找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

TZA3026U

型号:

TZA3026U

描述:

SDH / SONET STM4 / OC12跨阻放大器器[ SDH/SONET STM4/OC12 transimpedance amplifier ]

品牌:

NXP[ NXP ]

页数:

15 页

PDF大小:

76 K

TZA3026  
SDH/SONET STM4/OC12 transimpedance amplifier  
Rev. 01 — 2 May 2005  
Product data sheet  
1. General description  
The TZA3026 is a transimpedance amplifier with Automatic Gain Control (AGC), designed  
to be used in STM4/OC12 fiber optic links. It amplifies the current generated by a photo  
detector (PIN diode or avalanche photodiode) and converts it to a differential output  
voltage. It offers a current mirror of average photo current for RSSI monitoring to be used  
in SFF8472 compliant modules.  
The low noise characteristics makes it suitable for STM4/OC12 applications, but also for  
FTTx applications.  
2. Features  
Low equivalent input noise current, typically 67 nA (RMS)  
Wide dynamic range, typically 0.85 µA to 1.5 mA (p-p)  
Differential transimpedance of 14 k(typical)  
Bandwidth from DC to 650 MHz (typical)  
Differential outputs  
On-chip AGC with possibility of external control  
Single supply voltage 3.3 V, range 2.9 V to 3.6 V  
Bias voltage for PIN diode  
Current output of average photo current for RSSI monitoring  
Identical ports available on both sides of die for easy bond layout and RF polarity  
selection  
3. Applications  
Digital fiber optic receiver modules in telecommunications transmission systems, in  
high speed data networks or in FTTx systems  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
-
Description  
Version  
TZA3026U  
bare die, dimensions approximately  
-
0.82 mm × 1.3 mm  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
5. Block diagram  
V
AGC  
CC  
C
VCC  
4 or 17 6 or 15  
TZA3026  
0.2 × I  
I
DREF  
DREF  
I
MON  
IDREF_MON 5 or 16  
BIASING  
R
DREF  
300  
DREF 1 or 3  
GAIN  
CONTROL  
R
C
DREF  
D
PHOTO  
IDREF_MON  
PEAK DETECTOR  
output  
buffers  
single-ended to  
differential converter  
I
PD  
7 or 13 OUTQ  
IPHOTO  
2
low noise  
amplifier  
8 or 14 OUT  
9, 10, 11, 12  
GND  
001aac617  
Fig 1. Block diagram  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
2 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
6. Pinning information  
6.1 Pinning  
3
2
1
V
4
5
17  
16  
V
CC  
CC  
IDREF_MON  
AGC  
IDREF_MON  
AGC  
6
15  
TZA3026  
OUTQ  
OUT  
7
14  
OUT  
8
13  
OUTQ  
GND  
GND  
9
12  
GND  
10  
11  
GND  
001aac618  
Fig 2. Pad configuration  
6.2 Pin description  
Table 2:  
Bonding pad description  
Bonding pad locations with respect to the center of the die (see Figure 10), X and Y are in µm.  
Symbol  
Pad  
X
Y
Type  
Description  
DREF  
1
493.6 140  
output  
bias voltage output for PIN diode; connect cathode of PIN diode to  
pad 1 or pad 3  
IPHOTO  
DREF  
2
3
493.6  
0
input  
current input; anode of PIN diode should be connected to this pad  
493.6 140  
output  
bias voltage output for PIN diode; connect cathode of PIN diode to  
pad 1 or pad 3  
VCC  
4
5
353.6 278.6 supply  
213.6 278.6 output  
supply voltage; connect supply voltage to pad 4 or pad 17  
IDREF_MON  
current output for RSSI measurements; connect a resistor to pad 5  
or pad 16 and ground  
AGC  
OUTQ  
OUT  
6
7
8
9
73.6  
66.4  
278.6 input  
278.6 output  
278.6 output  
278.6 ground  
AGC voltage; use pad 6 or pad 15  
data output; complement of pad OUT; use pad 7 or pad 13  
data output; use pad 8 or pad 14[1]  
206.4  
346.4  
GND  
ground; connect together pads 9, 10, 11 and pad 12 as many as  
possible  
GND  
10  
486.4  
278.6 ground  
ground; connect together pads 9, 10, 11 and pad 12 as many as  
possible  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
3 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
Table 2:  
Bonding pad description …continued  
Bonding pad locations with respect to the center of the die (see Figure 10), X and Y are in µm.  
Symbol  
Pad  
X
Y
Type  
Description  
GND  
11  
486.4  
278.6  
ground  
ground; connect together pads 9, 10, 11 and pad 12 as many as  
possible  
GND  
12  
346.4  
278.6  
ground  
ground; connect together pads 9, 10, 11 and pad 12 as many as  
possible  
OUTQ  
OUT  
13  
14  
15  
206.4  
66.4  
278.6  
278.6  
278.6  
output  
output  
input  
data output; complement of pad OUT; use pad 7 or pad 13  
data output; use pad 8 or pad 14[1]  
AGC  
73.6  
AGC voltage; use pad 6 or pad 15  
IDREF_MON 16  
213.6 278.6  
output  
current output for RSSI measurements; connect a resistor to pad 5  
or pad 16 and ground  
VCC 17  
353.6 278.6  
supply  
supply voltage; connect supply voltage to pad 4 or pad 17  
[1] These pads go HIGH when current flows into pad IPHOTO.  
7. Functional description  
The TZA3026 is a TransImpedance Amplifier (TIA) intended for use in fiber optic receivers  
for signal recovery in STM4/OC12 or FTTx applications. It amplifies the current generated  
by a photo detector (PIN diode or avalanche photodiode) and converts it to a differential  
output voltage.  
The most important characteristics of the TZA3026 are high receiver sensitivity, wide  
dynamic range and large bandwidth. Excellent receiver sensitivity is achieved by  
minimizing transimpedance amplifier noise.  
The TZA3026 has a wide dynamic range to handle the signal current generated by the  
PIN diode which can vary from 0.85 µA to 1.5 mA (p-p). This is implemented by an AGC  
loop which reduces the preamplifier feedback resistance so that the amplifier remains  
linear over the whole input range. The AGC loop hold capacitor is integrated on-chip, so  
an external capacitor is not required.  
The bandwidth of TZA3026 is optimized for STM4/OC12 application. It works from DC  
onward due to the absence of offset control loops. Therefore the amount of Consecutive  
Identical Digits (CID) will not effect the output waveform. A differential amplifier converts  
the output of the preamplifier to a differential voltage.  
7.1 PIN diode connections  
The performance of an optical receiver is largely determined by the combined effect of the  
transimpedance amplifier and the PIN diode. In particular, the method used to connect the  
PIN diode to the input (pad IPHOTO) and the layout around the input pad strongly  
influences the main parameters of a transimpedance amplifier, such as sensitivity,  
bandwidth, and PSRR.  
Sensitivity is most affected by the value of the total capacitance at the input pad.  
Therefore, to obtain the highest possible sensitivity the total capacitance should be as low  
as possible.  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
4 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
The parasitic capacitance can be minimized through:  
1. Reducing the capacitance of the PIN diode. This is achieved by proper choice of PIN  
diode and typically a high reverse voltage.  
2. Reducing the parasitics around the input pad. This is achieved by placing the PIN  
diode as close as possible to the TIA.  
The PIN diode can be biased with a positive or a negative voltage. Figure 3 shows the PIN  
diode biased positively, using the on-chip bias pad DREF. The voltage at DREF is derived  
from VCC by a low-pass filter comprising internal resistor RDREF and external capacitor C2  
which decouples any supply voltage noise. The value of external capacitor C2 affects the  
value of PSRR and should have a minimum value of 470 pF. Increasing this value  
improves the value of PSRR. The current through RDREF is measured and sourced at pad  
IDREF_MON, see Section 7.3.  
If the biasing for the PIN diode is done external to the IC, pad DREF can be left  
unconnected. If a negative bias voltage is used, the configuration shown in Figure 4 can  
be used. In this configuration, the direction of the signal current is reversed to that shown  
in Figure 3. It is essential that in these applications, the PIN diode bias voltage is filtered to  
achieve the best sensitivity.  
For maximum freedom on bonding location, 2 outputs are available for DREF (pads 1  
and 3). These are internally connected. Both outputs can be used if necessary. If only one  
is used, the other can be left open.  
V
CC  
V
CC  
4 or 17  
4 or 17  
R
DREF  
DREF 1 or 3  
R
DREF  
DREF 1 or 3  
300 Ω  
I
300 Ω  
PD  
C2  
470 pF  
IPHOTO  
2
IPHOTO  
2
I
PD  
TZA3026  
TZA3026  
negative  
bias voltage  
001aac619  
001aac620  
Fig 3. The PIN diode connected between  
the input and pad DREF  
Fig 4. The PIN diode connected between  
the input and a negative supply  
voltage  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
5 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
7.2 Automatic gain control  
The TZA3026 transimpedance amplifier can handle input currents from 0.85 µA to 1.5 mA  
which is equivalent to a dynamic range of 65 dB (electrical equivalent with 32.5 dB  
optical). At low input currents, the transimpedance must be high to obtain enough output  
voltage, and the noise should be low enough to guarantee a minimum bit error rate. At  
high input currents however, the transimpedance should be low to prevent excessive  
distortion at the output stage. To achieve the dynamic range, the gain of the amplifier  
depends on the level of the input signal. This is achieved in the TZA3026 by an AGC loop.  
The AGC loop comprises a peak detector and a gain control circuit. The peak detector  
detects the amplitude of the signal and stores it on a hold capacitor. The hold capacitor  
voltage is compared to a threshold voltage. The AGC is only active when the input signal  
level is larger than the threshold level and is inactive when the input signal is smaller than  
the threshold level.  
When the AGC is inactive, the transimpedance is at its maximum. When the AGC is  
active, the feedback resistor value of the transimpedance amplifier is reduced, reducing its  
transimpedance, to keep the output voltage constant. Figure 5 shows the transimpedance  
as function of the input current.  
To reduce sensitivity to offsets and output loads, the AGC detector senses the output just  
before the output buffer. Figure 6 shows the AGC voltage as function of the input current.  
001aac621  
001aac622  
2
10  
4
V
(V)  
AGC  
transimpedance  
(k)  
3
2
1
0
10  
1
1  
10  
2
3
4
2
3
4
1
10  
10  
10  
10  
1
10  
10  
10  
10  
I
(µA)  
I
(µA)  
PD  
PD  
Fig 5. Transimpedance as function of the input  
current  
Fig 6. AGC voltage as function of the input current  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
6 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
For applications where the transimpedance is controlled by the TIA it is advised to leave  
the AGC pads unconnected to achieve fast attack and decay times.  
The AGC function can be overruled by applying a voltage to pad AGC. In this  
configuration, connecting pad AGC to ground gives maximum transimpedance and  
connecting it to VCC gives minimum transimpedance. This is depicted in Figure 7. The  
AGC voltage should be derived from the VCC for proper functioning.  
For maximum freedom on bonding location, 2 pads are available for AGC (pads 6 and 15).  
These pads are internally connected. Both pads can be used if necessary.  
001aac623  
2
10  
transimpedance  
(k)  
10  
1
1  
10  
0.3V  
0.5V  
0.7V  
0.9V  
CC  
(V)  
CC  
CC  
CC  
V
AGC  
Fig 7. Transimpedance as function of the AGC voltage  
7.3 Monitoring RSSI via IDREF_MON  
To facilitate RSSI monitoring in modules (e.g. SFF8472 compliant SFP modules), a  
current output is provided. This output gives a current which is 20 % of the average DREF  
current through the 300 bias resistor. By connecting a resistor to the IDREF_MON  
output, a voltage proportional with the average input power can be obtained.  
The RSSI monitoring is implemented by measuring the voltage over the 300 bias  
resistor. This method is preferred over simple current mirror because at small photo  
currents the voltage drop over the resistor is very small. This gives a higher bias voltage  
yielding better performance of the photodiode.  
For maximum freedom on bonding location, 2 pads are available for IDREF_MON (pads 5  
and 16). These pads are internally connected. Both pads can be used if necessary. If only  
one is used, the other can be left open.  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
7 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
8. Limiting values  
Table 3:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
Vn  
supply voltage  
pad DC voltage  
0.5  
+3.8  
V
pad  
IPHOTO  
0.5  
0.5  
0.5  
0.5  
+2.0  
V
V
V
V
OUT, OUTQ  
AGC, IDREF_MON  
DREF  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
In  
pad DC current  
pad  
IPHOTO  
4.0  
10  
0.2  
4.0  
-
+4.0  
+10  
+0.2  
+4.0  
300  
mA  
mA  
mA  
mA  
mW  
°C  
OUT, OUTQ  
AGC, IDREF_MON  
DREF  
Ptot  
Tamb  
Tj  
total power dissipation  
ambient temperature  
junction temperature  
storage temperature  
40  
-
+85  
150  
°C  
Tstg  
65  
+150  
°C  
9. Characteristics  
Table 4:  
Characteristics  
Typical values at Tj = 25 °C and VCC = 3.3 V; minimum and maximum values are valid over the entire ambient temperature  
range and supply voltage range; all voltages are measured with respect to ground; unless otherwise specified.  
Symbol  
VCC  
Parameter  
Conditions  
Min  
2.9  
-
Typ  
3.3  
18  
Max  
3.6  
21  
Unit  
V
supply voltage  
supply current  
ICC  
AC-coupled; RL(dif) = 100 ;  
mA  
excluding IDREF and IIDREF_MON  
Ptot  
Tj  
total power dissipation  
junction temperature  
ambient temperature  
-
60  
-
76  
mW  
°C  
40  
40  
9.5  
+125  
+85  
19  
Tamb  
Rtr  
+25  
14  
°C  
small-signal  
measured differentially;  
kΩ  
transresistance of the  
receiver  
AC-coupled, RL(dif) = 100 Ω  
f-3dB(h)  
high frequency 3 dB point CPD = 0.7 pF; VCC = 3.3 V  
440  
-
650  
67  
-
MHz  
nA  
[1]  
In(tot)(rms)  
total integrated RMS noise referenced to input;  
79  
current over bandwidth  
CPD = 0.7 pF; fi = 450 MHz  
third-order Bessel filter  
Automatic gain control loop: pad AGC  
tatt  
attack time  
decay time  
AGC pad unconnected  
AGC pad unconnected  
-
-
-
14  
-
-
-
µs  
tdecay  
40  
µs  
VO(data)(p-p)  
data output voltage  
(peak-to-peak value)  
referenced to output;  
measured differentially  
125  
mV  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
8 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
Table 4:  
Characteristics …continued  
Typical values at Tj = 25 °C and VCC = 3.3 V; minimum and maximum values are valid over the entire ambient temperature  
range and supply voltage range; all voltages are measured with respect to ground; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Bias voltage: pad DREF  
RDREF  
resistance between pad  
DREF and pad VCC  
tested at DC level;  
Tamb = 25 °C  
250  
-
300  
350  
-
TCRDREF  
temperature coefficient  
RDREF  
0.33  
/°C  
Input: pad IPHOTO  
[2]  
[1]  
IPD(p-p)  
input current (peak-to-peak  
value)  
1500 -  
+1500  
1000  
µA  
Vbias  
input bias voltage  
700  
850  
mV  
Monitor: pad IDREF_MON  
VMON  
monitor voltage  
0
-
VCC 0.4 V  
AMON  
monitor current ratio  
monitor offset current  
ratio IDREF_MON / IDREF  
19.5  
20  
10  
30  
20.5  
20  
-
%
IMON(offset)  
TCMON(offset)  
Tamb = 25 °C  
0
-
µA  
temperature coefficient  
monitor offset current  
nA/°C  
Data outputs: pads OUT and OUTQ  
Vo(cm)  
common mode output  
voltage  
AC-coupled; RL(dif) = 100 Ω  
-
V
CC 1.2 -  
V
Vo(dif)(p-p)  
differential load output  
voltage (peak-to-peak  
value)  
AC-coupled; RL(dif) = 100 Ω  
IPD = 0.84 µA (p-p) × Rtr  
IPD = 100 µA (p-p)  
8
-
12  
-
mV  
mV  
mV  
125  
250  
100  
-
IPD = 1500 µA (p-p)  
tested at DC level  
-
500  
-
RO(dif)  
differential output  
resistance  
-
tr  
tf  
rise time  
20 % to 80 %;  
-
-
300  
300  
-
-
ps  
ps  
I
PD = 100 µA(p-p)  
80 % to 20 %;  
PD = 100 µA (p-p)  
fall time  
I
[1] Guaranteed by design.  
[2] The input current range is determined by the allowed Pulse Width Distortion (PWD), which is <5 % over the whole input current range.  
pulse width  
The PWD is defined as: PWD =  
(0.5) × 100 % , where T is the clock period.  
------------------------------  
T
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
9 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
10. Application information  
For maximum freedom on bonding location, 2 outputs are available for OUT and OUTQ.  
The outputs should be used in pairs: pad 14 with pad 7 or pad 8 with pad 13. Pad 8 is  
internally connected with pad 14, pad 7 is internally connected with pad 13. The device is  
guaranteed with only one pair used. The other pair should be left open. Two examples of  
the bonding possibilities are shown in Figure 8.  
V
V
CC  
CC  
IDREF_MON  
IDREF_MON  
C
C
PIN  
PIN  
C
C
TZA3026U  
TZA3026U  
OUT  
OUTQ  
OUTQ  
OUT  
GND  
GND  
001aac624  
001aac625  
Fig 8. Application diagram highlighting flexible pad lay out  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
10 of 15  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
NETWORK ANALYZER  
S-PARAMETER TEST SET  
PORT1  
PORT2  
Z
= 50 Ω  
Z = 50 Ω  
O
O
V
CC  
SAMPLING OSCILLOSCOPE  
DC-IN  
4 or 17  
8 or 14  
22 nF  
22 nF  
OUT  
TRIGGER  
INPUT  
1
2
8.2  
kΩ  
Z
= 50 Ω  
O
TZA3026  
22 nF  
330 Ω  
IPHOTO  
PATTERN  
GENERATOR  
2
OUTQ  
R
7 or 13  
DATA  
55 Ω  
9, 10, 11, 12  
GND  
CLOCK  
001aac626  
Total impedance of the test circuit (ZT) is calculated by the equation ZT = s21 × (R + ZIN) × 2, where s21 is the insertion loss of ports 1 and 2.  
Typical values: R = 330 , ZIN = 75 .  
Fig 9. Test circuit  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
12. Bare die information  
17  
16  
15  
14  
13  
12  
11  
1
2
3
Y
X
(0,0)  
4
5
6
7
8
9
10  
001aac627  
Origin is center of die.  
Fig 10. Bonding pad locations  
Table 5:  
Physical characteristics of the bare die  
Value  
Parameter  
Glass passivation  
0.3 µm PSG (PhosphoSilicate Glass) on top of 0.8 µm silicon nitride  
Bonding pad  
dimension  
minimum dimension of exposed metallization is 90 µm × 90 µm  
(pad size = 100 µm × 100 µm) except pads 2 and 3 which have exposed  
metallization of 80 µm × 80 µm (pad size = 90 µm × 90 µm)  
Metallization  
Thickness  
2.8 µm AlCu  
380 µm nominal  
Die dimension  
Backing  
820 µm × 1300 µm (± 20 µm2)  
silicon; electrically connected to GND potential through substrate contacts  
<440 °C; recommended die attach is glue  
<15 s  
Attach temperature  
Attach time  
13. Package outline  
Not applicable.  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
12 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
14. Handling information  
14.1 General  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be completely safe, it is desirable to take normal precautions appropriate to  
handling MOS devices; see JESD625-A and/or IEC61340-5.  
14.2 Additional information  
Pad IPHOTO has limited protection to ensure good RF performance. This pad should be  
handled with extreme care.  
15. Revision history  
Table 6:  
Revision history  
Document ID  
Release date Data sheet status  
20050502 Product data sheet  
Change notice Doc. number  
9397 750 14763  
Supersedes  
TZA3026_1  
-
-
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
13 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
16. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
Right to make changes — Philips Semiconductors reserves the right to  
17. Definitions  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Bare die — All die are tested and are guaranteed to comply with all data  
sheet limits up to the point of wafer sawing for a period of ninety (90) days  
from the date of Philips' delivery. If there are data sheet limits not guaranteed,  
these will be separately indicated in the data sheet. There are no post  
packing tests performed on individual die or wafer. Philips Semiconductors  
has no control of third party procedures in the sawing, handling, packing or  
assembly of the die. Accordingly, Philips Semiconductors assumes no liability  
for device functionality or performance of the die or systems after third party  
sawing, handling, packing or assembly of the die. It is the responsibility of the  
customer to test and qualify their application in which the die is used.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
18. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
19. Trademarks  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
20. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14763  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 May 2005  
14 of 15  
TZA3026  
Philips Semiconductors  
SDH/SONET STM4/OC12 transimpedance amplifier  
21. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 1  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
Functional description . . . . . . . . . . . . . . . . . . . 4  
PIN diode connections . . . . . . . . . . . . . . . . . . . 4  
Automatic gain control . . . . . . . . . . . . . . . . . . . 6  
Monitoring RSSI via IDREF_MON . . . . . . . . . . 7  
7.1  
7.2  
7.3  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Application information. . . . . . . . . . . . . . . . . . 10  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 11  
Bare die information . . . . . . . . . . . . . . . . . . . . 12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 12  
9
10  
11  
12  
13  
14  
14.1  
14.2  
Handling information. . . . . . . . . . . . . . . . . . . . 13  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Additional information . . . . . . . . . . . . . . . . . . . 13  
15  
16  
17  
18  
19  
20  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 13  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 14  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Contact information . . . . . . . . . . . . . . . . . . . . 14  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 2 May 2005  
Document number: 9397 750 14763  
Published in The Netherlands  
厂商 型号 描述 页数 下载

RHOMBUS-IND

TZA1-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

NXP

TZA1000 QIC读写放大器[ QIC read-write amplifier ] 24 页

NXP

TZA1000T/N3 [ IC 1 CHANNEL READ WRITE AMPLIFIER CIRCUIT, PDSO24, 7.50 MM, PLASTIC, SOT-137-1, SOP-24, Drive Electronics ] 26 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.274326s