找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYW20736A1KWBGT

型号:

CYW20736A1KWBGT

品牌:

CYPRESS[ CYPRESS ]

页数:

49 页

PDF大小:

4520 K

CYW20736  
Single-Chip Bluetooth Low Energy-Only  
System-On-ChipwithSupportforWirelessCharging  
The Cypress CYW20736 is a an advanced Bluetooth Low Energy (aka Bluetooth Smart) SoC that supports wireless charging. The  
CYW20736 is designed to support the entire spectrum of Bluetooth Smart use cases for the medical, home automation, accessory,  
sensor, Internet Of Things, and wearable market segments.  
The CYW20736 radio has been designed to provide low power, low cost, and robust communications for applications operating in the  
globally available 2.4 GHz unlicensed Industrial, Scientific, and Medical (ISM) band.  
The single-chip Bluetooth low energy SoC is a monolithic component implemented in a standard digital CMOS process and requires  
minimal external components to make a fully compliant Bluetooth device. The CYW20736 is available in a 32-pin,  
5 mm × 5 mm 32-QFN package as well as WLCSP and die packages.  
Cypress Part Numbering Scheme  
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,  
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides  
Cypress ordering part number that matches an existing IoT part number.  
Table 1. Mapping Table for Part Number between Broadcom and Cypress  
Broadcom Part Number  
Cypress Part Number  
BCM20736  
CYW20736  
BCM20736A1KML2G  
BCM20736A1KWBGT  
CYW20736A1KML2G  
CYW20736A1KWBGT  
Features  
Applications  
The following profiles are supported1 in ROM:  
Alliance for Wireless Power (A4WP) wireless charging  
Bluetooth Low Energy (BLE)-compliant  
Infrared modulator  
Battery status  
Blood pressure monitor  
Find me  
IR learning  
Supports Adaptive Frequency Hopping  
Excellent receiver sensitivity  
Heart rate monitor  
Proximity  
10-bit auxiliary ADC with nine analog channels  
Thermometer  
Weight scale  
Time  
On-chip support for serial peripheral interface (master and  
slave modes)  
Broadcom Serial Communications interface (compatible with  
Additional profiles that can be supported1 from RAM include:  
NXP I2C slaves)  
Blood glucose monitor  
Temperature alarm  
Location  
Programmable output power control  
Integrated ARM Cortex-M3 based microprocessor core  
Automation Profile  
Support for secure OTA  
On-chip power-on reset (POR)  
Support for EEPROM and serial flash interfaces  
Integrated low-dropout regulator (LDO)  
On-chip software controlled power management unit  
Package type:  
32-pin 32-QFN package (5 mm × 5 mm)  
80-pin WLCSP package (2104 µm × 2085 µm)  
RoHS compliant  
1. Full qualification and use of these profiles may require FW updates from Cypress. Some of these profiles are under development/approval at the Cypress SIG and  
conformity with the final approved version is pending. Contact your supplier for updates and the latest list of profiles.  
Cypress Semiconductor Corporation  
Document Number: 002-14883 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 30, 2016  
CYW20736  
Figure 1. Functional Block Diagram  
Muxed on GPIO  
Tx RTS_N  
1.2V  
UART_TXD  
UART_RXD  
SDA/  
SCL/  
Rx  
CTS_N  
VDD_CORE  
1.2V  
SCK  
MOSI  
MISO  
1.2V VDD_CORE  
Domain  
WDT  
28 ADC  
Inputs  
VSS,  
VDDO,  
VDDC  
BSC/SPI  
Master  
Interface  
(BSC is I2C -  
compaƟble)  
1.2V  
POR  
Test  
UART  
Periph 320K  
UART ROM  
Processing  
Unit  
(ARM -CM3)  
60K  
RAM  
CT ɇ ѐ  
ADC  
1.2V  
LDO  
1.425V to 3.6V  
1.62V to 3.6V  
3.6V  
System Bus  
MIA POR  
32 kHz  
LPCLK  
Peripheral  
Interface  
Block  
I/O Ring  
Control  
Registers  
Volt. Trans  
hclk  
VDD_IO  
Domain  
(24 MHz to 1 MHz)  
RF Control  
and Data  
I/O Ring Bus  
Bluetooth  
2.4 GHz  
Radio  
Baseband  
Core  
GPIO  
Control/  
Status  
IR  
Mod.  
and  
SPI  
PMU  
24  
MHz  
M/S  
Learning  
Registers  
Power  
RF I/O  
T/R  
Switch  
Frequency  
Synthesizer  
32 kHz  
LPCLK  
WAKE  
128 kHz  
LPO  
High Current  
Driver Controls  
IR  
I/O  
14 GPIOs  
AutoCal  
128 kHz  
LPCLK  
1.2V VDD_RF  
Domain  
9 ADC  
Inputs  
÷ 4  
PWM  
24 MHz  
Ref Xtal  
32 kHzꢀyƚĂůꢀ;ŽƉƟŽŶĂůͿꢀ  
1.62V to 3.6V  
VDD_IO  
IoT Resources  
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your  
design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of  
information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software  
updates. Customers can acquire technical documentation and software from the Cypress Support Community website  
(http://community.cypress.com/).  
Document Number: 002-14883 Rev. *G  
Page 2 of 49  
CYW20736  
Contents  
1. Functional Description .................................................4  
1.1 Bluetooth Baseband Core .....................................4  
1.2 Infrared Modulator .................................................6  
1.3 Infrared Learning ...................................................6  
1.4 Wireless Charging .................................................7  
1.5 ADC Port ...............................................................7  
1.6 Serial Peripheral Interface .....................................8  
1.7 Microprocessor Unit ..............................................9  
1.8 Integrated Radio Transceiver ..............................10  
1.9 Peripheral Transport Unit ....................................11  
1.10 Clock Frequencies .............................................12  
1.11 GPIO Port ..........................................................13  
1.12 PWM ..................................................................14  
1.13 Power Management Unit ...................................15  
2. Pin Information ...........................................................16  
2.1 Pin Descriptions ..................................................16  
2.2 Pin Maps .............................................................20  
2.3 WLCSP Pin List and Coordinates .......................22  
3. GPIO Information ........................................................25  
4. Specifications .............................................................34  
4.1 Electrical Characteristics .....................................34  
4.2 RF Specifications ................................................36  
4.3 Timing and AC Characteristics ............................38  
4.4 ESD Test Models ................................................41  
5. Mechanical Information .............................................42  
5.1 QFN .....................................................................42  
5.2 WLCSP ................................................................45  
6. Ordering Information ..................................................46  
A. Appendix: Acronyms and Abbreviations ...............47  
Document History ..........................................................48  
Document Number: 002-14883 Rev. *G  
Page 3 of 49  
CYW20736  
1. Functional Description  
1.1 Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time-critical functions required for high performance Bluetooth operation.  
The BBC manages the buffering, segmentation, and data routing for all connections. It also buffers data that passes through it, handles  
data flow control, schedules ACL TX/RX transactions, monitors Bluetooth slot usage, optimally segments and packages data into  
baseband packets, manages connection status indicators, and composes and decodes HCI packets. In addition to these functions, it  
independently handles HCI event types and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase TX/RX data reliability and security  
before sending over the air:  
Receive Functions: symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic  
redundancy check (CRC), data decryption, and data dewhitening.  
Transmit Functions: data framing, FEC generation, HEC generation, CRC generation, link key generation, data encryption, and data  
whitening.  
1.1.1 Frequency Hopping Generator  
The frequency hopping sequence generator selects the correct hopping channel number depending on the link controller state,  
Bluetooth clock, and device address.  
1.1.2 E0 Encryption  
The encryption key and the encryption engine are implemented using dedicated hardware to reduce software complexity and provide  
minimal processor intervention.  
1.1.3 Link Control Layer  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the Link Control Unit  
(LCU). This layer consists of the Command Controller, which takes software commands, and other controllers that are activated or  
configured by the Command Controller to perform the link control tasks. Each task performs a different Bluetooth link controller state.  
STANDBY and CONNECTION are the two major states. In addition, there are five substates: page, page scan, inquiry, and inquiry  
scan.  
1.1.4 Adaptive Frequency Hopping  
The CYW20736 gathers link quality statistics on a channel-by-channel basis to facilitate channel assessment and channel map  
selection. The link quality is determined by using both RF and baseband signal processing to provide a more accurate frequency hop  
map.  
Document Number: 002-14883 Rev. *G  
Page 4 of 49  
CYW20736  
1.1.5 Bluetooth Low Energy Profiles  
The CYW20736 supports Bluetooth low energy, including the following profiles that are supported1 in ROM:  
Battery status  
Blood pressure monitor  
Find me  
Heart rate monitor  
Proximity  
Thermometer  
Weight scale  
Time  
Alliance for Wireless Power (A4WP) wireless charging  
Automation profile  
Support for secure OTA  
The following additional profiles can be supported1 from RAM:  
Blood glucose monitor  
Temperature alarm  
Location  
Custom profile  
1.1.6 Test Mode Support  
The CYW20736 fully supports Bluetooth Test mode, as described in the Bluetooth low energy specification.  
1. Full qualification and use of these profiles may require FW updates from Cypress. Some of these profiles are under development/approval at the Bluetooth SIG and  
conformity with the final approved version is pending. Contact your supplier for updates and the latest list of profiles.  
Document Number: 002-14883 Rev. *G  
Page 5 of 49  
CYW20736  
1.2 Infrared Modulator  
The CYW20736 includes hardware support for infrared TX. The hardware can transmit both modulated and unmodulated waveforms.  
For modulated waveforms, hardware inserts the desired carrier frequency into all IR transmissions. IR TX can be sourced from  
firmware-supplied descriptors, a programmable bit, or the peripheral UART transmitter.  
If descriptors are used, they include IR on/off state and the duration between 1–32767 µsec. The CYW20736 IR TX firmware driver  
inserts this information in a hardware FIFO and makes sure that all descriptors are played out without a glitch due to underrun (see  
Figure 2).  
Figure 2. Infrared TX  
1.3 Infrared Learning  
The CYW20736 includes hardware support for infrared learning. The hardware can detect both modulated and unmodulated signals.  
For modulated signals, the CYW20736 can detect carrier frequencies between 10 kHz–500 kHz and the duration that the signal is  
present or absent. The CYW20736 firmware driver supports further analysis and compression of learned signal. The learned signal  
can then be played back through the CYW20736 IR TX subsystem (see Figure 3).  
Figure 3. Infrared RX  
Document Number: 002-14883 Rev. *G  
Page 6 of 49  
CYW20736  
1.4 Wireless Charging  
The CYW20736 includes support for wireless charging in hardware, software, and firmware. It supports the protocol for implementing  
wireless charging solutions based on the specifications written by the Alliance for Wireless Power (A4WP).  
The A4WP protocol is embedded in the CYW20736. Hardware and firmware elements required for wireless charging are either  
implemented in the CYW20736 or can be obtained through a Cypress technical support representative (see IoT Resources on page 4).  
An end-to-end charging solution comprises of the following:  
Power Transmitting Unit (PTU): The PTU transfers the power to the receiving unit. The receiving unit is any device (phone, wearable,  
or other embedded device) that needs to be charged. The PTU is typically plugged into a power source such as a wall outlet. The  
CYW20736 includes the peripherals needed to implement and drive a reference charging circuit and otherwise requires only a few  
external components. PTU reference designs based on the CYW20736, including bills of material (BOMs), are available through  
Cypress technical support. Depending on charging power requirements, a Power Management Unit (PMU) such as the CYW8935X  
may be included in the design. However, most PTUs requiring < 5W will not need a PMU. The references designs leverage ADCs,  
PWMs, and other internal peripherals to help drive the charging circuitry for energy transfer as well as provide feedback for charging  
control. The application and algorithm that drive the reference designs are available on request.  
Power Receive Unit (PRU): The PRU receives energy from the PTU to charge the local device, and is typically embedded in the  
local device. Like the PTU, a separate PMU may or may not be needed depending on power requirements. PRU reference designs  
based on the CYW20736, both with and without a PMU, are also available through Cypress technical support.  
1.5 ADC Port  
The CYW20736 contains a 16-bit ADC (effective number of bits is 10).  
Additionally:  
There are 9 analog input channels in the 32-pin package  
The following GPIOs can be used as ADC inputs:  
P0  
P1  
P8/P33 (select only one)  
P11  
P12  
P13/P28 (select only one)  
P14/P38 (select only one)  
P15  
P32  
The conversion time is 10 μs.  
There is a built-in reference with supply- or bandgap-based reference modes.  
The maximum conversion rate is 187 kHz.  
There is a rail-to-rail input swing.  
The ADC consists of an analog ADC core that performs the actual analog-to-digital conversion and digital hardware that processes  
the output of the ADC core into valid ADC output samples. Directed by the firmware, the digital hardware also controls the input  
multiplexers that select the ADC input signal Vinp and the ADC reference signals Vref  
.
The ADC input range is selectable by firmware control:  
When an input range of 0–3.6V is used, the input impedance is 3 M.  
When an input range of 0–2.4V is used, the input impedance is 1.84 M.  
When an input range of 0–1.2V is used, the input impedance is 680 k.  
ADC modes are defined in Table 2.  
Document Number: 002-14883 Rev. *G  
Page 7 of 49  
CYW20736  
Table 2. ADC Modes  
Mode  
ENOB (Typical)  
Maximum Sampling Rate (kHz)  
Latencya (μs)  
0
1
2
3
4
13  
12.6  
12  
5.859  
11.7  
171  
85  
21  
11  
5
46.875  
93.75  
187  
11.5  
10  
a. Settling time after switching channels.  
1.6 Serial Peripheral Interface  
The CYW20736 has two independent SPI interfaces. One is a master-only interface and the other can be either a master or a slave.  
Each interface has a 16-byte transmit buffer and a 16-byte receive buffer. To support more flexibility for user applications, the  
CYW20736 has optional I/O ports that can be configured individually and separately for each functional pin as shown in Table 3,  
Table 4, and Table 5. The CYW20736 acts as an SPI master device that supports 1.8V or 3.3V SPI slaves. The CYW20736 can also  
act as an SPI slave device that supports a 1.8V or 3.3V SPI master.  
Table 3. CYW20736 First SPI Set (Master Mode)  
Pin Name  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
P24  
SPI_CSa  
SCL  
SDA  
Configured Pin Name  
P26  
P32  
a. Any GPIO can be used as SPI_CS when SPI is in master mode.  
Table 4. CYW20736 Second SPI Set (Master Mode)  
Pin Name  
SPI_CLK  
SPI_MOSI  
P0  
SPI_MISO  
SPI_CSa  
P3  
P1  
P25  
Configured Pin Name  
P4  
P24  
P27  
a. Any GPIO can be used as SPI_CS when SPI is in master mode.  
Table 5. CYW20736 Second SPI Set (Slave Mode)  
Pin Name  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
SPI_CS  
P2  
P3  
P0  
P27  
P33  
P1  
Configured Pin Name  
P24  
P25  
P26  
P32  
Document Number: 002-14883 Rev. *G  
Page 8 of 49  
CYW20736  
1.7 Microprocessor Unit  
The CYW20736 microprocessor unit (µPU) executes software from the link control (LC) layer up to the application layer components.  
The microprocessor is based on an ARM Cortex-M3, 32-bit RISC processor with embedded ICE-RT debug and JTAG interface units.  
The µPU has 320 KB of ROM for program storage and boot-up, 60 KB of RAM for scratch-pad data, and patch RAM code. The SoC  
has a total storage of 380 KB, including RAM and ROM.  
The internal boot ROM provides power-on reset flexibility, which enables the same device to be used in different HID applications with  
an external serial EEPROM or with an external serial flash memory. At power-up, the lowest layer of the protocol stack is executed  
from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes and feature additions. The device can  
also support the integration of user applications.  
1.7.1 EEPROM Interface  
The CYW20736 provides a Broadcom Serial Control (BSC) master interface. BSC is programmed by the CPU to generate four types  
of bus transfers: read-only, write-only, combined read/write, and combined write/read. BSC supports both low-speed and fast mode  
devices. BSC is compatible with an NXP I2C slave device, except that master arbitration (multiple I2C masters contending for the bus)  
is not supported.  
The EEPROM can contain customer application configuration information including application code, configuration data, patches,  
pairing information, BD_ADDR, baud rate, SDP service record, and file system information used for code.  
Native support for the Microchip 24LC128, Microchip 24AA128, and ST Micro M24128-BR is included.  
1.7.2 Serial Flash Interface  
The CYW20736 includes an SPI master controller that can be used to access serial flash memory. The SPI master contains an AHB  
slave interface, transmit and receive FIFOs, and the SPI core PHY logic.  
Devices natively supported include the following:  
Atmel AT25BCM512B  
MXIC MX25V512ZUI-20G  
1.7.3 Internal Reset  
Figure 4. Internal Reset Timing  
VDDO POR delay  
~ 2 ms  
VDDO  
VDDO POR threshold  
VDDO POR  
VDDC POR threshold  
VDDC  
VDDC POR delay  
~ 2 ms  
VDDC POR  
Crystal  
warmup  
delay:  
~ 5 ms  
Baseband Reset  
Start reading EEPROM and  
firmware boot  
Crystal Enable  
Document Number: 002-14883 Rev. *G  
Page 9 of 49  
CYW20736  
1.7.4 External Reset  
The CYW20736 has an integrated power-on reset circuit that completely resets all circuits to a known power-on state. An external  
active low reset signal, RESET_N, can be used to put the CYW20736 in the reset state. The RESET_N pin has an internal pull-up  
resistor and, in most applications, it does not require that anything be connected to it. RESET_N should only be released after the  
VDDO supply voltage level has been stabilized.  
Figure 5. External Reset Timing  
Pulse width  
>20 µs  
RESET_N  
Crystal  
warmup  
delay:  
~ 5 ms  
Baseband Reset  
Start reading EEPROM and  
firmware boot  
Crystal Enable  
1.8 Integrated Radio Transceiver  
The CYW20736 has an integrated radio transceiver that is optimized for 2.4 GHz Bluetooth wireless systems. It has been designed  
to provide low power, low cost, and robust communications for applications operating in the globally available 2.4 GHz unlicensed  
ISM band. It is fully compliant with Bluetooth Radio Specification 4.0 and meets or exceeds the requirements to provide the highest  
communication link quality of service.  
1.8.1 Transmitter Path  
The CYW20736 features a fully integrated transmitter. The baseband transmit data is GFSK modulated in the 2.4 GHz ISM band.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK signal. The fully digital modulator minimizes  
any frequency drift or anomalies in the modulation characteristics of the transmitted signal.  
Power Amplifier  
The CYW20736 has an integrated power amplifier (PA) that can transmit up to +4 dBm for class 2 operation.  
1.8.2 Receiver Path  
The receiver path uses a low IF scheme to downconvert the received signal for demodulation in the digital demodulator and bit  
synchronizer. The receiver path provides a high degree of linearity, an extended dynamic range, and high-order, on-chip channel  
filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology, which has built-in out-of-band attenuation,  
enables the CYW20736 to be used in most applications without off-chip filtering.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit  
synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the CYW20736 provides a receiver signal strength indicator (RSSI) to the baseband. This enables the controller  
to take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the  
transmitter should increase or decrease its output power.  
Document Number: 002-14883 Rev. *G  
Page 10 of 49  
CYW20736  
1.8.3 Local Oscillator  
The local oscillator (LO) provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels. The  
CYW20736 uses an internal loop filter.  
1.8.4 Calibration  
The CYW20736 radio transceiver features a self-contained automated calibration scheme. No user interaction is required during  
normal operation or during manufacturing to provide optimal performance. Calibration compensates for filter, matching network, and  
amplifier gain and phase characteristics to yield radio performance within 2% of what is optimal. Calibration takes process and  
temperature variations into account, and it takes place transparently during normal operation and hop setting times.  
1.8.5 Internal LDO Regulator  
The CYW20736 has an integrated 1.2V LDO regulator that provides power to the digital and RF circuits. The 1.2V LDO regulator  
operates from a 1.425V to 3.63V input supply with a 30 mA maximum load current.  
Note: Always place the decoupling capacitors near the pins as closely together as possible.  
1.9 Peripheral Transport Unit  
1.9.1 Broadcom Serial Communications Interface  
The CYW20736 provides a 2-pin master BSC interface, which can be used to retrieve configuration information from an external  
EEPROM or to communicate with peripherals such as track-ball or touch-pad modules, and motion tracking ICs used in mouse  
devices. The BSC interface is compatible with I2C slave devices. The BSC does not support multimaster capability or flexible wait-  
state insertion by either master or slave devices.  
The following transfer clock rates are supported by the BSC:  
100 kHz  
400 kHz  
800 kHz (not a standard I2C-compatible speed.)  
1 MHz (Compatibility with high-speed I2C-compatible devices is not guaranteed.)  
The following transfer types are supported by the BSC:  
Read (Up to 16 bytes can be read.)  
Write (Up to 16 bytes can be written.)  
Read-then-Write (Up to 16 bytes can be read and up to 16 bytes can be written.)  
Write-then-Read (Up to 16 bytes can be written and up to 16 bytes can be read.)  
Hardware controls the transfers, requiring minimal firmware setup and supervision.  
The clock pin (SCL) and data pin (SDA) are both open-drain I/O pins. Pull-up resistors external to the CYW20736 are required on  
both the SCL and SDA pins for proper operation.  
1.9.2 UART Interface  
The UART is a standard 2-wire interface (RX and TX) and has adjustable baud rates from 9600 bps to 1.5 Mbps. The baud rate can  
be selected via a vendor-specific UART HCI command. The interface supports the Bluetooth 3.0 UART HCI (H5) specification. The  
default baud rate for H5 is 115.2 kbaud.  
Both high and low baud rates can be supported by running the UART clock at 24 MHz.  
The CYW20736 UART operates correctly with the host UART as long as the combined baud rate error of the two devices is within ±5%.  
Document Number: 002-14883 Rev. *G  
Page 11 of 49  
CYW20736  
1.10 Clock Frequencies  
The CYW20736 is set with crystal frequency of 24 MHz.  
1.10.1 Crystal Oscillator  
The crystal oscillator requires a crystal with an accuracy of ±20 ppm as defined by the Bluetooth specification. Two external load  
capacitors in the range of 5 pF to 30 pF (see Figure 6) are required to work with the crystal oscillator. The selection of the load  
capacitors is crystal-dependent. Table 6 shows the recommended crystal specifications.  
Figure 6. Recommended Oscillator Configuration—12 pF Load Crystal  
22 pF  
XIN  
Crystal  
XOUT  
20 pF  
Table 6 shows the recommended crystal specifications.  
Table 6. Reference Crystal Electrical Specifications  
Parameter  
Nominal frequency  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
MHz  
24.000  
Oscillation mode  
Fundamental  
Frequency tolerance  
Tolerance stability over temp  
Equivalent series resistance  
Load capacitance  
@25°C  
±10  
±10  
ppm  
ppm  
@0°C to +70°C  
60  
12  
pF  
Operating temperature range  
Storage temperature range  
Drive level  
0
+70  
+125  
200  
±10  
2
°C  
–40  
°C  
μΩ  
Aging  
ppm/year  
pF  
Shunt capacitance  
Peripheral Block  
The peripheral blocks of the CYW20736 all run from a single 128 kHz low-power RC oscillator. The oscillator can be turned on at the  
request of any of the peripherals. If the peripheral is not enabled, it shall not assert its clock request line.  
The keyboard scanner is a special case, in that it may drop its clock request line even when enabled, and then reassert the clock  
request line if a keypress is detected.  
32 kHz Crystal Oscillator  
Figure 7 shows the 32 kHz crystal (XTAL) oscillator with external components and Table 7 lists the oscillator’s characteristics. It is a  
standard Pierce oscillator using a comparator with hysteresis on the output to create a single-ended digital output. The hysteresis was  
added to eliminate any chatter when the input is around the threshold of the comparator and is ~100 mV. This circuit can be operated  
with a 32 kHz or 32.768 kHz crystal oscillator or be driven with a clock input at similar frequency. The default component values are:  
R1 = 10 M, C1 = C2 = ~10 pF. The values of C1 and C2 are used to fine-tune the oscillator.  
Document Number: 002-14883 Rev. *G  
Page 12 of 49  
CYW20736  
Figure 7. 32 kHz Oscillator Block Diagram  
C2  
32.768 kHz  
R1  
XTAL  
C1  
Table 7. XTAL Oscillator Characteristics  
Parameter Symbol  
Conditions  
Minimum  
Typical  
32.768  
100  
Maximum  
Unit  
kHz  
ppm  
Output frequency Foscout  
Frequency  
tolerance  
Crystal dependent  
Start-up time  
Tstartup  
Pdrv  
0.5  
500  
ms  
μΩ  
kΩ  
XTAL drive level  
For crystal selection  
XTAL series  
resistance  
70  
Rseries  
Cshunt  
For crystal selection  
For crystal selection  
XTAL shunt  
capacitance  
1.3  
pF  
1.11 GPIO Port  
The CYW20736 has 14 general-purpose I/Os (GPIOs) in the 32-pin package. All GPIOs support programmable pull-up and pull-down  
resistors, and all support a 2 mA drive strength except P26, P27, and P28, which provide a 16 mA drive strength at 3.3V supply.  
The following GPIOs are available:  
P0–P4  
P8/P33 (Dual bonded, only one of two is available.)  
P11/P27 (Dual bonded, only one of two is available.)  
P12/P26 (Dual bonded, only one of two is available.)  
P13/P28 (Dual bonded, only one of two is available.)  
P14/P38 (Dual bonded, only one of two is available.)  
P15  
P24  
P25  
P32  
For a description of all GPIOs, see Table 11 on page 25.  
Document Number: 002-14883 Rev. *G  
Page 13 of 49  
CYW20736  
1.12 PWM  
The CYW20736 has four internal PWM channels. The PWM module is described as follows:  
PWM0–3  
The following GPIOs can be mapped as PWMs:  
P26  
P27  
P14/P28 (Dual bonded, only one of two is available.)  
P13  
Each of the PWM channels, PWM0–3, contains the following registers:  
10-bit initial value register (read/write)  
10-bit toggle register (read/write)  
10-bit PWM counter value register (read)  
The PWM configuration register is shared among PWM0–3 (read/write). This 12-bit register is used:  
To configure each PWM channel.  
To select the clock of each PWM channel.  
To change the phase of each PWM channel.  
Figure 8 shows the structure of one PWM channel.  
Figure 8. PWM Channel Block Diagram  
pwm_cfg_adr register  
pwm#_init_val_adr register  
10  
pwm#_togg_val_adr register  
10  
pwm#_cntr_adr  
10  
cntr value is CM3 readable  
pwm_out  
Example: PWM cntr w/ pwm#_init_val = 0 (dashed line)  
PWM cntr w/ pwm#_init_val = x (solid line)  
10'H3FF  
pwm_togg_val_adr  
10'Hx  
10'H000  
pwm_out  
Document Number: 002-14883 Rev. *G  
Page 14 of 49  
CYW20736  
1.13 Power Management Unit  
The Power Management Unit (PMU) provides power management features that can be invoked by software through power  
management registers or packet-handling in the baseband core.  
1.13.1 RF Power Management  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to the 2.4 GHz trans-  
ceiver, which then processes the power-down functions accordingly.  
1.13.2 Host Controller Power Management  
Power is automatically managed by the firmware based on input device activity. As a power-saving task, the firmware controls the  
disabling of the on-chip regulator when in deep sleep mode.  
1.13.3 BBC Power Management  
There are several low-power operations for the BBC:  
Physical layer packet handling turns RF on and off dynamically within packet TX and RX.  
Bluetooth-specified low-power connection mode. While in these low-power connection modes, the CYW20736 runs on the Low  
Power Oscillator and wakes up after a predefined time period.  
The CYW20736 automatically adjusts its power dissipation based on user activity. The following power modes are supported:  
Active mode  
Idle mode  
Sleep mode  
HIDOFF (Deep Sleep) mode  
Timed Deep Sleep mode  
The CYW20736 transitions to the next lower state after a programmable period of user inactivity. Busy mode is immediately entered  
when user activity resumes.  
In HIDOFF (Deep Sleep) mode, the CYW20736 baseband and core are powered off by disabling power to LDOOUT. The VDDO  
domain remains powered up and will turn the remainder of the chip on when it detects user events. This mode minimizes chip power  
consumption and is intended for long periods of inactivity.  
Document Number: 002-14883 Rev. *G  
Page 15 of 49  
CYW20736  
2. Pin Information  
2.1 Pin Descriptions  
Table 8 provides pin descriptions for the QFN package.  
Table 8. QFN Package Pin Descriptions  
Pin Number  
Pin Name  
I/O  
Power Domain  
Radio I/O  
Description  
6
RF  
I/O  
VDD_RF  
RF antenna port  
RF Power Supplies  
4
5
7
8
VDDIF  
VDDFE  
I
I
I
I
VDD_RF  
VDD_RF  
VDD_RF  
VDD_RF  
Power Supplies  
VDDC  
IFPLL power supply  
RF front-end supply  
VCO, LOGEN supply  
VDDVCO  
VDDPLL  
RFPLL and crystal oscillator supply  
11  
28  
14  
VDDC  
VDDO  
VDDM  
I
I
I
Baseband core supply  
I/O pad and core supply  
I/O pad supply  
VDDO  
VDDM  
Clock Generator and Crystal Interface  
9
XTALI  
I
VDD_RF  
VDD_RF  
Crystal oscillator input. See page 12 for options.  
Crystal oscillator output.  
10  
XTALO  
O
Low-power oscillator (LPO) input is used.  
Alternative Function:  
1
XTALI32K  
I
VDDO  
VDDO  
P11  
P27  
Low-power oscillator (LPO) output.  
Alternative Function:  
32  
XTALO32K  
O
P12  
P26  
Core  
Active-low system reset with open-drain output & internal  
pull-up resistor  
18  
17  
RESET_N  
TMC  
I/O PU  
I
VDDO  
VDDO  
Test mode control  
High: test mode  
Connect to GND if not used.  
UART  
UART serial input – Serial data input for the HCI UART  
interface. Leave unconnected if not used.  
Alternative function:  
12  
13  
UART_RXD  
UART_TXD  
I
VDDM  
VDDM  
GPIO3  
UART serial output – Serial data output for the HCI UART  
interface. Leave unconnected if not used.  
Alternative Function:  
O, PU  
GPIO2  
Document Number: 002-14883 Rev. *G  
Page 16 of 49  
CYW20736  
Table 8. QFN Package Pin Descriptions (Cont.)  
Pin Number  
Pin Name  
I/O  
Power Domain  
Description  
BSC  
Data signal for an external I2C device.  
Alternative function:  
SPI_1: MOSI (master only)  
15  
SDA  
I/O, PU  
VDDM  
VDDM  
GPIO0  
CTS  
Clock signal for an external I2C device.  
Alternative function:  
SPI_1: SPI_CLK (master only)  
16  
SCL  
I/O, PU  
GPIO1  
RTS  
LDO Regulator Power Supplies  
2
3
LDOIN  
I
N/A  
N/A  
Battery input supply for the LDO  
LDO output  
LDOOUT  
O
Table 9 provides pin descriptions for the WLCSP package. The table is ordered by pin name.  
Table 9. WLCSP Package Pin Descriptions  
Pin Numbers  
Pin Name  
AVSS  
Type  
Power Domain  
AVSS  
Description  
57  
I
I
I
I
I
I
I
Analog ground  
RF front-end supply  
Ground  
69  
FEVDD  
FEVSS  
IFVDD  
FEVDD  
VSS  
70  
67  
IFVDD  
VSS  
IF PLL power supply  
Ground  
54, 68, 71, 72  
IFVSS  
76  
79  
PLLVDD  
PLLVSS  
PLLVDD  
VSS  
RF PLL and crystal oscillator supply  
Ground  
Document Number: 002-14883 Rev. *G  
Page 17 of 49  
CYW20736  
Table 9. WLCSP Package Pin Descriptions (Cont.)  
Pin Numbers  
21  
Pin Name  
P0  
Type  
Power Domain  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
Description  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
26  
P1  
22  
P2  
13  
P3  
31  
P4  
14  
P5  
27  
P6  
18  
P7  
36  
P8  
63  
P9  
53  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
66  
55  
20  
35  
52  
32  
23  
41  
General purpose I/O  
28  
(See Table 12: “WLCSP Package GPIO Pin Descrip-  
33  
tions,” on page 28.)  
43  
15  
48  
47  
19  
30  
25  
49  
44  
50  
39  
38  
46  
34  
29  
62  
64  
24  
51  
Document Number: 002-14883 Rev. *G  
Page 18 of 49  
CYW20736  
Table 9. WLCSP Package Pin Descriptions (Cont.)  
Pin Numbers  
Pin Name  
Type  
Power Domain  
Description  
73  
RF  
I/O  
VDD_RF  
RF antenna port  
Active-low system reset with open-drain output & internal  
pull-up resistor  
16  
RST_N  
I/O PU  
VDDO  
Clock signal for an external I2C device.  
Alternative function:  
SPI_1: SPI_CLK (master only)  
2
SCL  
I/O, PU  
VDDM  
GPIO1  
RTS  
Data signal for an external I2C device.  
Alternative function:  
SPI_1: MOSI (master only)  
7
SDA  
I/O, PU  
VDDM  
GPIO0  
CTS  
Test mode control  
High: test mode  
Connect to GND if not used.  
11  
10  
TMC  
I
I
VDDO  
VDDM  
UART serial input – Serial data input for the HCI UART  
interface. Leave unconnected if not used.  
Alternative function:  
UART_RXD  
GPIO3  
UARTserial output – Serial data output for the HCI UART  
interface. Leave unconnected if not used.  
Alternative Function:  
9
UART_TXD  
O, PU  
VDDM  
GPIO2  
77, 80  
VCOVDD  
VCOVSS  
VDDC  
I
I
VCOVDD  
N/A  
VCO and LO generator supply  
74  
Ground  
1, 4  
I
VDDC  
VDDM  
VDDO  
VREG  
N/A  
Baseband core supply  
I/O pad supply  
3
VDDM  
VDDO  
I
17, 37, 45, 58  
I
I/O pad and core supply  
Internal LDO regulator output  
Internal LDO regulator input  
Ground  
65  
60  
VREG  
O
I
VR3V  
5, 6, 8  
12, 40, 59  
42  
VSSC  
I
N/A  
VSSO  
I
N/A  
Ground  
VSS0  
I
N/A  
Ground  
75  
XIN  
I
VDD_RF  
VDD_RF  
VDDO  
VDDO  
Crystal oscillator input. See page 12 for options.  
Crystal oscillator output.  
Low-power oscillator (LPO) input is used.  
Low-power oscillator (LPO) output.  
78  
XOUT  
O
I
61  
XTAL32KI  
XTAL32KO  
56  
O
Document Number: 002-14883 Rev. *G  
Page 19 of 49  
CYW20736  
2.2 Pin Maps  
Figure 9 shows the ball map of the QFN package.  
Figure 9. 32-Pin QFN Ball Map  
32  
31  
30  
29  
28  
27  
26  
25  
P11/P27/XIN32  
LDO_IN  
LDO_OUT  
VDDIF  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P8/P33  
P4  
P2  
P3  
VDDFE  
P1  
RF  
P0  
VDDVCO  
VDDPLL  
RST_N  
TMC  
9
10  
11  
12  
13  
14  
15  
16  
Document Number: 002-14883 Rev. *G  
Page 20 of 49  
CYW20736  
Figure 10 shows the bump map of the WLCSP package.  
Figure 10. 80-Pin WLCSP Bump Map—Top View of Package with Bumps Facing Down  
Document Number: 002-14883 Rev. *G  
Page 21 of 49  
CYW20736  
2.3 WLCSP Pin List and Coordinates  
Table 10 provides the WLCSP pin list and coordinates.  
Table 10. WLCSP Pin List and Coordinates  
Package Bottom View  
(Bumps Facing Up)  
Package Center (0,0)  
Package Top View  
(Bumps Facing Down)  
Package Center (0,0)  
Bump #  
Net Name  
X Coordinate  
Y Coordinate  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
X Coordinate  
Y Coordinate  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
1
VDDC  
SCL  
–895.5  
–895.5  
–895.5  
–895.5  
–895.5  
–695.5  
–695.5  
–695.5  
–695.5  
–695.5  
–495.5  
–495.5  
–495.5  
–495.5  
–495.5  
–295.5  
–295.5  
–295.5  
–295.5  
–295.5  
–95.5  
–895.5  
–895.5  
–895.5  
–895.5  
–895.5  
–695.5  
–695.5  
–695.5  
–695.5  
–695.5  
–495.5  
–495.5  
–495.5  
–495.5  
–495.5  
–295.5  
–295.5  
–295.5  
–295.5  
–295.5  
–95.5  
2
3
VDDM  
VDDC  
VSSC  
VSSC  
SDA  
VSSC  
UART_TXD  
UART_RXD  
TMC  
VSSO  
P3  
4
5
6
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
P5  
P22  
RST_N  
VDDO  
P7  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
P25  
P13  
P0  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
P2  
–95.5  
–95.5  
P17  
–95.5  
–95.5  
P38  
–95.5  
–95.5  
P27  
–95.5  
–95.5  
P1  
104.5  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
104.5  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
P6  
104.5  
104.5  
P19  
104.5  
104.5  
P35  
104.5  
104.5  
P26  
104.5  
104.5  
P4  
304.5  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
304.5  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
P16  
304.5  
304.5  
P20  
304.5  
304.5  
P34  
304.5  
304.5  
P14  
304.5  
304.5  
Document Number: 002-14883 Rev. *G  
Page 22 of 49  
CYW20736  
Table 10. WLCSP Pin List and Coordinates (Cont.)  
Package Bottom View  
(Bumps Facing Up)  
Package Center (0,0)  
Package Top View  
(Bumps Facing Down)  
Package Center (0,0)  
Bump #  
Net Name  
X Coordinate  
Y Coordinate  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
–877.2587  
–677.2587  
–477.2587  
–277.2587  
–77.2587  
322.7413  
322.7413  
322.7413  
422.7413  
522.7413  
522.7413  
522.7413  
922.7413  
922.7413  
922.7413  
722.7413  
122.7413  
722.7413  
122.7413  
722.7413  
122.7413  
922.7413  
722.7413  
922.7413  
722.7413  
224.6363  
224.6363  
X Coordinate  
Y Coordinate  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
P8  
VDDO  
P32  
504.5  
504.5  
504.5  
504.5  
504.5  
704.5  
704.5  
704.5  
704.5  
704.5  
904.5  
904.5  
904.5  
904.5  
904.5  
794  
504.5  
504.5  
504.5  
504.5  
504.5  
704.5  
704.5  
704.5  
704.5  
704.5  
904.5  
904.5  
904.5  
904.5  
904.5  
794  
P31  
VSSO  
P18  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
VSS0  
P21  
P29  
VDDO  
P33  
877.2587  
677.2587  
477.2587  
277.2587  
77.2587  
P24  
P23  
P28  
P30  
P39  
–322.7413  
–322.7413  
–322.7413  
–422.7413  
–522.7413  
–522.7413  
–522.7413  
–922.7413  
–922.7413  
–922.7413  
–722.7413  
–122.7413  
–722.7413  
–122.7413  
–722.7413  
–122.7413  
–922.7413  
–722.7413  
–922.7413  
–722.7413  
–224.6363  
–224.6363  
P15  
594  
594  
P10  
394  
394  
IFVSS  
P12  
211.14  
794  
211.14  
794  
XTAL32KO  
AVSS  
VDDO  
VSSO  
VR3V  
XTAL32KI  
P36  
594  
594  
394  
394  
794  
794  
594  
594  
394  
394  
794  
794  
794  
794  
P9  
594  
594  
P37  
594  
594  
VREG  
P11  
394  
394  
394  
394  
IFVDD  
IFVSS  
FEVDD  
FEVSS  
IFVSS  
IFVSS  
194  
194  
194  
194  
–6  
–6  
–6  
–6  
–75.35  
–275.35  
–75.35  
–275.35  
Document Number: 002-14883 Rev. *G  
Page 23 of 49  
CYW20736  
Table 10. WLCSP Pin List and Coordinates (Cont.)  
Package Bottom View  
(Bumps Facing Up)  
Package Center (0,0)  
Package Top View  
(Bumps Facing Down)  
Package Center (0,0)  
Bump #  
Net Name  
X Coordinate  
Y Coordinate  
822.7413  
927.0313  
154.5313  
354.5313  
927.0313  
154.5313  
354.5313  
927.0313  
X Coordinate  
Y Coordinate  
–822.7413  
–927.0313  
–154.5313  
–354.5313  
–927.0313  
–154.5313  
–354.5313  
–927.0313  
73  
74  
75  
76  
77  
78  
79  
80  
RF  
–330.025  
–517.5  
–330.025  
–517.5  
VCOVSS  
XIN  
–651.09  
–651.09  
–717.5  
–651.09  
–651.09  
–717.5  
PLLVDD  
VCOVDD  
XOUT  
–851.09  
–851.09  
–917.5  
–851.09  
–851.09  
–917.5  
PLLVSS  
VCOVDD  
Document Number: 002-14883 Rev. *G  
Page 24 of 49  
CYW20736  
3. GPIO Information  
Table 11 provides the GPIO alternate function descriptions for the QFN package.  
Table 11. QFN Package GPIO Pin Descriptionsa  
Default  
Direction  
After  
Power  
Pin Number  
Pin Name  
Alternate Function Description  
POR State Domain  
GPIO: P0  
A/D converter input  
Peripheral UART: puart_tx  
SPI_2: MOSI (master and slave)  
IR_RX  
Input  
VDDO  
floating  
19  
P0  
Input  
60Hz_main  
Not available during TMC=1  
GPIO: P1  
A/D converter input  
Peripheral UART: puart_rts  
SPI_2: MISO (master and slave)  
IR_TX  
Input  
VDDO  
floating  
20  
P1  
Input  
GPIO: P3  
Input  
VDDO  
floating  
21  
22  
P3  
P2  
Input  
Input  
Peripheral UART: puart_cts  
SPI_2: SPI_CLK (master and slave)  
GPIO: P2  
Peripheral UART: puart_rx  
SPI_2: SPI_CS (slave only)  
SPI_2: SPI_MOSI (master only)  
GPIO: P4  
Input  
VDDO  
floating  
Peripheral UART: puart_rx  
SPI_2: MOSI (master and slave)  
IR_TX  
Input  
VDDO  
floating  
23  
P4  
P8  
Input  
Input  
GPIO: P8  
Input  
VDDO  
floating  
A/D converter input  
External T/R switch control: ~tx_pd  
GPIO: P33  
24  
A/D converter input  
SPI_2: MOSI (slave only)  
Auxiliary clock output: ACLK1  
Peripheral UART: puart_rx  
Input  
VDDO  
floating  
P33  
Input  
Document Number: 002-14883 Rev. *G  
Page 25 of 49  
CYW20736  
Table 11. QFN Package GPIO Pin Descriptionsa (Cont.)  
Default  
Direction  
After  
Power  
Pin Number  
Pin Name  
Alternate Function Description  
POR State Domain  
GPIO: P11  
Input  
VDDO  
floating  
P11  
Input  
Input  
Input  
A/D converter input  
XTALI32K  
1
GPIO: P27  
P27  
PWM1  
Input  
VDDO  
floating  
SPI_2: MOSI (master and slave)  
Current: 16 mA  
GPIO: P12  
Input  
VDDO  
floating  
P12  
A/D converter input  
XTALO32K  
GPIO: P26  
32  
SPI_2: SPI_CS (slave only)  
P26  
PWM0  
Input  
VDDO  
floating  
Input  
Input  
SPI_1: MISO (master only)  
Current: 16 mA  
GPIO: P13  
P13  
PWM3  
Input  
VDDO  
floating  
A/D converter input  
GPIO: P28  
29  
A/D converter input  
LED1  
P28  
PWM2  
Input  
VDDO  
floating  
Input  
IR_TX  
Current: 16 mA  
GPIO: P14  
P14  
PWM2  
Input  
VDDO  
floating  
Input  
Input  
A/D converter input  
GPIO: P38  
30  
A/D converter input  
SPI_2: MOSI (master and slave)  
IR_TX  
Input  
VDDO  
floating  
P38  
P15  
GPIO: P15  
A/D converter input  
IR_RX  
Input  
VDDO  
floating  
31  
Input  
60 Hz_main  
Document Number: 002-14883 Rev. *G  
Page 26 of 49  
CYW20736  
Table 11. QFN Package GPIO Pin Descriptionsa (Cont.)  
Default  
Direction  
After  
Power  
Pin Number  
Pin Name  
Alternate Function Description  
POR State Domain  
GPIO: P24  
SPI_2: SPI_CLK (master and slave)  
SPI_1: MISO (master only)  
Peripheral UART: puart_tx  
GPIO: P25  
Input  
VDDO  
floating  
27  
P24  
Input  
Input  
Input  
VDDO  
floating  
26  
25  
P25  
P32  
SPI_2: MISO (master and slave)  
Peripheral UART: puart_rx  
GPIO: P32  
A/D converter input  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Auxiliary clock output: ACLK0  
Peripheral UART: puart_tx  
Input  
VDDO  
floating  
Input  
a. During a power-on reset, all inputs are disabled.  
Document Number: 002-14883 Rev. *G  
Page 27 of 49  
CYW20736  
Table 12 provides the GPIO alternate function descriptions for the WLCSP package.  
Table 12. WLCSP Package GPIO Pin Descriptionsa  
Default  
Direction  
Power  
Domain  
Pin Number  
Pin Name  
After POR  
Alternate Function Description  
GPIO: P0  
Keyboard scan input (row): KSI0  
A/D converter input  
Peripheral UART: puart_tx  
SPI_2: MOSI (master and slave)  
IR_RX  
21  
P0  
Input  
Floating  
VDDO  
60 Hz_main  
Not available during TMC=1  
GPIO: P1  
Keyboard scan input (row): KSI1  
A/D converter input  
Peripheral UART: puart_rts  
SPI_2: MISO (master and slave)  
IR_TX  
26  
P1  
Input  
Floating  
VDDO  
GPIO: P2  
Keyboard scan input (row): KSI2  
Quadrature: QDX0  
22  
13  
31  
P2  
P3  
P4  
Input  
Input  
Input  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
Peripheral UART: puart_rx  
SPI_2: SPI_CS (slave only)  
SPI_2: SPI_MOSI (master only)  
GPIO: P3  
Keyboard scan input (row): KSI3  
Quadrature: QDX1  
Peripheral UART: puart_cts  
SPI_2: SPI_CLK (master and slave)  
GPIO: P4  
Keyboard scan input (row): KSI4  
Quadrature: QDY0  
Peripheral UART: puart_rx  
SPI_2: MOSI (master and slave)  
IR_TX  
Document Number: 002-14883 Rev. *G  
Page 28 of 49  
CYW20736  
Table 12. WLCSP Package GPIO Pin Descriptionsa (Cont.)  
Default  
Power  
Domain  
Pin Number  
Pin Name  
After POR  
Alternate Function Description  
Direction  
GPIO: P5  
Keyboard scan input (row): KSI5  
Quadrature: QDY1  
14  
P5  
Input  
Floating  
VDDO  
Peripheral UART: puart_tx  
SPI_2: MISO (master and slave)  
GPIO: P6  
Keyboard scan input (row): KSI6  
Quadrature: QDZ0  
P6  
PWM2  
27  
Input  
Floating  
VDDO  
Peripheral UART: puart_rts  
SPI_2: SPI_CS (slave only)  
60Hz_main  
GPIO: P7  
Keyboard scan input (row): KSI7  
Quadrature: QDZ1  
18  
36  
P7  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Peripheral UART: puart_cts  
SPI_2: SPI_CLK (master and slave)  
GPIO: P8  
Keyboard scan output (column): KSO0  
A/D converter input  
P8  
P9  
External T/R switch control: ~tx_pd  
GPIO: P9  
Keyboard scan output (column): KSO1  
A/D converter input  
63  
53  
66  
Input  
Input  
Input  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
External T/R switch control: tx_pd  
GPIO: P10  
P10  
PWM3  
Keyboard scan output (column): KSO2  
A/D converter input  
GPIO: P11  
Keyboard scan output (column): KSO3  
A/D converter input  
P11  
XTALI32K (40QFN only)  
Document Number: 002-14883 Rev. *G  
Page 29 of 49  
CYW20736  
Table 12. WLCSP Package GPIO Pin Descriptionsa (Cont.)  
Default  
Power  
Domain  
Pin Number  
Pin Name  
After POR  
Alternate Function Description  
Direction  
GPIO: P12  
Keyboard scan output (column): KSO4  
A/D converter input  
55  
P12  
Input  
Floating  
VDDO  
XTALO32K (40QFN only)  
GPIO: P13  
Keyboard scan output (column): KSO5  
A/D converter input  
P13  
PWM3  
20  
35  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Alternative Function: P28  
GPIO: P14  
P14  
PWM2  
Keyboard scan output (column): KSO6  
A/D converter input  
GPIO: P15  
Keyboard scan output (column): KSO7  
A/D converter input  
52  
P15  
Input  
Floating  
VDDO  
IR_RX  
60Hz_main  
Alternative Function: P26  
GPIO: P16  
32  
23  
P16  
P17  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
Keyboard scan output (column): KSO8  
GPIO: P17  
Keyboard scan output (column): KSO9  
A/D converter input  
GPIO: P18  
41  
28  
33  
43  
P18  
P19  
P20  
P21  
Input  
Input  
Input  
Input  
Floating  
Floating  
Floating  
Floating  
VDDO  
VDDO  
VDDO  
VDDO  
Keyboard scan output (column): KSO10  
A/D converter input  
GPIO: P19  
Keyboard scan output (column): KSO11  
A/D converter input  
GPIO: P20  
Keyboard scan output (column): KSO12  
A/D converter input  
GPIO: P21  
Keyboard scan output (column): KSO13  
A/D converter input  
Document Number: 002-14883 Rev. *G  
Page 30 of 49  
CYW20736  
Table 12. WLCSP Package GPIO Pin Descriptionsa (Cont.)  
Default  
Power  
Domain  
Pin Number  
Pin Name  
After POR  
Alternate Function Description  
Direction  
GPIO: P22  
15  
P22  
Input  
Floating  
VDDO  
VDDO  
Keyboard scan output (column): KSO14  
A/D converter input  
GPIO: P23  
48  
47  
P23  
P24  
Input  
Input  
Floating  
Floating  
Keyboard scan output (column): KSO15  
A/D converter input  
GPIO: P24  
Keyboard scan output (column): KSO16  
SPI_2: SPI_CLK (master and slave)  
SPI_1: MISO (master only)  
Peripheral UART: puart_tx  
GPIO: P25  
VDDO  
VDDO  
Keyboard scan output (column): KSO17  
SPI_2: MISO (master and slave)  
Peripheral UART: puart_rx  
GPIO: P26  
19  
P25  
Input  
Floating  
Keyboard scan output (column): KSO18  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Optical control output: QOC0  
Current: 16 mA  
P26  
PWM0  
30  
Input  
Floating  
VDDO  
Alternative function: P15  
GPIO: P27  
Keyboard scan output (column): KSO19  
SPI_2: MOSI (master and slave)  
Optical control output: QOC1  
Current: 16 mA  
P27  
PWM1  
25  
Input  
Floating  
VDDO  
GPIO: P28  
Optical control output: QOC2  
A/D converter input  
P28  
PWM2  
49  
Input  
Floating  
VDDO  
LED1  
Current: 16 mA  
Alternative function: P13  
Document Number: 002-14883 Rev. *G  
Page 31 of 49  
CYW20736  
Table 12. WLCSP Package GPIO Pin Descriptionsa (Cont.)  
Default  
Power  
Domain  
Pin Number  
Pin Name  
After POR  
Alternate Function Description  
Direction  
GPIO: P29  
Optical control output: QOC3  
A/D converter input  
LED2  
P29  
PWM3  
44  
Input  
Floating  
VDDO  
Current: 16 mA  
GPIO: P30  
A/D converter input  
Pairing button pin in default FW  
Peripheral UART: puart_rts  
GPIO: P31  
50  
39  
P30  
P31  
Input  
Input  
Floating  
Floating  
VDDO  
VDDO  
A/D converter input  
EEPROM WP pin in default FW  
Peripheral UART: puart_tx  
GPIO: P32  
A/D converter input  
Quadrature: QDX0  
38  
P32  
Input  
Floating  
VDDO  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Auxiliary clock output: ACLK0  
Peripheral UART: puart_tx  
GPIO: P33  
A/D converter input  
Quadrature: QDX1  
46  
P33  
Input  
Floating  
VDDO  
SPI_2: MOSI (slave only)  
Auxiliary clock output: ACLK1  
Peripheral UART: puart_rx  
GPIO: P34  
A/D converter input  
Quadrature: QDY0  
34  
P34  
Input  
Floating  
VDDO  
Peripheral UART: puart_rx  
External T/R switch control: tx_pd  
Document Number: 002-14883 Rev. *G  
Page 32 of 49  
CYW20736  
Table 12. WLCSP Package GPIO Pin Descriptionsa (Cont.)  
Default  
Power  
Domain  
Pin Number  
Pin Name  
After POR  
Alternate Function Description  
Direction  
GPIO: P35  
A/D converter input  
Quadrature: QDY1  
Peripheral UART: puart_cts  
GPIO: P36  
29  
P35  
Input  
Floating  
VDDO  
A/D converter input  
Quadrature: QDZ0  
62  
P36  
Input  
Floating  
VDDO  
SPI_2: SPI_CLK (master and slave)  
Auxiliary Clock Output: ACLK0  
Battery detect pin in default FW  
External T/R switch control: ~tx_pd  
GPIO: P37  
A/D converter input  
Quadrature: QDZ1  
64  
P37  
Input  
Floating  
VDDO  
SPI_2: MISO (slave only)  
Auxiliary clock output: ACLK1  
Alternative function: P38, P39  
GPIO: P38  
A/D converter input  
SPI_2: MOSI (master and slave)  
IR_TX  
24  
P38  
Input  
Floating  
VDDO  
XTALO32K (64BGA only)  
Alternate functions: P37, P39  
GPIO: P39  
SPI_2: SPI_CS (slave only)  
SPI_1: MISO (master only)  
Infrared control: IR_RX  
External PA ramp control: PA_Ramp  
XTALI32K (64BGA only)  
60Hz_main  
51  
P39  
Input  
Floating  
VDDO  
Alternative function: P37, P38  
a. During a power-on reset, all inputs are disabled.  
Document Number: 002-14883 Rev. *G  
Page 33 of 49  
CYW20736  
4. Specifications  
4.1 Electrical Characteristics  
Table 13 shows the maximum electrical rating for voltages referenced to VDD pin.  
Table 13. Maximum Electrical Rating  
Rating  
DC supply voltage for RF domain  
DC supply voltage for core domain  
DC supply voltage for VDDM domain (UART/I2C)  
DC supply voltage for VDDO domain  
DC supply voltage for VR3V  
Symbol  
Value  
1.4  
Unit  
V
1.4  
V
3.8  
V
3.8  
V
3.8  
V
DC supply voltage for VDDFE  
1.4  
V
Voltage on input or output pin  
VSS – 0.3 to VDD + 0.3  
–30 to +85  
V
Operating ambient temperature range  
Storage temperature range  
Topr  
Tstg  
°C  
°C  
–40 to +125  
Table 14 shows the power supply characteristics for the range TJ = 0 to 125°C.  
Table 14. Power Supply  
Parameter  
Minimuma  
Typical  
Maximuma  
1.26  
Unit  
V
DC supply voltage for RF  
DC supply voltage for Core  
1.14  
1.14  
1.62  
1.62  
1.2  
1.2  
1.26  
V
DC supply voltage for VDDM (UART/I2C)  
3.63  
V
DC supply voltage for VDDO  
3.63  
V
DC supply voltage for LDOIN  
1.425  
1.14  
1.2b  
3.63  
V
DC supply voltage for VDDFE  
1.26  
V
a. Overall performance degrades beyond minimum and maximum supply voltages.  
b. 1.2V for Class 2 output with internal VREG.  
Table 15 shows the digital level characteristics for (VSS = 0V).  
Table 15. LDO Regulator Electrical Specifications  
Parameter  
Input voltage range  
Default output voltage  
Conditions  
Min  
Typ  
Max  
3.63  
Unit  
1.425  
V
V
1.2  
Range  
0.8  
1.4  
V
Output voltage  
Step size  
40 or 80  
mV  
%
Accuracy at any step  
–5  
+5  
30  
Load current  
mA  
%VO/V  
Line regulation  
Vin from 1.425 to 3.63V, Iload = 30 mA  
–0.2  
0.2  
Iload from 1 µA to 30 mA, Vin = 3.3V, Bonding R  
0.1  
0.2  
%VO/mA  
Load regulation  
= 0.3Ω  
No load @Vin = 3.3V  
*Current limit enabled  
6
5
µA  
Quiescent current  
Power-down current  
Vin = 3.3V, worst@70°C  
200  
nA  
Document Number: 002-14883 Rev. *G  
Page 34 of 49  
CYW20736  
Table 16 shows the specifications for the ADC characteristics.  
Table 16. ADC Specifications  
Parameter  
Number of Input channels  
Channel switching rate  
Input signal range  
Reference settling time  
Input resistance  
Symbol  
Conditions  
Min  
Typ  
9
Max  
Unit  
fch  
Vinp  
133.33  
kch/s  
V
0
3.63  
Changing refsel  
7.5  
s  
Rinp  
Cinp  
fC  
Effective, single ended  
500  
k  
pF  
kHz  
s  
Input capacitance  
Conversion rate  
5
5.859  
5.35  
187  
170.7  
Conversion time  
TC  
R
Resolution  
16  
bits  
See Table 2  
on page 8  
Effective number of bits  
In specified performance range  
Absolute voltage  
measurement error  
±2  
%
Using on-chip ADC firmware driver  
Current  
I
P
Iavdd1p2 + Iavdd3p3  
1.5  
1
mA  
mW  
nA  
Power  
Leakage current  
Power-up time  
Integral nonlinearity3  
Differential nonlinearitya  
Ileakage  
Tpowerup  
INL  
T = 25°C  
100  
200  
1
µs  
In guaranteed performance range  
In guaranteed performance range  
–1  
–1  
LSBa  
LSBa  
DNL  
1
a. LSBs are expressed at the 10-bit level.  
Table 17 shows the specifications for the digital voltage levels.  
Table 17. Digital Levelsa  
Characteristics  
Input low voltage  
Symbol  
VIL  
Min  
Typ  
Max  
Unit  
0.4  
V
V
Input high voltage  
VIH  
0.75 × VDDO  
Input low voltage (VDDO = 1.62V)  
Input high voltage (VDDO = 1.62V)  
Output low voltageb  
VIL  
0.4  
V
VIH  
1.2  
V
VOL  
VOH  
CIN  
0.4  
V
Output high voltageb  
VDDO – 0.4  
V
Input capacitance (VDDMEM domain)  
0.12  
pF  
a. This table is also applicable to VDDMEM domain.  
b. At the specified drive current for the pad.  
Document Number: 002-14883 Rev. *G  
Page 35 of 49  
CYW20736  
Table 18 shows the specifications for current consumption.  
Table 18. Current Consumption a  
Operational Mode  
Receive  
Conditions  
Typ  
9.8  
Max  
10.0  
9.3  
Unit  
mA  
mA  
Receiver and baseband are both operating, 100% ON.  
Transmit  
Transmitter and baseband are both operating, 100% ON.  
9.1  
Internal LPO is in use.  
12.0  
0.65  
13.0  
Sleep  
μA  
a. Currents measured between power terminals (Vdd) using 90% efficient DC-DC converter at 3V.  
4.2 RF Specifications  
Table 19. Receiver RF Specifications  
Parameter  
Mode and Conditions  
Min.  
Typ.  
Max.  
Unit  
Receiver Sectiona  
Frequency range  
2402  
–93  
–90  
2480  
MHz  
dBm  
dBm  
dBm  
dBm  
RX sensitivity (standard)  
RX sensitivity (low current)  
Input IP3  
0.1% BER, 1 Mbps, dirty transmitter OFF  
–16  
–10  
Maximum input  
Interference Performancea,b  
C/I cochannel  
0.1%BER  
21  
15  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
0.1%BER  
0.1%BER  
–17  
–27  
–9.0  
–15  
0.1%BER  
0.1%BER  
C/I 1 MHz adjacent to image channel  
0.1%BER  
Out-of-Band Blocking Performance (CW)a,b  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
Spurious Emissions  
30 MHz to 1 GHz  
0.1%BERc  
0.1%BERd  
0.1%BERd  
0.1%BERe  
–30.0  
–35  
dBm  
dBm  
dBm  
dBm  
–35  
–30.0  
–57.0  
–55.0  
dBm  
dBm  
1 GHz to 12.75 GHz  
a. 30.8% PER.  
b. Desired signal is 3 dB above the reference sensitivity level (defined as –70 dBm).  
c. Measurement resolution is 10 MHz.  
d. Measurement resolution is 3 MHz.  
e. Measurement resolution is 25 MHz.  
Document Number: 002-14883 Rev. *G  
Page 36 of 49  
CYW20736  
Table 20. Transmitter RF Specifications  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
Transmitter Section  
Frequency range  
2402  
2480  
MHz  
dBm  
dBm  
dB  
Output power adjustment range  
Default output power  
–20  
4
4.0  
2.0  
Output power variation  
Adjacent Channel Power  
|M – N| = 2  
–20  
–30  
dBm  
dBm  
|M – N| 3  
Out-of-Band Spurious Emission  
30 MHz to 1 GHz  
–36.0  
–30.0  
–47.0  
–47.0  
dBm  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
LO Performance  
Initial carrier frequency tolerance  
±150  
kHz  
Frequency Drift  
Frequency drift  
Drift rate  
±50  
20  
kHz  
Frequency Deviation  
225  
kHz/50 µs  
Average deviation in payload  
(sequence used is 00001111)  
2
275  
kHz  
kHz  
MHz  
Maximum deviation in payload  
(sequence used is 10101010)  
185  
Channel spacing  
Document Number: 002-14883 Rev. *G  
Page 37 of 49  
CYW20736  
4.3 Timing and AC Characteristics  
In this section, use the numbers listed in the Reference column of each table to interpret the following timing diagrams.  
4.3.1 UART Timing  
Table 21. UART Timing Specifications  
Reference  
Characteristics  
Min  
Max  
Unit  
1
24  
Baud out  
cycles  
Delay time, UART_CTS_N low to UART_TXD valid  
Setup time, UART_CTS_N high before midpoint of stop bit  
Delay time, midpoint of stop bit to UART_RTS_N high  
2
3
10  
2
ns  
Baud out  
cycles  
Figure 11. UART Timing  
Document Number: 002-14883 Rev. *G  
Page 38 of 49  
CYW20736  
4.3.2 SPI Timing  
The SPI interface supports clock speeds up to 12 MHz with VDDIO 2.2V. The supported clock speed is 6 MHz when 2.2V > VDDIO  
1.62V.  
Figure 12 and Figure 13 show the timing requirements when operating in SPI Mode 0 and 2, and SPI Mode 1 and 3, respectively.  
Table 22. SPI Interface Timing Specifications  
Reference  
Characteristics  
Time from CSN asserted to first clock edge  
Master setup time  
Min  
1 SCK  
Typ  
100  
Max  
1
2
3
4
5
6
½ SCK  
Master hold time  
½ SCK  
Slave setup time  
½ SCK  
Slave hold time  
½ SCK  
1 SCK  
Time from last clock edge to CSN deasserted  
10 SCK  
100  
Figure 12. SPI Timing – Mode 0 and 2  
6
SPI_CSN  
SPI_CLK  
1
(Mode 0)  
SPI_CLK  
(Mode 2)  
2
3
First Bit  
Second Bit  
Last bit  
SPI_MOSI  
SPI_MISO  
4
5
First Bit  
Not Driven  
Second Bit  
Last bit  
Not Driven  
Figure 13. SPI Timing – Mode 1 and 3  
6
SPI_CSN  
SPI_CLK  
1
(Mode 1)  
SPI_CLK  
(Mode 3)  
2
3
Invalid bit  
Invalid bit  
First bit  
First bit  
Last bit  
Last bit  
SPI_MOSI  
SPI_MISO  
4
5
Not Driven  
Not Driven  
Document Number: 002-14883 Rev. *G  
Page 39 of 49  
CYW20736  
4.3.3 BSC Interface Timing  
Table 23. BSC Interface Timing Specifications  
Reference  
Characteristics  
Min  
Max  
100  
400  
800  
1000  
Unit  
1
Clock frequency  
kHz  
2
3
START condition setup time  
START condition hold time  
Clock low time  
650  
280  
650  
280  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
5
Clock high time  
6
Data input hold timea  
Data input setup time  
STOP condition setup time  
Output valid from clock  
Bus free timeb  
7
100  
280  
8
9
400  
10  
650  
a. As a transmitter, 300 ns of delay is provided to bridge the undefined region of the falling edge of SCL to avoid unintended generation of START  
or STOP conditions.  
b. Time that the cbus must be free before a new transaction can start.  
Figure 14. BSC Interface Timing Diagram  
Document Number: 002-14883 Rev. *G  
Page 40 of 49  
CYW20736  
4.4 ESD Test Models  
ESD can have serious detrimental effects on all semiconductor ICs and the system that contains them. Standards are developed to  
enhance the quality and reliability of ICs by ensuring all devices employed have undergone proper ESD design and testing, thereby  
minimizing the detrimental effects of ESD. Three major test methods are widely used in the industry today to describe uniform methods  
for assessing ESD immunity at Component level, Human Body Model (HBM), Machine Model (MM), and Charged Device Model  
(CDM). The following standards were used to test this device:  
4.4.1 Human-Body Model (HBM) – ANSI/ESDA/JEDEC JS-001-2012  
The HBM has been developed to simulate the action of a human body discharging an accumulated static charge through a device to  
ground, and employs a series RC network consisting of a 100 pF capacitor and a 1500(Ohm) resistor. Both positive and negative  
polarities are used for this test. Although, a 100 ms delay is allowable per specification, the minimum delay used for testing was set  
to 300 ms between each pulse.  
4.4.2 Machine Model (MM) – JEDEC JESD22-A115C  
The MM has been developed to simulate the rapid discharge from a charged conductive object, such as a metallic tool or fixture. The  
most common application would be rapid discharge from charged board assembly or the charged cables of automated testers. This  
model consists of a 200 pF capacitor discharged directly into a component with no series resistor (0). One positive and one negative  
polarity pulses are applied. The minimum delay between pulses is 500 ms.  
4.4.3 Charged-Device Model (CDM) - JEDEC JESD22-C101E  
CDM simulates charging/discharging events that occur in production equipment and processes. The potential for a CDM ESD events  
occurs when there is metal-to-metal contact in manufacturing. CDM addresses the possibility that a charge may reside on the lead  
frame or package (e.g., from shipping) and discharge through a pin that subsequently is grounded, causing damage to sensitive  
devices in the path. Discharge current is limited only by the parasitic impedance and capacitance of the device. CDM testing consists  
of charging package to a specified voltage, then discharging the voltage through relevant package leads. One positive and one  
negative polarity pulse is applied. The minimum delay between pulses is 200 ms.  
4.4.4 Results Summary  
ESD Test Voltage Level Results:  
HBM +/– 2KV PASS  
CDM +/– 500V PASS  
MM +/– 150V PASS  
Document Number: 002-14883 Rev. *G  
Page 41 of 49  
CYW20736  
5. Mechanical Information  
5.1 QFN  
Figure 15. 32-pin QFN  
Document Number: 002-14883 Rev. *G  
Page 42 of 49  
CYW20736  
Figure 16. 80-pin WLCSP  
Document Number: 002-14883 Rev. *G  
Page 43 of 49  
CYW20736  
Figure 17. WLCSP Keep-Out Areas for PCB Layout (Top View, Bumps Facing Down)  
Document Number: 002-14883 Rev. *G  
Page 44 of 49  
CYW20736  
5.1.1 Tape Reel and Packaging Specifications  
Table 24. CYW20736 5 × 5 × 1 mm QFN, 32-Pin Tape Reel Specifications  
Parameter  
Quantity per reel  
Reel diameter  
Value  
2500 pieces  
13 inches  
7 inches  
12 mm  
Hub diameter  
Tape width  
Tape pitch  
8 mm  
The top left corner of the CYW20736 package is situated near the sprocket holes, as shown in Figure 18.  
Figure 18. Pin 1 Orientation  
Pin 1: Top left corner of package toward sprocket holes  
5.2 WLCSP  
Table 25 provides WLCSP package information.  
Table 25. WLCSP Package Information  
Parameter  
Value  
65 nm  
Wafer process  
Chip size without seal ring and scribe line  
Chip size with seal ring and scribe line  
Module die size  
2104 μm × 2085 μm  
2224 μm × 2205 μm (S+S 120 μm)  
2184 μm × 2165 μm  
88 μm  
UBM size  
Bump height  
90 μm  
Bump diameter  
115 μm  
Bump pitch  
200 μm (minimum)  
Document Number: 002-14883 Rev. *G  
Page 45 of 49  
CYW20736  
6. Ordering Information  
Table 26. Ordering Information  
Part Number  
CYW20736A1KML2G  
CYW20736A1KWBGT  
Package  
32-pin QFN  
Ambient Operating Temperature  
–30°C to +85°C  
–30°C to +85°C  
80-pin WLCSP  
Document Number: 002-14883 Rev. *G  
Page 46 of 49  
CYW20736  
A. Appendix: Acronyms and Abbreviations  
The following list of acronyms and abbreviations may appear in this document.  
Term  
Description  
ADC  
AFH  
AHB  
APB  
APU  
analog-to-digital converter  
adaptive frequency hopping  
advanced high-performance bus  
advanced peripheral bus  
audio processing unit  
Acorn RISC Machine 7 Thumb instruction, Debugger, Multiplier, Ice, Synthesizable  
Broadcom Serial Control  
Bluetooth controller  
ARM7TDMI-S  
BSC  
BTC  
COEX  
DFU  
DMA  
EBI  
coexistence  
device firmware update  
direct memory access  
external bus interface  
Host Control Interface  
high voltage  
HCI  
HV  
IDC  
initial digital calibration  
intermediate frequency  
interrupt request  
IF  
IRQ  
JTAG  
LCU  
LDO  
LHL  
Joint Test Action Group  
link control unit  
low drop-out  
lean high land  
LPO  
LV  
low power oscillator  
LogicVision  
MIA  
multiple interface agent  
pulse code modulation  
phase locked loop  
PCM  
PLL  
PMU  
POR  
PWM  
QD  
power management unit  
power-on reset  
pulse width modulation  
quadrature decoder  
RAM  
RF  
random access memory  
radio frequency  
ROM  
RX/TX  
SPI  
read-only memory  
receive, transmit  
serial peripheral interface  
software  
SW  
UART  
UPI  
universal asynchronous receiver/transmitter  
µ-processor interface  
watchdog  
WD  
Document Number: 002-14883 Rev. *G  
Page 47 of 49  
CYW20736  
Document History  
Document Title: CYW20736 Single-Chip Bluetooth Low Energy-Only System-On-Chip with Support for Wireless Charging  
Document Number: 002-14883  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
20736-DS100-R:  
Initial release.  
**  
01/03/2014  
20736-DS101-R:  
Updated:  
*A  
*B  
07/11/2014  
08/15/2014  
Ordering Information on page 46.  
20736-DS102-R:  
Updated:  
“List of Tables”.  
20736-DS103-R:  
Updated:  
Table 6 on page 12.  
*C  
*D  
04/10/2015  
04/21/2015  
Pin Information on page 16 with new WLCSP content.  
By moving GPIO Information to the following new GPIO Information on page 25.  
20736-DS104-R:  
Updated:  
Table 19 on page 36  
20736-DS105-R:  
Updated:  
Features on page 1: added WLCSP package information.  
Table 6 on page 12 and Table 6 on page 12: corrected an error in the unit of measure for  
drive level and XTAL drive level, respectively.  
Ordering Information on page 46.  
*E  
04/27/2015  
Added:  
Figure 16 on page 43.  
Figure 17 on page 44 (Top View, Bumps Facing Down).  
20736-DS106-R:  
*F  
02/16/2016 Added:  
ESD Test Models on page 41.  
09/30/2016 Updated to Cypress template.  
*G  
5446877  
UTSV  
Document Number: 002-14883 Rev. *G  
Page 48 of 49  
CYW20736  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IoT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
49  
© Cypress Semiconductor Corporation, 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-14883 Rev. *G  
Revised September 30, 2016  
Page 49 of 49  
厂商 型号 描述 页数 下载

CYPRESS

CYW134MOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134MOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXC 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

CYPRESS

CYW134SOXCT 直接Rambus ™时钟发生器[ Direct Rambus⑩ Clock Generator ] 12 页

SPECTRALINEAR

CYW137OXC FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SPECTRALINEAR

CYW137OXCT FTG移动440BX和全美达的Crusoe CPU[ FTG for Mobile 440BX & Transmeta’s Crusoe CPU ] 8 页

SILICON

CYW150 [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXC [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

SILICON

CYW150OXCT [ 440BX AGPset Spread Spectrum Frequency Synthesizer ] 15 页

CYPRESS

CYW15G0101DXB 单通道的HOTLink II ™收发器[ Single-channel HOTLink II⑩ Transceiver ] 39 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.192326s