找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYW43143KMLGT

型号:

CYW43143KMLGT

品牌:

CYPRESS[ CYPRESS ]

页数:

44 页

PDF大小:

781 K

ADVANCE  
CYW43143  
Single Chip IEEE 802.11 b/g/n MAC/PHY/Radio with  
USB/SDIO Host Interface  
The CYW43143 is a single-band, single-stream, IEEE 802.11n compliant, MAC/PHY/Radio system-on-a-chip with internal 2.4 GHz  
Power Amplifier (PA) and integrated T/R switch. The CYW43143 supports internal RX diversity by providing two antenna ports. The  
device enables development of USB or SDIO 802.11n WLAN clients that can take advantage of the high throughput and extended  
range of Cypress second-generation solution. The CYW43143 maintains compatibility with legacy IEEE 802.11b/g devices.  
State-of-the-art security is provided by industry standard support for WPA, WPA2 (802.11i), and hardware-accelerated AES  
encryption/decryption, coupled with TKIP, IEEE 802.1X support, and a WLAN Authentication and Privacy Infrastructure (WAPI)  
hardware engine.  
Embedded hardware acceleration enables increased system performance and reduced host-CPU utilization in both client and access  
point configurations. The CYW43143 also supports Cypress widely accepted and deployed WPS to easily secure WLAN networks.  
SDIO and USB wireless client modules for digital TVs, Blu-ray Disc® players, set-top boxes, game consoles, and printers.  
Supports the I2S digital audio interface.  
Stand-alone wireless USB dongles and multimedia streaming boxes.  
Cypress Part Numbering Scheme  
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,  
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides  
Cypress ordering part number that matches an existing IoT part number.  
Table 1. Mapping Table for Part Number between Broadcom and Cypress  
Broadcom Part Number  
Cypress Part Number  
BCM43143  
CYW43143  
BCM43143KMLG  
CYW43143KMLG  
Features  
Supports 3.3V ±10% power supply input with high efficiency  
Power Management Unit (PMU).  
Full IEEE 802.11b/g legacy compatibility with enhanced perfor-  
mance.  
Programmable dynamic power management.  
Eight GPIOs with multiplexed JTAG interface.  
Supports Cypress OneDriver™ software.  
Supports drivers for Windows®, Linux®, and Android™  
operating systems.  
Complies with USB 2.0 specification and link power  
management.  
Comprehensive wireless network security support that  
includesWPA,WPA2, andAESencryption/decryption, coupled  
with TKIP, IEEE 802.1X support, and a WAPI encryption/  
decryption engine.  
Supports standard SDIO v2.0 (50 MHz, 4-bit and 1-bit) and  
USB host interfaces.  
20 MHz reference clock.  
Single stream IEEE 802.11n support for 20 MHz and 40 MHz  
channels provides PHY layer rates up to 150 Mbps for typical  
upper-layer throughput in excess of 90 Mbps.  
IEEE 802.11x Key Features:  
IEEE 802.11n compliant.  
Supports the IEEE 802.11n RX space-time block coding  
(STBC) and low-density parity check (LDPC) options for  
improved range and power efficiency.  
2.4 GHz internal PA.  
Internal T/R and RX diversity switches.  
Supports MCS 0–7 coding rates.  
Support for Short Guard Interval (SGI).  
Supports an IEEE 802.15.2 external coexistence interface to  
optimize bandwidth utilization with other colocated wireless  
technologies such as GPS, WiMAX, LTE, Bluetooth, and UWB.  
Supports USB 2.0, standard SDIO v2.0 (50 MHz,  
4-bit and 1-bit) host interfaces.  
Integrated ARM Cortex-M3 processor and on-chip memory for  
complete WLAN subsystem functionality, minimizing the need  
to wake up the applications processor for standard WLAN  
functions. This allows for further minimization of power  
consumption while maintaining the ability to field upgrade with  
future features. On-chip memory includes 448 KB SRAM and  
256 KB ROM.  
Supports the I2S audio interface.  
Greenfield, mixed mode, and legacy mode support.  
802.11n MPDU/MSDU aggregation support for high  
throughput.  
Cypress Semiconductor Corporation  
Document Number: 002-15045 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 20, 2017  
ADVANCE  
CYW43143  
USB 2.0 with Link Power Management (LPM) for low power  
standby application.  
Single stream IEEE 802.11n support for 20 MHz and 40 MHz  
channels provides PHY layer rates up to 150 Mbps for typical  
upper-layer throughput in excess of 90 Mbps.  
SDIO out of band low power application.  
Supports the IEEE 802.11n RX space-time block coding  
(STBC) and low-density parity check (LDPC) options for  
improved range and power efficiency.  
Integrated One Time Programmable (OTP) memory to save  
configuration settings.  
Package options:  
7 mm × 7 mm, 56-pin QFN package.  
Figure 1.CYW43143 High-Level Block Diagram  
CYW43143  
IEEE  
JTAG  
PA  
JTAG  
USB  
IEEE  
802.11n  
MAC  
IEEE  
802.11n  
PHY  
RF Front  
End  
802.11n  
2.4 GHz  
Radio  
2.4 GHz  
USB 2.0  
Device  
(switches)  
Security  
SDIO or  
I2S  
Interface  
SDIO or I2S  
Interface  
Serial  
Flash  
Interface  
OTP  
(2 Kbits)  
GPIO  
GPIO  
FLASH  
Memory  
IoT Resources  
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your  
design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of  
information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software  
updates. Customers can acquire technical documentation and software from the Cypress Support Community website  
(http://community.cypress.com/).  
Document Number: 002-15045 Rev. *F  
Page 2 of 44  
ADVANCE  
CYW43143  
Contents  
1. Introduction ...................................................................4  
2. Power Management and Resets ..................................6  
2.1 Power Management .............................................. 6  
2.2 Power Topology .................................................... 6  
2.3 Reset and Low-Power Off Mode ........................... 6  
3. WLAN Global Functions ..............................................7  
3.1 GPIO Interface ...................................................... 7  
3.2 OTP....................................................................... 7  
3.3 JTAG Interface ...................................................... 7  
3.4 Crystal Oscillator ................................................... 7  
4. WLAN USB 2.0 Host Interface .....................................8  
4.1 Link Power Management (LPM) Support .............. 8  
4.2 I2S Interface .......................................................... 9  
5. SDIO Interface .............................................................10  
6. Wireless LAN MAC and PHY .....................................11  
6.1 IEEE 802.11n MAC Description .......................... 11  
6.2 IEEE 802.11n PHY Description........................... 12  
6.3 Single-Band Radio Transceiver........................... 13  
7. Pin Assignments ........................................................14  
7.1 56-Pin QFN Assignments.................................... 14  
8. Signal and Pin Descriptions ......................................18  
8.1 Package Signal Descriptions............................... 18  
8.2 Strapping Options................................................ 20  
9. Electrical Characteristics ...........................................22  
9.1 Absolute Maximum Ratings................................. 22  
9.2 Recommended Operating Conditions and  
DC Characteristics .............................................. 22  
9.3 WLAN Current Consumption............................... 23  
10. Regulator Electrical Specifications ........................25  
10.1 Core Buck Switching Regulator......................... 25  
10.2 CLDO ................................................................ 25  
10.3 LNLDO .............................................................. 26  
11. WLAN Specifications ...............................................28  
11.1 2.4 GHz Band General RF Specifications......... 28  
11.2 2.4 GHz Band Receiver RF Specifications........ 28  
11.3 2.4 GHz Band Transmitter RF Specifications.... 29  
11.4 2.4 GHz Band Local Oscillator Specifications... 30  
12. Antenna Specifications ............................................31  
12.1 Voltage Standing Wave Ratio ........................... 31  
13. Timing Characteristics .............................................32  
13.1 Power Sequence Timing ................................... 32  
13.2 Serial Flash Timing............................................ 33  
13.3 I2S Slave Mode Tx Timing................................. 34  
13.4 SDIO Default Mode Timing ............................... 35  
13.5 SDIO High Speed Mode Timing........................ 36  
13.6 USB Parameters ............................................... 37  
14. Thermal Information .................................................39  
14.1 Junction Temperature Estimation and  
PSIJT Versus ThetaJC.................................................. 39  
15. Package Information ................................................40  
16. Ordering Information ................................................41  
Document History ..........................................................42  
Document Number: 002-15045 Rev. *F  
Page 3 of 44  
ADVANCE  
CYW43143  
1. Introduction  
The Cypress CYW43143 single-chip device provides the highest level of integration for wireless systems with integrated IEEE  
802.11b/g/n (MAC/PHY/radio). It provides a small form-factor solution with minimal external components to drive down the cost for  
mass volumes and allows for wireless media client flexibility in size, form, and function.  
Figure 1. CYW43143 System Diagram Showing Two Antennas and a Single Stream  
CYW43143  
CYW43143  
IEEE 802.11n  
2.4 GHz Radio  
Transceiver  
with integrated  
PA  
IEEE 802.11n  
2.4 GHz Radio  
Transceiver  
with integrated  
PA  
RF  
RF  
IEEE  
802.11n  
MAC/PHY  
IEEE  
802.11n  
MAC/PHY  
TR and Rx  
Diversity  
Switches  
TR and Rx  
Diversity  
Switches  
Host  
I/F  
Host  
I/F  
Employing a native 32-bit bus with a Direct Memory Access (DMA) architecture, the CYW43143 offers significant performance  
improvements in both transfer rates and CPU utilization. Flexible support for a variety of system bus interfaces is provided, including  
USB and SDIO devices.  
Document Number: 002-15045 Rev. *F  
Page 4 of 44  
ADVANCE  
CYW43143  
Figure 2 shows a block diagram of the device.  
Figure 2. CYW43143 Functional Block Diagram  
CYW43143  
Host Interface  
Clock and Reset  
USB  
USB20d  
DFLL  
PLL  
XTAL  
(PL368/9 regs. ifc)  
(inside USB)  
SDIOd  
I2S  
AXI2APB 1  
PLL  
(inside WL radio)  
POR  
ClkRst  
EXTPOR_L  
ARM  
CORTEXM3  
ChipCommon  
WDog timer  
OTP  
Power Topology  
AXI  
backplane  
PL301  
BUCK  
Digital  
I/Os  
(inside PMU)  
(2 Kbits)  
DevID  
RAM  
ROM  
CLDO  
(448 KB)  
(256 KB)  
GPIO  
(inside PMU)  
SECI  
CLDO  
SOCSRAM  
(BT Coex)  
(inside USB)  
mini PMU  
SFLASH  
(inside WL radio)  
GSIO  
(SPI2C)  
WLAN 802.11bgn (1 × 1)  
JTAG_SEL  
UART  
JTAG  
iTR  
IEEE  
802.11n  
2.4 GHz  
Radio  
iPA  
IEEE  
802.11n  
MAC  
IEEE  
802.11n  
PHY  
UART  
RF Ifc  
PMU Ctrl  
iRD  
SAXI  
Digital  
I/Os  
AXI2APB 0  
PMU  
pinmux  
(Core register ifc)  
Document Number: 002-15045 Rev. *F  
Page 5 of 44  
 
ADVANCE  
CYW43143  
2. Power Management and Resets  
2.1 Power Management  
The CYW43143 includes an internal Power Management Unit (PMU). The PMU takes care of powering up the chip, and also enables  
and disables clocks based on clock requests sent from CYW43143 internal blocks.  
2.2 Power Topology  
The CYW43143 contains a high-efficiency power topology to convert input supply voltages to the supply voltages required by the  
device’s internal blocks. A CBUCK switching regulator is used to convert the input supply to 1.35V. Internal LDOs perform a low-noise  
conversion from 1.35V to 1.2V. As shown in Figure 3 on page 6, the CYW43143 supports two power supply configurations:  
A 3.3V power supply, connected to SR_VDDBAT5V, WRF_PA_VDD3P3, and WRF_PAD_VDD3P3.  
A 5V power supply connected to SR_VDDBAT5V, WRF_PA_VDD3P3, and WRF_PAD_VDD3P3 connected to 3.3V. The latter can  
be obtained through a DC-DC conversion as shown in Figure 3 on page 6.  
The default VDDIO supply of the BCM43143 is 3.3V. In SDIO mode, the BCM43143 supports an SDIO interface specific voltage range  
of 1.8V to 3.3V. Refer to pin 46 description in Table 4 on page 18. All VDDIO pins other than pin 46 remain at 3.3V as described in  
Table 4 on page 18.  
Figure 3. Power Topology with the VDD33 (3.3V) Main Supply  
VDDIO  
GPIO  
CYW43143  
USB2.0  
3.3V  
LDO  
USB_AVDD3P3  
50 mA  
2.5V  
For 5 volts power  
supplies only  
WRF_PAD_VDD3P3  
5V  
WRF_PA_VDD3P3  
VBUS  
D+  
PA  
3.3V  
BG  
Radio  
D-  
1.35V  
GND  
3.3V  
5V  
mini  
PMU  
XTAL_VDD1P2  
WRF_SYN_VDD1P2  
LNLDO_VOUT1P2  
3.3V - 5V  
SR_VDDVBAT5V  
Buck  
500mA  
1.2V  
2.2 µH  
1.35V  
1 µF  
SR_VLX  
4.7 µF  
PMU  
LNDO_VDD1P5  
1 µF  
1 µF  
1.35V  
Digital  
Core  
CLDO  
150 mA  
1.2V  
LDO_VDD1P5  
2.2 µF  
2.3 Reset and Low-Power Off Mode  
Full-chip reset is achieved by switching off the 3.3V VDDIO voltage to pins 1, 25, 37, and 53. This puts the chip in reset and low-power  
off mode; in this mode the internal CBUCK switcher is shut down, bringing the total typical current consumption down to less than 100  
µA. The device must be kept in reset/low-power off mode for at least 25 ms.  
Document Number: 002-15045 Rev. *F  
Page 6 of 44  
 
ADVANCE  
CYW43143  
3. WLAN Global Functions  
3.1 GPIO Interface  
2
There are 19 General-Purpose I/O (GPIO) pins provided on the CYW43143. GPIOs 0–18 are multiplexed with the JTAG, SDIO, I S,  
SFlash, and Serial Enhanced Coexistence Interface (SECI) functions. These pins can be used to interface to various external devices.  
Upon power-up and reset, these pins become tristated. Subsequently, they can be programmed to be either input or output pins via  
the GPIO control register. A programmable internal pull-up/pull-down resistor is included on each GPIO. If a GPIO output enable is  
not asserted, and the corresponding GPIO signal is not being driven externally, the GPIO state is determined by its programmable  
resistor.  
3.2 OTP  
The CYW43143 has 2 Kbits of on-chip One-Time Programmable (OTP) memory that can be used for non-volatile storage of WLAN  
information such as a MAC address and other hardware-specific board and interface configuration parameters.  
3.3 JTAG Interface  
The CYW43143 supports the IEEE 1149.1 JTAG boundary-scan standard for testing a packaged device on a manufactured board.  
The JTAG interface is enabled by driving the JTAG_SEL pin high.  
3.4 Crystal Oscillator  
Table 2 lists the requirements for the crystal oscillator.  
Table 2. Crystal Oscillator Requirements  
Parameter  
Value  
Frequency  
Mode  
20 MHz  
AT cut, fundamental  
16 pF  
Load capacitance  
ESR  
50maximum  
±10 ppm at 25°C  
±10 ppm at 0°C to +85°C  
Frequency stability  
Aging  
±3 ppm/year maximum the first year, ±1 ppm thereafter  
Drive level  
Q-factor  
300 µW maximum  
40,000 minimum  
< 5 pF  
Shunt capacitance  
Figure 4 shows the recommended oscillator configuration.  
Figure 4. Recommended Oscillator Configuration  
XTAL_OP_IN  
27 pF  
Crystal  
20 MHz 10 ppm  
XTAL_ON_OUT  
27 pF  
220  
Note: Refer to reference schematics for design-specific details.  
Note: The component values referenced in Figure 4 are only recommended values and the correct values will have to be  
characterized on a per board basis. Please see the reference board schematic for the correct characterized values.  
Document Number: 002-15045 Rev. *F  
Page 7 of 44  
 
 
ADVANCE  
CYW43143  
4. WLAN USB 2.0 Host Interface  
The CYW43143 USB interface can be set to operate as a USB 2.0 port. Features include the following:  
A USB 2.0 protocol engine that supports the following:  
A Parallel Interface Engine (PIE) between packet buffers and USB transceiver  
Up to nine endpoints, including Configurable Control Endpoint 0  
Separate endpoint packet buffers with a 512-byte FIFO buffer each  
Host-to-device communication for bulk, control, and interrupt transfers  
Configuration and status registers  
Figure 5 shows the blocks in the device core.  
Figure 5. WLAN USB 2.0 Host Interface Block Diagram  
32Bit OnChip Communication System  
DMA Engines  
RX FIFO  
TX FIFOs  
Endpoint Management Unit  
USB 2.0 Protocol Engine  
USB 2.0 PHY  
D+  
D‐  
The USB 2.0 PHY handles the USB protocol and the serial signaling interface between the host and device. It is primarily responsible  
for data transmission and recovery. On the transmit side, data is encoded, along with a clock, using the NRZI scheme with bit stuffing  
to ensure that the receiver detects a transition in the data stream. A SYNC field that precedes each packet enables the receiver to  
synchronize the data and clock recovery circuits. On the receive side, the serial data is deserialized, unstuffed, and checked for errors.  
The recovered data and clock are then shifted to the clock domain that is compatible with the internal bus logic.  
The endpoint management unit contains the PIE control logic and the endpoint logic. The PIE interfaces between the packet buffers  
and the USB transceiver. It handles packet identification (PID), USB packets, and transactions.  
The endpoint logic contains nine uniquely addressable endpoints. These endpoints are the source or sink of communication flow  
between the host and the device. Endpoint zero is used as a default control port for both the input and output directions. The USB  
system software uses this default control method to initialize and configure the device information and allows USB status and control  
access. Endpoint zero is always accessible after a device is attached, powered, and reset.  
Endpoints are supported by 512-byte FIFO buffers, one for each IN endpoint and one shared by all OUT endpoints. Both TX and RX  
data transfers support a DMA burst of 4, which guarantees low latency and maximum throughput performance. The RX FIFO can  
never overflow by design. The maximum USB packet size cannot be more than 512 bytes.  
4.1 Link Power Management (LPM) Support  
The USB 2.0 host interface supports a power management feature called Link Power Management (LPM) which is similar to the  
existing suspend/resume, but has transitional latencies of tens of microseconds between power states (instead of three to greater  
Document Number: 002-15045 Rev. *F  
Page 8 of 44  
 
ADVANCE  
CYW43143  
than 20 millisecond latencies of the USB 2.0 suspend/resume). LPM simply adds a new feature and bus state that co-exists with the  
USB 2.0 defined suspend/resume.  
2
4.2 I S Interface  
2
2
The I S interface for audio supports slave mode transmit 2.1 or 5.1 channel operation. The I S signals are:  
2
I S bit clock: I2S_BITCLK  
2
I S Word Select: I2S_WS  
2
I S Data Out: I2S_SDOUT  
I2S_BITCLK and I2S_WS are inputs, while I2S_SDOUT is an output. Channel word lengths of 16 bits, 20 bits, 24 bits, and 32 bits are  
2
2
supported, and the data is justified so that the MSB of the left-channel data is aligned with the MSB of the I S bus, per the I S  
specification. The MSB of each data word is transmitted one bit clock cycle after the I2S_WS transition, synchronous with the falling  
edge of bit clock. Left-channel data is transmitted when I2S_WS is low, and right-channel data is transmitted when I2S_WS is high.  
An embedded 128 x 32 bits single port SRAM for data processing enhances the performance of the interface.  
2
The bit depth of I S is 16, 20, 24, and 32.  
Variable sampling rates are also supported:  
8k, 12k, 16k, 24k, 32k, 48k, 96k with a 12.288 MHz master clock used by the external master receiver and/or controller  
22.05k, 44.1k, 88.2k with a 11.2896 MHz master clock used by the external master receiver and/or controller  
96k with a 24.567 MHz master clock used by the external master receiver and/or controller  
2
The BCM43143 needs an external clock source input on the slave clock pin for the I S interface. The slave clock frequency is  
2
dependent upon the audio sample rate and the external I S codec.  
Document Number: 002-15045 Rev. *F  
Page 9 of 44  
ADVANCE  
CYW43143  
5. SDIO Interface  
The SDIO interface is enabled by a strapping option (see Table 5 on page 21 for details). The CYW43143 supports all of the SDIO  
version 2.0 modes:  
1-bit SDIO-SPI mode (25 Mbps)  
1-bit SDIO-SD mode (25 Mbps)  
4-bit SDIO-SD default speed mode (100 Mbps)  
4-bit SDIO-SD high speed mode (200 Mbps).  
The SDIO interface supports the full clock range from 0 to 50 MHz. The chip has the ability to stop the SDIO clock between transactions  
to reduce power consumption. As an option, the GPIO_4 or the GPIO_16 pin can be mapped to provide an SDIO Interrupt signal.  
This out-of-band interrupt is hardware generated and is always valid (unlike the SDIO in-band interrupt, which is signalled only when  
data is not driven on SDIO lines). The ability to force control of the gated clocks from within the WLAN chip is also provided. Three  
functions are supported:  
Function 0 standard SDIO function. Maximum BlockSize/ByteCount = 32 bytes.  
Function 1 backplane function to access the internal System-on-a-Chip (SoC) address space. Maximum BlockSize/ ByteCount =  
64 bytes.  
Function 2 WLAN function for efficient WLAN packet transfer through DMA. Maximum BlockSize/ByteCount = 512 bytes.  
Document Number: 002-15045 Rev. *F  
Page 10 of 44  
ADVANCE  
CYW43143  
6. Wireless LAN MAC and PHY  
6.1 IEEE 802.11n MAC Description  
The IEEE 802.11n MAC features include:  
Enhanced MAC for supporting 802.11n features  
Programmable Access Point (AP) or Station (STA) functionality  
Programmable mode selection as Independent Basic Service Set (IBSS) or infrastructure  
Aggregated MAC Protocol Data Unit (MPDU) support for High Throughput (HT)  
Passive scanning  
Network Allocation Vector (NAV), Interframe Space (IFS), and Timing Synchronization Function (TSF) functionality  
RTS/CTS procedure support  
Transmission of response frames (ACK/CTS)  
Address filtering of receive frames as specified by IBSS rules  
Multirate support  
Programmable Target Beacon Transmission Time (TBTT), beacon transmission/cancellation, and Announcement Traffic Indication  
Message (ATIM) window  
Coordination Function (CF) conformance: Setting a NAV for neighborhood Point Coordination Function (PCF) operation  
Security through a variety of encryption schemes including WEP, TKIP, AES, WPA, WAP2, and IEEE 802.1X  
Power management  
Statistics counters for MIB support  
The MAC core supports the transmission and reception of packet sequences, together with related timing, without any packet-by-  
packet driver interaction. Time-critical tasks requiring response times of only a few milliseconds are handled in the MAC core. This  
achieves the required medium timing while minimizing driver complexity. Also, the MAC driver processes incoming packets that have  
been buffered in the MAC core in bursts, enabling high bandwidth performance.  
The MAC driver interacts with the MAC core to prepare transmit packet queues and to analyze and forward received packets to upper  
software layers. The internal blocks of the MAC core are connected to a Programmable State Machine (PSM) through the host  
interface that connects to the internal bus (see Figure 6 on page 11).  
Figure 6. Enhanced MAC Block Diagram  
Host Interface (Host Registers)  
Six TX FIFOs  
TX Status FIFO  
RX FIFO  
Code Memory  
Templates  
TX Engine  
Programmable  
State Machine  
(PSM)  
Power  
Management  
Wireless Security Engine  
Timing and  
Control  
RX Engine  
Data Memory  
PHY Interface  
The host interface consists of registers for controlling and monitoring the status of the MAC core and interfacing with the TX/RX FIFOs.  
For transmission, 32 KB of FIFO buffering is available that can be dynamically allocated to six transmit queues plus template space  
for beacons, ACKs, and probe responses. Whenever the host has a frame to transmit, the host queues the frame into one of the  
transmit FIFOs with a TX descriptor containing TX control information. The PSM schedules the transmission on the medium depending  
Document Number: 002-15045 Rev. *F  
Page 11 of 44  
 
ADVANCE  
CYW43143  
on the frame type, transmission rules in the IEEE 802.11™ protocol, and the current medium occupancy scenario. After the trans-  
mission completes, a TX status is returned to the host, informing the host of the transmission.  
The MAC contains a 10 KB RX FIFO. Received frames are sent to the host along with RX descriptors that contain additional frame  
reception information.  
The power management block maintains power management state information of the core (and of the associated STAs in the case  
of an AP) to help with dynamic frame transmission decisions by the core.  
The wireless security engine performs the required encryption/decryption on the TX/RX frames. This block supports separate transmit  
and receive keys with four shared keys and 50 link-specific keys. The link-specific keys are used to establish a secure link between  
any two network nodes. The wireless security engine supports the following encryption schemes that can be selected on a per-  
destination basis:  
None: The wireless security engine acts as a pass-through  
WEP: 40-bit secure key and 24-bit IV as defined in IEEE Std. 802.11-2007  
WEP128: 104-bit secure key and 24-bit IV  
TKIP: IEEE Std. 802.11-2007  
AES: IEEE Std. 802.11-2007  
The transmit engine is responsible for the byte flow from the TX FIFO to the PHY interface through the encryption engine and the  
addition of a CRC-32 Frame Check Sequence (FCS) as required by IEEE 802.11-2007. Similarly, the receive engine is responsible  
for byte flow from the PHY interface to the RX FIFO through the decryption engine and for detection of errors in the RX frame.  
The timing block performs the TSF, NAV, and IFS functionality as described in IEEE Std. 802.11-2007.  
The Programmable State Machine (PSM) coordinates the operation of different hardware blocks required for both transmission and  
reception. The PSM also maintains the statistics counters required for MIB support.  
6.2 IEEE 802.11n PHY Description  
The PHY supports:  
Programmable data rates from MCS 0–7 in 20 MHz and 40 MHz channels, as specified in 802.11n.  
Short Guard Interval (SGI) and optional reception of two space-time block encoded streams.  
All scrambling, encoding, forward error correction, and modulation in the transmit direction, and inverse operations in the receive  
direction.  
Advanced digital signal processing technology for best-in-class receive sensitivity.  
Both mixed-mode and optional greenfield preamble of 802.11n.  
Both long and optional short IEEE 802.11b preambles.  
Closed-Loop transmit power control.  
Per-packet receive antenna diversity.  
Automatic Gain Control (AGC).  
Available per-packet channel quality and signal strength measurements.  
The CYW43143 PHY provides baseband processing at all mandatory 802.11n data rates up to 150 Mbps, and the legacy rates  
specified in IEEE 802.11b/g, including 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, and 54 Mbps. This core acts as an intermediary between  
the MAC and the 2.4 GHz radio, converting back and forth between packets and baseband waveforms.  
Document Number: 002-15045 Rev. *F  
Page 12 of 44  
ADVANCE  
CYW43143  
Figure 7. PHY Block Diagram  
CCK/DSSS  
Demodulate  
Filters and  
Radio Comp  
Frequency and  
Timing Synch  
OFDM  
Demodulate  
Viterbi  
Decoder  
Descramble  
and Deframe  
Carrier Sense,  
AGC, and Rx  
FSM  
Buffers  
Radio  
Control  
Block  
MAC  
Interface  
FFT/IFFT  
AFE  
and  
Radio  
Modulation  
and Coding  
Tx FSM  
Common Logic  
Block  
Frame and  
Scramble  
Filters and  
Radio Comp  
Modulate and  
Spread  
PA Comp  
COEX  
6.3 Single-Band Radio Transceiver  
The CYW43143 has a 2.4 GHz radio transceiver that ensures low power consumption and robust communication in 20 MHz and  
40 MHz channel bandwidths as specified in IEEE 802.11n.  
6.3.1 Receiver Path  
The CYW43143 has a wide dynamic range, direct conversion receiver. It employs high-order, on-chip channel filtering to ensure  
reliable operation in the noisy 2.4 GHz ISM band. The excellent noise figure of the receiver makes an external LNA unnecessary.  
6.3.2 Transmitter Path  
Baseband data is modulated and upconverted to the 2.4 GHz ISM band. Linear on-chip power amplifiers are included, which are  
capable of delivering a nominal output power exceeding +15 dBm while meeting the IEEE 802.11n specification. The TX gain has 128  
steps of 0.25 dB per step.  
6.3.3 Calibration  
The CYW43143 features dynamic on-chip calibration, eliminating process variation across components. This enables the device to  
be used in high-volume applications because calibration routines are not required during manufacturing. These calibration routines  
are performed periodically in the course of normal radio operation.  
Document Number: 002-15045 Rev. *F  
Page 13 of 44  
ADVANCE  
CYW43143  
7. Pin Assignments  
7.1 56-Pin QFN Assignments  
The 56-pin QFN package pin assignments are shown in Figure 8.  
Figure 8. CYW43143 56-Pin QFN Package  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VDDIO  
UART_RX  
USB_RREF  
USB_MONPLL  
USB_AVDD3P3  
3
UART_TX  
4
WRF_PAD_VDD3P3  
NC  
USB_DM  
USB_DP  
5
6
WRF_PA_VDD3P3  
WRF_OUT_IN1  
NC  
VDDIO  
7
SFLASH_SO|GSIO_SDO  
SFLASH_CLK|GSIO_SCLK  
SFLASH_SI|GSIO_SDI  
VDDC  
BCM43143  
7 X 7 QFN  
8
9
WRF_RFIN2  
10  
11  
12  
13  
14  
WRF_GPIOOUT  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LDO_VDD1P5  
VOUT_CLDO  
SR_VDDBAT5V  
SR_VLX  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
7.1.1 56-Pin QFN Signals  
Pin Assignments by Pin Number  
Table 3. Pin Assignments by Pin Number  
Pin  
Signal Name  
1
2
3
4
5
6
VDDIO  
UART_RX  
UART_TX  
WRF_PAD_VDD3P3  
GND  
WRF_PA_VDD3P3  
Document Number: 002-15045 Rev. *F  
Page 14 of 44  
 
ADVANCE  
CYW43143  
Pin  
Signal Name  
7
WRF_OUT_IN1  
GND  
8
9
WRF_RFIN2  
WRF_GPIOOUT  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VOUT1P2  
WRF_SYN_VDD1P2  
XTAL_VDD1P2  
XTAL_OP_IN  
XTAL_ON_OUT  
JTAG_SEL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
VDDC  
GPIO0  
GPIO1  
GPIO2  
VDDIO  
GPIO3  
GPIO4  
GPIO5  
SR_VLX  
SR_VDDBAT5V  
VOUT_CLDO  
LDO_VDD1P5  
VDDC  
SFLASH_SI|GSIO_SDI  
SFLASH_CLK|GSIO_SCLK  
SFLASH_SO|GSIO_SDO  
VDDIO  
USB_DP  
USB_DM  
USB_AVDD3P3  
USB_MONPLL  
USB_RREF  
VDDC  
SDIO_DATA3  
SDIO_DATA2  
VDDIO  
SDIO_CMD  
Document Number: 002-15045 Rev. *F  
Page 15 of 44  
ADVANCE  
CYW43143  
Pin  
Signal Name  
48  
49  
50  
51  
52  
53  
54  
55  
56  
SDIO_CLK  
SDIO_DATA1  
SDIO_DATA0  
SFLASH_CSN  
GSIO_CSN  
VDDIO  
GPIO17  
GPIO18  
VDDC  
Document Number: 002-15045 Rev. *F  
Page 16 of 44  
ADVANCE  
CYW43143  
Pin Assignments by Pin Name  
Table 4. Pin Assignments by Signal Name  
Signal Name  
Signal Name  
Pin  
Pin  
VDDC  
43  
56  
1
GPIO0  
22  
VDDC  
GPIO1  
23  
24  
26  
27  
28  
54  
55  
52  
20  
32  
11  
12  
13  
14  
15  
5
VDDIO  
GPIO2  
VDDIO  
25  
37  
46  
53  
31  
10  
7
GPIO3  
VDDIO  
GPIO4  
VDDIO  
GPIO5  
VDDIO  
GPIO17  
VOUT_CLDO  
WRF_GPIOOUT  
WRF_OUT_IN1  
GPIO18  
GSIO_CSN  
JTAG_SEL  
WRF_PA_VDD3P3  
WRF_PAD_VDD3P3  
WRF_RFIN2  
6
LDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VDD1P5  
LNLDO_VOUT1P2  
GND  
4
9
WRF_SYN_VDD1P2  
XTAL_ON_OUT  
XTAL_OP_IN  
16  
19  
18  
17  
XTAL_VDD1P2  
GND  
8
SDIO_CLK  
48  
47  
50  
49  
45  
44  
35  
51  
34  
36  
30  
29  
2
SDIO_CMD  
SDIO_DATA0  
SDIO_DATA1  
SDIO_DATA2  
SDIO_DATA3  
SFLASH_CLK|GSIO_SCLK  
SFLASH_CSN  
SFLASH_SI|GSIO_SDI  
SFLASH_SO|GSIO_SDO  
SR_VDDBAT5V  
SR_VLX  
UART_RX  
UART_TX  
3
USB_AVDD3P3  
USB_DM  
40  
39  
38  
41  
42  
21  
33  
USB_DP  
USB_MONPLL  
USB_RREF  
VDDC  
VDDC  
Document Number: 002-15045 Rev. *F  
Page 17 of 44  
ADVANCE  
CYW43143  
8. Signal and Pin Descriptions  
8.1 Package Signal Descriptions  
The signal name, type, and description of each pin in the CYW43143 56-pin QFN package is listed in Table 4. The symbols shown in  
the Type column indicate pin directions (I/O = bidirectional, I = input, O = output, and OD = open drain output) and the internal pull-  
up/pull-down characteristics (PU = weak internal pull-up resistor and PD = weak internal pull-down resistor), if any. Resistor strapping  
options are defined in Table 5 on page 21.  
Table 4. CYW43143 Signal Descriptions  
Pin  
Signal  
Type  
I/O  
Description  
SDIO Bus Interface  
48  
47  
SDIO_CLK  
SDIO clock  
When not used as SDIO this is a general purpose GPIO pin (GPIO12) or an  
I S Audio Interface signal (I2S_WS)  
2
SDIO_CMD  
I/O  
SDIO bus command line  
When not used as SDIO this is a general purpose GPIO pin (GPIO11) or an  
2
I S Audio Interface signal (I2S_BITCLK)  
50  
49  
SDIO_DATA0  
SDIO_DATA1  
I/O  
I/O  
SDIO data line 0  
When not used as SDIO this is a general purpose GPIO pin (GPIO14)  
SDIO data line 1  
When not used as SDIO this is a general purpose GPIO pin (GPIO13) or an  
2
I S Audio Interface signal (I2S_SDOUT)  
45  
44  
SDIO_DATA2  
SDIO_DATA3  
I/O  
I/O  
SDIO data line 2  
When not used as SDIO this is a general purpose GPIO pin (GPIO10)  
SDIO data line 3  
When not used as SDIO this is a general purpose GPIO pin (GPIO9)  
USB Interface  
39  
38  
41  
42  
USB_DM  
I/O  
I/O  
USB data negative  
USB_DP  
USB data positive  
USB_MONPLL  
USB_RREF  
USB reserved pin for Diagnostic purposes only  
USB bandgap reference resistor/capacitor, tie this pin in parallel through a 100  
pF capacitor and a 4 kresistor to ground  
WLAN RF Signal Interface  
2.4 GHz RF output, 2.4 GHz RF input 1  
2.4 GHz RF input 2  
7
WRF_OUT_IN1  
WRF_RFIN2  
I/O  
I
9
10  
WRF_GPIOOUT  
O
WLAN reference output.  
Connect to ground through a 15 k, 1% resistor.  
I2S Audio Interface  
2
47  
48  
49  
I2S_BITCLK  
I2S_WS  
I/O  
I/O  
I/O  
I S serial bit clock, only available when no SDIO I/F  
2
I S word select, only available when no SDIO I/F  
2
I2S_SDOUT  
I S serial data out, only available when no SDIO I/F  
Serial Flash Interface and SPI/BSC Interface  
51  
34  
SFLASH_CSN  
I/O  
Serial flash chip select.  
When not used as SFLASH, this is a general purpose GPIO pin (GPIO15)  
SFLASH_SI GSIO_SDI  
I/O  
This pin is muxed with:  
Serial flash data in  
SPI/BSC data in  
When not used as SFLASH or GSIO this is a general purpose GPIO pin  
(GPIO6)  
Document Number: 002-15045 Rev. *F  
Page 18 of 44  
 
ADVANCE  
CYW43143  
Table 4. CYW43143 Signal Descriptions (Cont.)  
Pin  
Signal  
Type  
I/O  
Description  
36  
SFLASH_SO GSIO_SDO  
This pin is muxed with:  
Serial flash data out  
SPI/BSC data out  
When not used as SFLASH or GSIO this is a general purpose GPIO pin  
(GPIO8)  
35  
SFLASH_CLK GSIO_SCLK I/O  
This pin is muxed with:  
Serial flash clock  
SPI/BSC clock  
When not used as SFLASH or GSIO this is a general purpose GPIO pin  
(GPIO7)  
52  
22  
GSIO_CSN  
I/O  
I/O  
SPI/BSC chip select.  
When not used as GSIO this is a general purpose GPIO pin (GPIO16).  
GPIO Pins  
GPIO0  
TDI  
BTCX_RF_ACTIVE  
SECI_IN0  
This pin is muxed with:  
GPIO0, a general purpose I/O pin  
JTAG test data in  
Legacy BT coexistence RF Active  
SECI in0  
23  
24  
26  
GPIO1  
TDO  
BTCX_TX_CONF  
SECI_OUT  
I/O  
I/O  
I/O  
I/O  
This pin is muxed with:  
GPIO1, a general purpose I/O pin  
JTAG test data out  
Legacy BT coexistence TX Conf  
SECI out  
GPIO2  
TCK  
BTCX_STATUS  
SECI_AUX0  
This pin is muxed with:  
GPIO2, a general purpose I/O pin  
JTAG test clock  
Legacy BT coexistence Status  
SECI aux0  
GPIO3  
TRST-L  
BTCX_PRISEL  
SECI_IN1  
This pin is muxed with:  
GPIO3, a general purpose I/O pin  
JTAG test reset low  
Legacy BT coexistence Priority Select  
SECI in1  
27  
28  
GPIO4  
TMS  
BTCX_FREQ  
This pin is muxed with:  
GPIO4, a general purpose I/O pin  
JTAG test mode select  
Legacy BT coexistence FREQ  
GPIO5  
I/O (PU) This pin is muxed with:  
EXTPOR_L  
GPIO5, a general purpose I/O pin  
External power-on reset low, when JTAG_SEL high  
54  
55  
GPIO17  
GPIO18  
I/O (PD) General purpose I/O pin  
I/O (PD) General purpose I/O pin  
Document Number: 002-15045 Rev. *F  
Page 19 of 44  
ADVANCE  
CYW43143  
Table 4. CYW43143 Signal Descriptions (Cont.)  
Pin Signal Type  
Description  
UART Interface  
2
3
UART_RX  
UART_TX  
I/O (PD) UART receive data (SW debug)  
I/O (PU) UART transmit data (SW debug)  
Crystal Oscillator  
19  
XTAL_ON_OUT  
O
XTAL oscillator output.  
Connect a 20 MHz, 10 ppm crystal between the XTAL_ON_OUT and  
XTAL_OP_IN pins  
18  
20  
XTAL_OP_IN  
JTAG_SEL  
I
XTAL oscillator input  
Test Pins  
I (PD)  
JTAG select  
Strap Pins  
2
UART_RX  
UART_TX  
SFLASH_SI  
GPIO17  
I/O (PD) Strap RemapToROM[1]  
I/O (PU) Strap RemapToROM[0]  
I/O (PD) Strap SDIOHighDrive  
I/O (PD) Strap SDIOEnabled  
I/O (PD) Strap SDIOIso  
3
34  
54  
55  
GPIO18  
Integrated Voltage Regulators  
11, 12, 13, LNLDO_VDD1P5  
14  
PWR  
LNLDO 1.5V input  
15  
30  
29  
31  
32  
LNLDO_VOUT1P2  
SR_VDDBAT5V  
SR_VLX  
PWR  
PWR  
PWR  
PWR  
PWR  
LNLDO 1.2V output  
VBAT power input  
CBUCK switching regulator output  
Output of core LDO  
VOUT_CLDO  
LDO_VDD1P5  
Input of core LDO  
WLAN Power Supplies  
USB 3.3V input  
40  
16  
6
USB_AVDD3P3  
PWR  
PWR  
PWR  
PWR  
PWR  
WRF_SYN_VDD1P2  
WRF_PA_VDD3P3  
WRF_PAD_VDD3P3  
XTAL_VDD1P2  
RF synthesizer VDD 1.2V input  
WLAN PA 3.3V supply  
WLAN PA driver 3.3V supply  
XTAL oscillator 1.2V supply  
4
17  
Miscellaneous Power Supplies and Ground  
21, 33, 43, VDDC  
56  
PWR  
Core supply for WLAN  
1, 25, 37, VDDIO  
53  
PWR  
I/O supply for pads (3.3V)  
46  
H
VDDIO  
PWR  
GND  
GND  
I/O supply for SDIO pads (1.8V to 3.3V). Can only be 3.3V when USB is used.  
GND_SLUG  
GND  
Ground  
Ground  
5, 8  
8.2 Strapping Options  
The pins listed in Table 5 are sampled at Power-On Reset (POR) to determine the various operating modes. Sampling occurs within  
a few milliseconds following internal POR or deassertion of external POR. After POR, each pin assumes the function specified in the  
signal descriptions table. Each pin has an internal pull-up (PU) or pull-down (PD) resistor that determines the default mode. To change  
1
the mode, connect an external PU resistor to VDDIO or a PD resistor to GND (use 10 kor less) .  
1. CYW43143 reference board schematics can be obtained through your CypressCypress representative.  
Document Number: 002-15045 Rev. *F  
Page 20 of 44  
ADVANCE  
CYW43143  
Table 5. Strapping Options  
Signal Name  
Mode  
Default  
Description  
[UART_RX,  
UART_TX]  
RemapToROM[1:0]  
[PD,PU]  
00 = Boot from SRAM, ARMCM3 in reset, no SFLASH connected  
01 = Boot from ROM, no SFLASH connected (default)  
10 = Boot from SFLASH  
11 = Invalid  
2
GPIO17  
SDIOEnabled  
SDIOIso  
PD  
PD  
PD  
0 = USB Enabled, SDIO pins can be GPIO or I S (default)  
1 = SDIO Enabled  
GPIO18  
0 = SDIO pads are not in Isolation mode (default)  
1 = Keep SDIO pads in Isolation mode  
SFLASH_SI  
SDIOHighDrive  
0 = SDIO pins drive strength set by SDIOd core or PMU Chip Control (=  
default)  
1 = SDIO pins drive strength set by SDIOd core to either 12 mA or 16 mA  
Document Number: 002-15045 Rev. *F  
Page 21 of 44  
ADVANCE  
CYW43143  
9. Electrical Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
9.1 Absolute Maximum Ratings  
Caution! These specifications indicate levels where permanent damage to the device can occur. Functional operation  
is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can  
adversely affect the long-term reliability of the device.  
Table 6. Absolute Maximum Ratings  
Rating  
Symbol  
SR_VDDBAT5V  
Minimum  
–0.5  
Maximum  
5.5  
Unit  
DC supply for CBUCK switching regulator  
DC supply voltage for the WL PA/PA driver  
V
WRF_PA_VDD3P3,  
WRF_PAD_VDD3P3  
–0.5  
3.8  
V
DC supply voltage for I/O  
VDDIO  
VDDC  
–0.5  
–0.5  
–0.5  
3.8  
V
V
V
DC supply voltage for the CYW43143 core  
DC supply voltage for CYW43143 RF blocks  
1.32  
1.32  
WRF_SYN_VDD1P2,  
XTAL_VDD1P2  
DC input supply voltage for CLDO and LNLDO  
LDO_VDD1P5, LNLDO_-  
VDD1P5  
–0.5  
2.1  
V
Maximum junction temperature  
Operating humidity  
T
T
125  
85  
°C  
%
°C  
°C  
%
V
J_MAX  
a
Ambient operating temperature  
Storage temperature  
65  
–40  
125  
60  
STG  
Storage humidity  
ESD protection (HBM)  
V
2000  
ESD  
a. On a 1s1P JEDEC board, not exceeding TJ_MAX, see Section 14.: “Thermal Information,” on page 39.  
9.2 Recommended Operating Conditions and DC Characteristics  
Table 7. Guaranteed Operating Conditions and DC Characteristics  
Value  
Element  
Parameter  
Unit  
Minimum  
Typical  
Maximum  
DC supply for CBUCK switching regulator  
DC supply voltage for WL PA/PA driver  
SR_VDDBAT5V  
2.3  
3.6  
5.25  
3.63  
V
V
WRF_PA_VDD3P3,  
WRF_PAD_VDD3P3  
2.97  
3.3  
DC supply voltage for core  
VDDC  
1.14  
1.14  
1.2  
1.2  
1.26  
1.26  
V
V
DC supply voltage for RF blocks in chip  
VDDRF  
SDIO Interface I/O Pinsa  
Input high voltage  
VIH  
0.625 × VDDIO  
V
V
V
V
Input low voltage  
VIL  
0.25 × VDDIO  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
VOH  
VOL  
0.75 × VDDIO  
0.125 × VDDIO  
Other Digital I/O Pins  
Input low voltage  
VIL  
0.8  
V
Document Number: 002-15045 Rev. *F  
Page 22 of 44  
ADVANCE  
CYW43143  
Table 7. Guaranteed Operating Conditions and DC Characteristics (Cont.)  
Value  
Element  
Parameter  
Unit  
Minimum  
Typical  
Maximum  
Input high voltage  
VIH  
2.0  
V
V
V
Output low voltage @ 2 mA  
Output high voltage @ 2 mA  
VOL  
VOH  
0.4  
VDDIO – 0.4V  
RF Switch Control I/O Pins  
Input low voltage  
VIL  
0.8  
V
V
V
V
pf  
Input high voltage  
VIH  
2.0  
Output low voltage @ 2 mA  
Output high voltage @ 2 mA  
Input capacitance  
VOL  
VOH  
Cin  
0.4  
VDDIO – 0.4V  
5
a. VDDIO voltage tolerance is ±10%; for SDIO 1.8V levels (VDDIO at pin 46 = 1.8V ±10%), the maximum SDIO clock frequency should be limited  
to 25 MHz in high-speed mode only.  
9.3 WLAN Current Consumption  
The WLAN current consumption measurements are shown in Table 8 through Table 9 on page 24.  
Table 8. WLAN Current Consumption in SDIO Mode using SR_VDDBAT5Va  
VDDIO SR_VDDBAT5V  
mA  
WRF_PA_VDD3P3 WRF_PAD_VDD3P3 USB_AVDD3P3  
I_Total P_Total  
mW  
Host Interface SDIO  
OFF (Low power off  
mode: VDDIO switched  
off)  
0
0.07  
0
0
0
0.07  
0.2  
b
Sleep  
1
1
1
2
3
0
0
0
1
1
1
1
1
0
< 5  
< 6  
42  
< 17  
< 20  
139  
c
Power save  
RX (Listen), 2.4 GHz HT  
40  
d
20  
RX (Active), 2.4 GHz HT  
20  
2
1
2
65  
56  
58  
0
1
0
0
0
68  
224  
1373  
1265  
e,f  
TX CCK (20 dBm @ Chip  
329  
295  
30  
30  
416  
385  
g
port, 2.4 GHz HT 20)  
TX OFDM, 54 Mbps (–20  
dBm @ Chip port,  
g
2.4 GHz HT 20)  
TX MCS7 (18 dBm @  
Chip port, 2.4 GHz HT20)  
2
2
72  
78  
249  
272  
24  
25  
0
0
347  
377  
1145  
1244  
g
TX MCS7 (18 dBm @  
Chip port, 2.4 GHz HT40)  
g
a. Typical numbers, measured at 3.3V, 25°C.  
b. Inter-beacon sleep.  
c. Beacon interval = 102.4 ms, DTIM = 3, Beacon duration = 1 ms @ 1 Mbps.  
Integrated sleep + wake up + Beacon RX current over 3 DTIM intervals.  
d. Carrier sense (CCA) when no carrier present.  
e. Carrier sense (CS) detect/packet RX.  
f. Applicable to all supported rates.  
g. Duty cycle is 100%.  
Document Number: 002-15045 Rev. *F  
Page 23 of 44  
 
ADVANCE  
CYW43143  
Table 9. WLAN Current Consumption in USB mode using VDD33a  
VDDIO SR_VDDBAT5V  
mA  
WRF_PA_VDD3P3 WRF_PAD_VDD3P3 USB_AVDD3P3  
I_Total  
P_Total  
mW  
Host Interface USB  
OFF (Low power off  
mode: VDDIO switched  
off)  
0
0.07  
0
0
0
0.07  
0.2  
b
Sleep  
0.4  
0.4  
0.4  
2
3
0
0
0
1
1
1
5.6  
5.6  
22  
< 9  
< 10  
68  
< 30  
< 33  
226  
c
Power save  
RX (Listen), 2.4 GHz HT  
45  
d
20  
RX (Active), 2.4 GHz HT  
20  
0.4  
0.5  
0.4  
70  
55  
59  
0
1
23  
21  
21  
94  
312  
1407  
1239  
e,f  
TX CCK (20 dBm @ Chip  
320  
265  
30  
30  
427  
376  
g
port, 2.4 GHz HT 20)  
TX OFDM, 54 Mbps (–20  
dBm @ Chip port,  
g
2.4 GHz HT 20)  
TX MCS7 (18 dBm @  
Chip port, 2.4 GHz HT20)  
0.6  
1.6  
74  
80  
248  
272  
24  
25  
21  
21  
368  
400  
1213  
1319  
g
TX MCS7 (18 dBm @  
Chip port, 2.4 GHz HT40)  
g
a. Typical numbers, measured at 3.3V, 25°C.  
b. Inter-beacon sleep.  
c. Beacon interval = 102.4 ms, DTIM = 3, Beacon duration = 1 ms @ 1 Mbps.  
Integrated sleep + wake up + Beacon RX current over 3 DTIM intervals.  
d. Carrier sense (CCA) when no carrier present.  
e. Carrier sense (CS) detect/packet RX.  
f. Applicable to all supported rates.  
g. Duty cycle is 100%.  
Document Number: 002-15045 Rev. *F  
Page 24 of 44  
ADVANCE  
CYW43143  
10. Regulator Electrical Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Functional operation is not guaranteed outside of the specification limits provided in this section.  
10.1 Core Buck Switching Regulator  
Table 10. Core Buck Switching Regulator (CBUCK) Specifications  
Specification  
Input supply voltage (DC)  
Input supply voltage (spikes)  
Notes  
Min  
2.3  
Typ  
3.6  
Max  
5.25  
Units  
DC voltage range inclusive of disturbances.  
V
V
Up to 10 seconds cumulative duration over 7  
years lifetime.  
5.5  
10 ms maximum pulse width.  
PWM mode switching frequency  
CCM:  
2
4
6
MHz  
Load > 100 mA  
SR_VDDBAT5V = 3.6V  
a
PWM output current  
Output current limit  
Output voltage range  
500  
mA  
mA  
V
1390  
1.35  
Programmable, 30 mV steps  
Default = 1.35V  
1.2  
1.5  
PWM output voltage  
DC accuracy  
Includes load and line regulation.  
Forced PWM mode  
–4  
4
%
PWM ripple voltage, static  
PWM mode peak efficiency  
PFM mode efficiency  
Measure with 20 MHz bandwidth limit.  
Peak Efficiency at 200 mA load  
5 mA load current  
7
20  
mVpp  
%
78  
84  
65  
80  
%
Low Power Operating mode (LPOM) 5 mA load current  
efficiency  
%
Start-up time from power down  
VDDIO already ON and steady.  
Time from REG_ON rising edge to CLDO  
reaching 1.2V  
850  
µs  
External inductor  
0603 size, ±30%, 0.26 ±25% ohms  
1.2  
2.2  
4.7  
3.3  
10  
µH  
µF  
b
b
External output capacitor  
Ceramic, X5R, 0402,  
ESR <30mat 4 MHz, ±20%,  
6.3V  
2.53  
External input capacitor  
For SR_VDDBATP5V pin,  
Ceramic, X5R, 0603,  
ESR < 30 mat 4 MHz, ± 20%,  
6.3V,  
0.76  
4.7  
µF  
4.7 μF  
Operating junction temperature  
Input supply voltage ramp-up time  
–40  
40  
50  
125  
°C  
µs  
0 to 4.3V  
a. 500 mA TT junction temp 110°C. Derate to 372 mA for Tj > 125°C.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
Document Number: 002-15045 Rev. *F  
Page 25 of 44  
ADVANCE  
CYW43143  
10.2 CLDO  
Table 11. CLDO Specifications  
Specification  
Notes  
Min  
1.2  
Typ  
Max  
1.5  
Units  
Input supply voltage (V )  
Min = 1.2 + 0.1V = 1.3V  
1.35  
V
in  
Dropout voltage requirement must be met under  
maximum load.  
a
Output current  
150  
mA  
V
Output voltage (V )  
Programmable in 25 mV steps.  
Default = 1.2V  
1.1  
1.2  
1.275  
o
Dropout voltage  
At max load  
100  
+4  
mV  
%
Output voltage DC accuracy  
Quiescent current  
Line regulation  
Includes line/load regulation  
No load  
–4  
10  
µA  
V
from (V + 0.1V) to 1.5V, maximum load  
+1.1  
0.02  
10  
%V /V  
o
in  
o
Load regulation  
Load from 1 mA to 150 mA  
Power-down  
%V /mA  
o
b
Leakage current  
µA  
dB  
Power supply rejection ratio (PSRR)  
@1 kHz  
20  
Vin 1.35V  
C = 2.2 µF  
o
PMU start-up time  
SR_VDDBAT5V up and stable. Time from the VDDIO –  
rising edge to the CLDO reaching 1.2V.  
850  
µs  
LDO turn-on time  
LDO turn-on time when rest of the chip is up  
180  
150  
µs  
In-rush current during turn-on  
Measured when the output capacitor is fully  
discharged.  
mA  
c
External output capacitor, C  
External input capacitor  
Total ESR: 30–200 mꢀ  
1.67  
1
1
µF  
µF  
o
Only use an external input capacitor at the VDD_LDO –  
pin if it is not supplied from CBUCK output.  
2.2  
Total ESR (trace/capacitor): 30 m–200 mꢀ  
Operating temperature  
Junction temperature  
–40  
50  
125  
°C  
a. Output current is measured at 125°C junction temperature.  
b. Leakage current is measured by 85°C junction temperature.  
c. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
10.3 LNLDO  
Table 12. LNLDO Specifications  
Specification  
Notes  
Min  
1.3  
Typ  
1.35  
Max  
1.5  
Units  
Input supply voltage (V )  
Min = 1.2V + 0.1V = 1.3V  
V
in  
o
Dropout voltage requirement must be met under  
maximum load.  
Output Current  
100  
mA  
V
Output voltage (V )  
Programmable in 25 mV steps.  
Default = 1.2V  
1.1  
1.2  
1.275  
o
Dropout Voltage  
At maximum load  
includes line/load regulation  
No load  
100  
+4  
mV  
%
Output voltage DC accuracy  
Quiescent current  
Line regulation  
–4  
44  
µA  
V
from (V + 0.1V) to 1.5V,  
–0.3  
+0.3  
%V /V  
in  
o
o
maximum load  
Document Number: 002-15045 Rev. *F  
Page 26 of 44  
ADVANCE  
CYW43143  
Table 12. LNLDO Specifications  
Specification  
Load regulation  
Notes  
Min  
Typ  
0.02  
Max  
Units  
Load from 1 mA to 300 mA  
0.05  
TBD  
TBD  
10  
%V /mA  
o
Transient undershoot  
Transient overshoot  
Leakage current  
mV  
mV  
µA  
Power-down  
Output noise  
@30 kHz, 60 mA load C = 1 µF  
60  
30  
nV/rt Hz  
nV/rt Hz  
o
@100 kHz, 60 mA load C = 1 µF  
o
PSRR  
@ 1kHz, Input > 1.3V, C = 1 µF, V = 1.2V  
20  
dB  
µs  
o
o
PMU start-up time  
LDO Turn-on Time  
In-rush current during turn-on  
From power-down  
850  
180  
150  
LDO turn-on time when rest of chip is up  
µs  
Measured when the output capacitor is fully  
discharged.  
mA  
a
External output capacitor (C )  
Total ESR (trace/capacitor): 30 m–200 mꢀ  
0.74  
1
1
2.2  
2.2  
µF  
µF  
o
External input capacitor  
Only use an external input capacitor at the  
VDD_LDO pin if it is not supplied from CBUCK  
output.  
Total ESR (trace/capacitor): 30 m–200 mꢀ  
Operating temperature  
Junction temperature  
–40  
50  
125  
°C  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
Document Number: 002-15045 Rev. *F  
Page 27 of 44  
ADVANCE  
CYW43143  
11. WLAN Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
11.1 2.4 GHz Band General RF Specifications  
Table 13. 2.4 GHz Band General RF Specifications  
Item  
Condition  
Minimum  
Typical  
Maximum  
10  
Unit  
TX/RX switch time  
RX/TX switch time  
Including TX ramp down  
Including TX ramp up  
5
5
μs  
μs  
5
11.2 2.4 GHz Band Receiver RF Specifications  
The receiver specifications including sensitivity are shown in Table 14 and Table 15 on page 28.  
Table 14. 2.4 GHz Band Receiver RF Specifications  
Characteristic  
Cascaded noise figure  
Condition  
Minimum  
Typical  
Maximum  
Unit  
4
dB  
a
Maximum receive level  
@ 1, 2 Mbps  
@ 5.5, 11 Mbps  
@ 54 Mbps  
–4  
dBm  
dBm  
dBm  
dB  
–10  
–10  
35  
Adjacent channel power rejection  
b
RX = –70 dBm  
DSSS at 11 Mbps  
Return loss  
Zo = 50, across dynamic TBD  
range  
TBD  
>90  
TBD  
dB  
dB  
Maximum receiver gain  
a. When using a suitable external RF switch.  
b. Difference between interfering and desired signal (>25 MHz apart) at 8% PER for 1024-octet Physical-Layer Service Data Units (PSDUs) with  
desired signal level as specified.  
Table 15. 2.4 GHz Receiver Sensitivity  
Rate/Modulation  
Typical Receive Sensitivitya b(dBm)  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps CCK  
11 Mbps CCK  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
–97  
–95  
–91  
–89  
–91  
–90  
–88  
–86  
–84  
–81  
–78  
–76  
–91  
–88  
MCS0 (20 MHz channel)  
MCS1 (20 MHz channel)  
Document Number: 002-15045 Rev. *F  
Page 28 of 44  
 
 
ADVANCE  
CYW43143  
Table 15. 2.4 GHz Receiver Sensitivity  
Rate/Modulation  
MCS2 (20 MHz channel)  
MCS3 (20 MHz channel)  
MCS4 (20 MHz channel)  
MCS5 (20 MHz channel)  
MCS6 (20 MHz channel)  
MCS7 (20 MHz channel)  
MCS0 (40 MHz channel)  
MCS1 (40 MHz channel)  
MCS2 (40 MHz channel)  
MCS3 (40 MHz channel)  
MCS4 (40 MHz channel)  
MCS5 (40 MHz channel)  
MCS6 (40 MHz channel)  
MCS7 (40 MHz channel)  
Typical Receive Sensitivitya b(dBm)  
–86  
–83  
–81  
–77  
–75  
–73  
–90  
–86  
–84  
–82  
–78  
–74  
–72  
–70  
a. Values are measured at the input of the CYW43143. Thus, they include insertion losses from the integrated baluns and integrated T/R  
switches, but exclude losses from the external circuits. For the 1, 2, 5.5, and 11 Mbps rates, sensitivity is defined as an 8% packet error rate  
(PER) for 1000-octet PSDUs. For 11g rates (6 Mbps OFDM up to 54 MBps OFDM), sensitivity is defined as a 10% packet error rate (PER) for  
1000-octet PSDUs. For 11n rates (MCS0 to MCS7), sensitivity numbers are provide for 10% PER and 4000byte packets.  
b. Sensitivity levels at Vcc=3.3V±6%; at Vcc=3.3 ±10%, sensitivity levels may be degraded.  
11.3 2.4 GHz Band Transmitter RF Specifications  
Table 16. 2.4 GHz Band Transmitter RF Specifications  
Characteristic  
Condition  
Min.  
2400  
Typ.  
Max.  
2500  
21.0  
Unit  
MHz  
dBm  
RF output frequency range  
a
Chip output power  
20 MHz  
DSSS/CCK rates  
1, 2, 5.5, and 11 Mbit/s  
(EVM andACPRcompliant, Vcc=3.3V channel  
b
±6% )  
802.11g rates  
6, 9, 12, 18, 24, and 36 Mpps  
20.0  
802.11g rate 48 Mbps  
802.11g rate 56 Mbps  
OFDM rates MCS0-MCS5  
OFDM rate MCS6  
19.0  
18.0  
20.0  
19.0  
18.0  
19.5  
19.0  
18.0  
17.0  
OFDM rate MCS7  
40 MHz  
channel  
OFDM rates MCS0- MCS4  
OFDM rate MCS5  
OFDM rate MCS6  
OFDM rate MCS7  
Document Number: 002-15045 Rev. *F  
Page 29 of 44  
ADVANCE  
CYW43143  
Table 16. 2.4 GHz Band Transmitter RF Specifications (Cont.)  
Characteristic Condition  
Gain flatness  
Min.  
Typ.  
Max.  
Unit  
dB  
Maximum gain  
2
Output IP3  
Maximum gain  
37  
27  
dBm  
dBm  
dBr  
dBr  
dBr  
dBr  
dBc  
dBr  
dBr  
Output P1dB  
Carrier suppression  
15  
CCK TX spectrum mask @ maximum fc –22 MHz < f < fc –11 MHz  
–30  
–30  
–50  
–26  
–35  
–40  
35%  
5%  
gain  
fc +11 MHz < f< fc +22 MHz  
f < fc –22 MHz; and f > fc +22 MHz  
OFDM TX spectrum mask  
(chip output power = 16 dBm)  
f < fc –11 MHz and f > fc +11 MHz  
f < fc –20 MHz and f > fc +20 MHz  
f < fc –30 MHz and f > fc +30 MHz  
TX modulation accuracy (i.e. EVM) at IEEE 802.11b mode  
maximum gain  
IEEE 802.11g mode QAM64 54 Mbps  
Gain control step size  
0.25  
dB/step  
dB  
c
Amplitude balance  
DC input  
–1  
–1.5  
1
Phase balance  
DC input  
1.5  
°
Baseband differential input voltage  
TX power ramp up  
Shaped pulse  
90% of final power  
10% of final power  
0.6  
Vpp  
sec  
sec  
2
TX power ramp down  
2
a. Power control will back off output power by 1.5 dB ensuring EVM and ACPR limits are always met.  
b. Linear output power at 3.3V ±10% supply voltage may be degraded and EVM/ACPR compliant output power may be lower than listed.  
c. At a 3 MHz offset from the carrier frequency.  
11.4 2.4 GHz Band Local Oscillator Specifications  
Table 17. 2.4 GHz Band Local Oscillator Specifications  
Characteristic  
VCO frequency range  
Condition  
Minimum  
2412  
Typical  
Maximum  
2484  
Unit  
MHz  
a
Reference input frequency range  
Reference spurs  
Various  
MHz  
–34  
–86.5  
dBc  
Local oscillator phase noise, single-sided from 1–  
300 kHz offset  
dBc/Hz  
Clock frequency tolerance  
±20  
ppm  
a. Reference supported frequencies range from 12 MHz to 52 MHz.  
Document Number: 002-15045 Rev. *F  
Page 30 of 44  
ADVANCE  
CYW43143  
12. Antenna Specifications  
12.1 Voltage Standing Wave Ratio  
The Voltage Standing Wave Ratio (VSWR) into the antenna should be less than 2.5:1.  
Document Number: 002-15045 Rev. *F  
Page 31 of 44  
ADVANCE  
CYW43143  
13. Timing Characteristics  
13.1 Power Sequence Timing  
The recommended power-up sequence is to bring up the power supplies in the order of the rated voltage. This power-up sequence  
minimizes the possibility of a latchup condition.  
In the case of a 3.3V supply (see Figure 1), the 3.3V supplied to SR_VDDBAT5V, WRF_PA_VDD3P3, WRF_PAD_VDD3P3, USB_A-  
VDD3P3, and VDDIO can ramp at the same time.  
In the case of a 5V supply (see Figure 2 on page 32), the 5V first ramps on SR_VDDBAT5V, followed by bring- up of the 3.3V supply  
to WRF_PA_VDD3P3, WRF_PAD_VDD3P3, USB_AVDD3P3, and VDDIO. The power-up timing parameters for both configurations  
are shown in Table 18 on page 33.  
Figure 1. Power-Up Sequence Timing—3V Supply  
t2  
t3  
SR_VDDBAT5V  
WRF_PA(D)_VDD3P3  
USB_AVDD3P3  
VDDIO  
SR_VLX  
VDDC  
Internal Reset  
Interface  
BCM43143 TRISTATE  
Figure 2. Power-Up Sequence Timing—5V Supply with External DC-DC Conversion  
t1  
t2  
t3  
SR_VDDBAT5V  
WRF_PA(D)_VDD3P3  
USB_AVDD3P3  
VDDIO  
SR_VLX  
VDDC  
internal reset  
interface  
43143 TRISTATE  
Document Number: 002-15045 Rev. *F  
Page 32 of 44  
 
 
ADVANCE  
CYW43143  
Table 18. Power-Up Timing Parameters  
Symbol Description  
SR_VDDBAT5V to 3P3 active  
Time from VDDIO rising edge to VDDC reaching 1.2V  
Minimum  
a
Typical  
b
Maximum  
Unit  
µs  
t
t
t
0
50  
1
2
3
850  
50  
µs  
Time from VDDC reaching 1.2V to internal reset deactivation 30  
35  
ms  
a. In the case of the 3.3V power supply, t1 = 0 for SR_VDDBAT5V, WRF_PA_VDD3P3, and WRF_PAD_VDD3P3.  
b. In the case of the 5V power supply, SR_VDD_BAT5V is directly connected to 5V, but the connection to WRF_PA_VDD3P3,  
WRF_PAD_VDD3P3, and VDDIO must be made through a DC-DC converter chip to convert 5V to 3V3. Since the converter chip introduces  
a delay in the ramp-up time, t1 = 50 µs (nominal). The actual value of t1 will vary slightly based on the particular DC-DC converter chip used  
in the design.  
13.2 Serial Flash Timing  
Figure 3. Serial Flash Timing Diagram (STMicroelectronics-Compatible)  
tCS  
SFLASH_CSN  
tCSH  
tCSS  
tR  
tWL  
tWH  
tF  
SFLASH_CLK  
tSU  
tH  
VALID IN  
SFLASH_SI  
SFLASH_SO  
tHO  
tV  
High Impedance  
High Impedance  
VALID ON  
Table 19. Serial Flash Timing  
Parameter  
Descriptions  
Minimum  
Typical  
12.5  
Maximum  
Units  
MHz  
f
t
t
Serial flash clock frequency  
9
9
49.2  
SCK  
WH  
WL  
Serial flash clock high time  
ns  
ns  
V/ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial flash clock low time  
a
b
t , t  
Clock rise and fall times  
TBD  
5
R
F
t
t
t
t
t
t
t
Chip select active setup time  
Chip select deselect time  
Chip select hold time  
CSS  
100  
5
CS  
CSH  
SU  
H
Data input setup time  
Data input hold time  
2
5
Data output hold time  
Clock low to output valid  
0
HO  
V
8
Document Number: 002-15045 Rev. *F  
Page 33 of 44  
ADVANCE  
CYW43143  
a. t and t are expressed as a slew-rate.  
R
F
b. Peak-to-peak  
2
13.3 I S Slave Mode Tx Timing  
2
In I S slave mode, the serial clock (I2S_BITCLK) input speed can vary up to a maximum of 12.288 MHz.  
2
I S Slave mode timing is illustrated in Figure 4.  
Figure 4. I2S Slave Mode Timing  
BITCLK  
WS  
SD  
MSB  
LSB  
MSB  
WORD n + 1  
WORD n – 1  
WORD n  
Right Channel  
Right Channel  
Left Channel  
T
t
HC = 0.35T  
t
RC  
V
t
H = 2.0V  
BITCLK  
SD/WS  
LC = 0.35T  
V
t
L = 0.8V  
htr = 0  
t
dtr = 0.8T  
T = clock period  
Ttr = minimum allowed clock period for transmitter  
T > Ttr  
Table 20. Timing for I2S Transmitters and Receivers  
Transmitter  
Receiver  
Lower Limit  
Min Max  
Parameter  
Lower Limit  
Min Max  
Upper Limit  
Min Max  
Clock period T  
T
T
tr  
tr  
Slave Mode:  
Clock accepted by transmitter or  
receiver:  
HIGH t  
0.35 T  
0.35 T  
0.35 T  
0.35 T  
HC  
r
r
r
r
LOW t  
LC  
rise time t  
0.15 T  
tr  
RC  
Transmitter:  
delay t  
0.8 T  
dtr  
hold time t  
0
htr  
Document Number: 002-15045 Rev. *F  
Page 34 of 44  
 
ADVANCE  
CYW43143  
Table 20. Timing for I2S Transmitters and Receivers  
Transmitter  
Receiver  
Parameter  
Lower Limit  
Min Max  
Upper Limit  
Lower Limit  
Min  
Max  
Min  
Max  
Receiver:  
setup time t  
0.2 T  
0
sr  
r
hold time t  
hr  
13.4 SDIO Default Mode Timing  
SDIO default mode timing is shown by the combination of Figure 5 and Table 21.  
Figure 5. SDIO Bus Timing (Default Mode)  
fPP  
tWL  
tWH  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tODLY  
(max)  
(min)  
Table 21. SDIO Bus Timinga Parameters (Default Mode)  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
SDIO CLK (All values are referred to minimum VIH and maximum VILb)  
Frequency – data transfer mode  
Frequency – identification mode  
Clock low time  
fPP  
0
25  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
400  
10  
10  
Clock high time  
ns  
Clock rise time  
10  
10  
ns  
Clock low time  
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
5
5
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – data transfer mode  
Output delay time – identification mode  
tODLY  
tODLY  
0
0
14  
50  
ns  
ns  
Document Number: 002-15045 Rev. *F  
Page 35 of 44  
 
 
ADVANCE  
CYW43143  
a. Timing is based on CL 40 pF load on CMD and data.  
b. min(Vih) = 0.7 × VDDIO_SD and max(Vil) = 0.2 × VDDIO_SD.  
13.5 SDIO High Speed Mode Timing  
SDIO high-speed mode timing is shown by the combination of Figure 6 and Table 22 on page 36.  
Figure 6. SDIO Bus Timing (High-Speed Mode)  
fPP  
tWL  
tWH  
50% VDD  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tOH  
Table 22. SDIO Bus Timinga Parameters (High-Speed Mode)  
Parameter Symbol  
SDIO CLK (all values are referred to minimum VIH and maximum VILb)  
Minimum  
Typical  
Maximum  
Unit  
MHz  
c
Frequency – data transfer mode  
Frequency – identification mode  
Clock low time  
fPP  
0
0
7
7
50  
fOD  
tWL  
tWH  
tTLH  
tTHL  
400  
kHz  
ns  
Clock high time  
ns  
Clock rise time  
3
ns  
Clock low time  
3
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
tISU  
tIH  
6
2
ns  
ns  
Input hold time  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – data transfer mode  
Output hold time  
tODLY  
tOH  
14  
ns  
ns  
pF  
2.5  
Total system capacitance (each line)  
CL  
40  
Document Number: 002-15045 Rev. *F  
Page 36 of 44  
 
 
ADVANCE  
CYW43143  
a. Timing is based on CL 40 pF load on CMD and data.  
b. min(Vih) = 0.7 × VDDIO_SD and max(Vil) = 0.2 × VDDIO_SD.  
c. 0 - 46 MHz when running at 1.8V.  
13.6 USB Parameters  
Table 23. USB Parameters  
Parameter  
Symbol  
Comments  
General  
Minimum  
Typical  
2.5  
Maximum  
Unit  
Baud rate  
Reference frequency  
BPS  
Fref  
Gbaud  
MHz  
V
From crystal oscillator  
LVPECL, AC coupled  
1
100  
Reference clock amplitude Vref  
Receiver  
Differential termination  
DC impedance  
ZRX-DIFF-DC  
ZRX-DC  
Differential termination  
80  
40  
100  
50  
120  
60  
DC common-mode  
impedance  
Powered down termination ZRX-HIGH-IMP-DC  
Power-down high  
impedance  
(singled ended to ground)  
200k  
175  
Input voltage  
VRX-DIFFp-p  
AC coupled, differential  
p-p  
1200  
mV  
Jitter tolerance  
TRX-EYE  
Minimum receiver eye width 0.4  
UI  
Differential return loss  
RLRX-DIFF  
Differential return loss  
12  
11  
dB  
dB  
Common-mode return loss RLRX-CM  
Common-mode return  
loss  
Unexpected electrical idle TRX-IDEL-DET-DIFF- An unexpected electrical  
10  
ms  
enter detect threshold  
integration time  
ENTERTIME  
idle must be recognized no  
longer than this time to signal  
an unexpected idle  
condition.  
Signal detect threshold  
VRX-IDLE-DET-  
DIFFp-p  
Electrical idle detect  
threshold  
65  
0
175  
mV  
mV  
Transmitter  
Output voltage  
VTX-DIFFp-p  
Differential p-p, program-  
mable in 16 steps  
1200  
Output voltage rise time  
Output voltage fall time  
De-emphasis (a1)  
VTX-RISE  
20% to 80%  
0.125  
0.125  
0
UI  
UI  
%
VTX-FALL  
80% to 20%  
VTX-DE-RATIO  
VTX-RCV-DETECT  
Programmable in 16 steps  
40  
600  
RX detection voltage  
swing  
The amount of voltage  
change allowed during  
receiver detection.  
mV  
AC peak common-mode  
voltage  
VTX-CM-Acp  
AC peak common-mode  
ripple  
0
20  
mV  
mV  
Absolute delta of DC  
VTX-CM-DC-ACTIVE- Absolute delta of DC  
100  
common-mode voltage  
during L0 and electrical idle  
IDLE-DELTA  
common-mode voltage  
during L0 and electrical idle.  
Document Number: 002-15045 Rev. *F  
Page 37 of 44  
ADVANCE  
CYW43143  
Table 23. USB Parameters (Cont.)  
Parameter  
Symbol  
Comments  
Minimum  
Typical  
Maximum  
Unit  
mV  
Absolute delta of DC  
common-model voltage  
between D+ and D-  
VTX-CM-DC-LINE-  
DELTA  
DC offset between  
D+ and D–  
0
25  
Electrical idle differential  
peak output voltage  
VTX-IDLE-DIFFp  
ITX-SHORT  
Peak-to-peak voltage  
0
20  
90  
mV  
mA  
TX short circuit current  
Currentlimit whenTX output –  
is shorted to ground.  
Differential termination  
Differential return loss  
ZTX-DIFF-DC  
RLTX-DIFF  
Differential termination  
Differential return loss  
80  
100  
120  
8
8
dB  
dB  
Common-mode return loss RLTX-CM  
Common-mode  
return loss  
TX eye width TTX-EYE  
Minimum TX eye width  
0.7  
UI  
Document Number: 002-15045 Rev. *F  
Page 38 of 44  
ADVANCE  
CYW43143  
14. Thermal Information  
Table 24. 56-pin QFN Thermal Characteristicsa  
Air Velocity m/s  
Power W  
1.166  
TJ_MAX °C  
Tt °C  
JA, °C/W  
37.95  
JT °C/W  
0
110.3  
105.2  
4.37  
a. 1s1P JEDEC board, package only, no heat sink, TA = 65°C. P = 1.061W (PA on).  
Note:  
Ambient air temperature is 1 mm above the heat shield on top of the chip.  
Ambient air temperature: TA = 65°C, subject to absolute junction maximum temperature at 125°C.  
The CYW43143 is designed and rated for operation at a maximum junction temperature not to exceed 125°C.  
14.1 Junction Temperature Estimation and PSI Versus Theta  
JT  
JC  
Package thermal characterization parameter Psi-J () yields a better estimation of actual junction temperature (T ) versus using  
T
JT  
J
the junction-to-case thermal resistance parameter Theta-J (). The reason for this is assumes that all the power is dissipated  
C
JC  
JC  
through the top surface of the package case. In actual applications, some of the power is dissipated through the bottom and sides of  
the package. takes into account power dissipated through the top, bottom, and sides of the package. The equation for calculating  
JT  
the device junction temperature is as follows:  
T = T + P   
J
T
JT  
Where:  
T = junction temperature at steady-state condition, °C  
J
T = package case top center temperature at steady-state condition, °C  
T
P = device power dissipation, Watts  
= package thermal characteristics (no airflow), °C/W  
JT  
Document Number: 002-15045 Rev. *F  
Page 39 of 44  
ADVANCE  
CYW43143  
15. Package Information  
Figure 7. 7 mm × 7 mm, 56-pin QFN package  
Document Number: 002-15045 Rev. *F  
Page 40 of 44  
ADVANCE  
CYW43143  
16. Ordering Information  
Table 25. Ordering Information  
Part Number  
Package  
Ambient Temperature  
0 to 65°C (32 to 149°F)  
BCM43143KMLG  
7 mm × 7 mm, 56-pin QFN (RoHs compliant)  
Document Number: 002-15045 Rev. *F  
Page 41 of 44  
ADVANCE  
CYW43143  
Document History  
Document Title: CYW43143 Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio with USB/SDIO Host Interface  
Document Number: 002-15045  
Revision  
ECN  
Orig. of Change Submission Date  
Description of Change  
**  
-
04/26/12  
43143-DS100-R:  
Initial release  
*A  
-
06/03/13  
43143-DS101-R:  
Added:  
Various features on cover, reorganized feature lists.  
“Link Power Management (LPM) Support” on page 16.  
“I2S Interface” on page 17.  
“Serial Flash Timing” on page 47.  
“I2S Slave Mode Tx Timing” on page 48.  
Updated:  
Figure 1 on page 2.  
Figure 3 on page 11.  
Figure 4 on page 13.  
Note in “Crystal Oscillator” on page 15.  
Figure 9 on page 24.  
Table 2 on page 25.  
Table 3 on page 26.  
Table 4 on page 28.  
Table 5 on page 32.  
Table 6 on page 33.  
Table 7 on page 34.  
Table 9 on page 36.  
Table 10 on page 37.  
Table 11 on page 39.  
Note in Section 14: “Thermal Information,” on page 56.  
Table 24 on page 56  
*B  
*C  
-
-
-
-
06/25/13  
02/24/14  
43143-DS102-R:  
Updated  
Table 7 on page 34.  
43143-DS103-R:  
Updated:  
“Reset and Low-Power Off Mode” on page 12  
Table 6: “Absolute Maximum Ratings,” on page 30  
Table 8: “WLAN Current Consumption in SDIO Mode using  
SR_VDDBAT5V,” on page 32  
Table 9: “WLAN Current Consumption in USB mode using  
VDD33,” on page 33  
Table 16: “2.4 GHz Band Transmitter RF Specifications,” on  
page 40  
Section 14: “Thermal Information,” on page 53  
Document Number: 002-15045 Rev. *F  
Page 42 of 44  
ADVANCE  
CYW43143  
Document Title: CYW43143 Single-Chip IEEE 802.11b/g/n MAC/PHY/Radio with USB/SDIO Host Interface  
Document Number: 002-15045  
*D  
-
-
11/14/14  
43143-DS104-R:  
Updated:  
Table7:“Guaranteed Operating Conditions and DC  
Characteristics,” on page32.  
Table8:“WLAN Current Consumption in SDIO Mode using  
SR_VDDBAT5V,” on page33.  
Table9:“WLAN Current Consumption in USB mode using  
VDD33,” on page34.  
*E  
*F  
5448745 UTSV  
09/28/2016  
04/20/2017  
Migrated to Cypress Template  
5255423 AESATMP7  
Updated Cypress Logo and Copyright.  
Document Number: 002-15045 Rev. *F  
Page 43 of 44  
CYW43143  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
®
®
ARM Cortex Microcontrollers  
Automotive  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IoT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
44  
© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-15045 Rev. *F  
Revised April 20, 2017  
Page 44 of 44  
厂商 型号 描述 页数 下载

CYPRESS

CYW134MOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134MOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

SPECTRALINEAR

CYW137OXC FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SPECTRALINEAR

CYW137OXCT FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SILICON

CYW150 [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXC [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXCT [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

CYPRESS

CYW15G0101DXB 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.179993s