
reference voltage on pin ECR  
torque control voltage on pin EC  
1.2  
0
1.8  
2.5  
V
V
VDD  
Digital input (pin START)  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
2.0  
V
V
0.8  
Open-drain output (pin FG)  
VOL  
LOW-level output voltage  
IO = 2 mA  
0.5  
V
Notes  
fosc  
1. The PWM frequency is: fPWM  
=
33  
2. Clamping level with VDDM = 12 V.  
3. The maximum useful range of the control input voltage EC is 0 to 2 × ECR (midpoint reference voltage).  
When EC = ECR, then no torque is applied to the motor. The conversion characteristic does not have a ‘dead zone’.  
2001 Jul 11  
11  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
APPLICATION INFORMATION  
V
DDM  
+12 V  
+5 V  
13, 16, 22  
24  
U
V
21  
19  
14  
V
DD  
START  
ECR  
motor  
from  
microcontroller  
23  
8
3 V or 5 V  
W
100 Ω  
FG  
EC  
+5 V  
+5 V  
6
7
SZA1015  
signals to/from  
decoder  
UP  
UN  
25  
26  
UP  
UN  
HU  
HU  
CP1  
10  
VP  
VN  
10 nF  
22 nF  
27  
28  
VP  
VN  
CP2  
11  
12  
HV  
HV  
Hall  
elements  
CAPY  
WP  
WN  
29  
30  
WP  
WN  
HW  
HW  
GND  
15, 17, 20  
V
SSA  
BIAS  
1
2
BIAS  
4
5
3
32  
REMF  
RLIM  
ROSC COSC  
(1)  
R
47  
kΩ  
(1)  
R
100 pF  
LIM  
EMF  
MGT198  
(1) For selection of the resistors REMF and RLIM see Chapter “Functional description”.  
Fig.10 Typical application diagram.  
2001 Jul 11  
12  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
INTERNAL PIN CONFIGURATION  
R
= 150 to 350 Ω  
R
= 150 to 350 Ω  
START (pin 23)  
on  
on  
UP (pin 25)  
VP (pin 27)  
WP (pin 29)  
UN (pin 26)  
5 pF  
5 pF  
5 pF  
5 pF  
VN (pin 28)  
WN (pin 30)  
5 pF  
3.4  
pF  
3.4  
pF  
BIAS (pin 2)  
'on' when  
START is active  
5 pF  
V
DDM  
EC (pin 7)  
ECR (pin 8)  
U (pin 21)  
V (pin 19)  
W (pin 14)  
100 kΩ  
MGT199  
GND  
Fig.11 Input and output equivalent circuits.  
2001 Jul 11  
13  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
PACKAGE OUTLINE  
HTSSOP32: plastic, heatsink thin shrink small outline package; 32 leads; body width 6.1 mm;  
lead pitch 0.65 mm  
SOT549-1  
E
A
D
X
c
H
v
M
A
y
heatsink side  
E
D
h
Z
32  
17  
A
(A )  
3
E
2
A
h
A
1
pin 1 index  
θ
L
p
L
detail X  
1
16  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
L
L
p
v
w
y
Z
θ
1
2
3
p
h
h
E
max.  
8o  
0o  
0.15 0.95  
0.05 0.85  
0.30 0.20 11.10 5.10 6.20 3.60  
0.19 0.09 10.90 4.90 6.00 3.40  
8.30  
7.90  
0.75  
0.50  
0.78  
0.48  
mm  
1.10  
0.25  
0.65  
1.00  
0.20 0.10  
0.10  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-03-04  
SOT549-1  
2001 Jul 11  
14  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
2001 Jul 11  
15  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
BGA, LFBGA, SQFP, TFBGA  
WAVE  
not suitable  
REFLOW(1)  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS  
PLCC(3), SO, SOJ  
not suitable(2)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2001 Jul 11  
16  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS(1)  
STATUS(2)  
DEFINITIONS  
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2001 Jul 11  
17  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
NOTES  
2001 Jul 11  
18  
Philips Semiconductors  
Product specification  
Brushless Motor Controller (BMC12)  
SZA1015  
NOTES  
2001 Jul 11  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4728 6600, Fax. +33 1 4728 6638  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,  
Tel: +36 1 382 1700, Fax: +36 1 382 1800  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,  
Tel. +66 2 361 7910, Fax. +66 2 398 3447  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,  
The Netherlands, Fax. +31 40 27 24825  
Internet: http://www.semiconductors.philips.com  
72  
SCA  
© Philips Electronics N.V. 2001  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753503/02/pp20  
Date of release: 2001 Jul 11  
Document order number: 9397 750 08543  
厂商 型号 描述 页数 下载

SIRENZA

SZA-2044 2.0-2.7 GHz的5V 1W功率放大器[ 2.0-2.7 GHz 5V 1W Power Amplifier ] 8 页

SIRENZA

SZA-2044Z 2.0-2.7 GHz的5V 1W功率放大器[ 2.0-2.7 GHz 5V 1W Power Amplifier ] 8 页

SIRENZA

SZA-3044 2.7-3.8GHz 5V 1W功率放大器[ 2.7-3.8GHz 5V 1W Power Amplifier ] 8 页

SIRENZA

SZA-3044Z 2.7-3.8GHz 5V 1W功率放大器[ 2.7-3.8GHz 5V 1W Power Amplifier ] 8 页

SIRENZA

SZA-5044 4.9 - 5.9 GHz的5V电源功放[ 4.9 - 5.9 GHz 5V Power Amplifier ] 7 页

SIRENZA

SZA-5044Z 4.9 - 5.9 GHz的5V电源功放[ 4.9 - 5.9 GHz 5V Power Amplifier ] 7 页

SIRENZA

SZA-6044 5.1 5.9 GHz的1/4瓦功率放大器的有源偏置[ 5.1- 5.9 GHz 1/4 Watt Power Amplifier with Active Bias ] 6 页

SEOUL

SZA05A0A ž电源指示灯 - 超高光通量输出,高亮度[ Z Power LED - Super high Flux output and high Luminance ] 21 页

ARCH

SZA100-12S [ Open Frame Switching Power Supply ] 5 页

ARCH

SZA100-15S [ Open Frame Switching Power Supply ] 5 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.214852s