找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYRF7936_09

型号:

CYRF7936_09

描述:

2.4 GHz的的CyFi收发器[ 2.4 GHz CyFi Transceiver ]

品牌:

CYPRESS[ CYPRESS ]

页数:

21 页

PDF大小:

605 K

CYRF7936  
2.4 GHz CyFi™ Transceiver  
Battery Voltage Monitoring Circuitry  
Features  
Supports Coin-Cell Operated Applications  
Operating Voltage from 1.8V to 3.6V  
Operating Temperature from 0 to 70°C  
Space Saving 40-pin QFN 6x6 mm Package  
2.4 GHz Direct Sequence Spread Spectrum (DSSS) Radio  
Transceiver  
Operates in the unlicensed worldwide Industrial, Scientific,  
and Medical (ISM) band (2.400 GHz to 2.483 GHz)  
21 mA Operating Current (Transmit at –5 dBm)  
Transmit Power Up to +4 dBm  
Applications  
Wireless Sensor Networks  
Wireless Actuator Control  
Home Automation  
Receive Sensitivity up to –97 dBm  
Sleep Current less than 1 µA  
DSSS DataRates up to250 kbps, GFSK DataRate of1Mbps  
Low External Component Count  
White Goods  
Commercial Building Automation  
Automatic Meter Readers  
Precision Agriculture  
Remote Controls  
Auto Transaction Sequencer (ATS) - no MCU intervention  
Framing, Length, CRC16, and Auto ACK  
Power Management Unit (PMU) for MCU  
Fast Startup and Fast Channel Changes  
Separate 16 byte Transmit and Receive FIFOs  
Dynamic Data Rate Reception  
Consumer Electronics  
Personal Health and Fitness  
Toys  
Receive Signal Strength Indication (RSSI)  
Serial Peripheral Interface (SPI) Control while in Sleep Mode  
4 MHz SPI Microcontroller Interface  
Applications Support  
See www.cypress.com for development tools, reference  
designs, and application notes.  
Logic Block Diagram  
VCC  
PACTL  
VDD  
VREG  
L/D  
VBAT  
PMU  
CyFi Radio Modem  
Data  
RFP  
GFSK  
VIO  
Modulator  
RFN  
DSSS  
Interface  
and  
Sequencer  
IRQ  
SS#  
Baseband  
& Framer  
RFBIAS  
SCK  
MISO  
MOSI  
GFSK  
Demodulator  
SPI  
RSSI  
Xtal Osc  
Synthesizer  
RST  
XOUT  
GND  
XTAL  
Cypress Semiconductor Corporation  
Document Number: 001-48013 Rev*B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 11, 2009  
[+] Feedback  
CYRF7936  
Pinouts  
The CYRF7936 CyFi™ Transceiver is a Radio IC designed for low power embedded wireless applications. Combined with  
Cypress’s PSoC programmable system-on-chip and a CyFi network protocol stack, CYRF7936 can be used to implement a  
complete CyFi wireless system.  
Figure 1. Pin Diagram - CYRF7936 40-Pin QFN  
Corner  
tabs  
XTAL  
NC  
1
2
3
4
5
6
7
8
9
30 PACTL/ GPIO  
29 XOUT/ GPIO  
28 MISO/ GPIO  
27 MOSI/ SDAT  
26 IRQ/ GPIO  
25 SCK  
VCC  
NC  
CYRF7936  
CyFi Transciever  
40 lead QFN  
NC  
VBAT1  
VCC  
24 SS  
VBAT2  
NC  
23 NC  
22 NC  
*E- PAD Bottom Side  
RFBIAS 10  
21 NC  
Table 1. Pin Description - CYRF7936 40-Pin QFN  
Pin Number  
Name  
XTAL  
Type Default  
Description  
1
I
I
12 MHz crystal  
Connect to GND  
2, 4, 5, 9, 14, 15, NC  
17, 18, 20, 21, 22,  
NC  
23, 31, 32, 36, 39  
3, 7, 16  
6, 8, 38  
10  
VCC  
Pwr  
Pwr  
O
VCC = 2.4V to 3.6V. Typically connected to VREG.  
VBAT(0-2)  
RFBIAS  
RFP  
VBAT = 1.8V to 3.6V. Main supply.  
RF I/O 1.8V reference voltage  
O
I
11  
I/O  
GND  
IO  
I
Differential RF signal to and from antenna  
Ground  
12  
GND  
RFN  
13  
I
Differential RF signal to and from antenna  
Must be connected to GND  
19  
RESV  
SS#  
24  
I
I
I
SPI enable, active LOW assertion. Enables and frames transfers.  
SPI clock  
25  
SCK  
I
26  
IRQ  
I/O  
I/O  
I/O  
O
I
Interrupt output (configurable active HIGH or LOW), or GPIO  
SPI data input pin (Master Out Slave In), or SDAT  
27  
MOSI  
MISO  
28  
Z
SPI data output pin (Master In Slave Out), or GPIO (in SPI 3-pin mode).  
Tri-states when SPI 3PIN = 0 and SS# is deasserted.  
29  
XOUT  
I/O  
O
O
Buffered 0.75, 1.5, 3, 6, or 12 MHz clock, PACTL, or GPIO.  
Tri-states in sleep mode (configure as GPIO drive LOW).  
30  
33  
PACTL  
VIO  
I/O  
Control signal for external PA, T/R switch, or GPIO  
IO interface voltage, 1.8–3.6V  
Pwr  
Document Number: 001-48013 Rev*B  
Page 2 of 21  
[+] Feedback  
CYRF7936  
Table 1. Pin Description - CYRF7936 40-Pin QFN (continued)  
Pin Number  
Name  
RST  
Type  
Default  
Description  
34  
I
I
Device reset. Internal 10 kohm pull down resistor. Active HIGH, typically  
connect through a 0.47 μF capacitor to VBAT. Must have RST = 1 event the  
first time power is applied to the radio. Otherwise the state of the radio control  
registers is unknown.  
35  
VDD  
Pwr  
Decoupling pin for 1.8V logic regulator, connect through a 0.47 μF capacitor  
to GND.  
37  
40  
LVD  
VREG  
GND  
NC  
O
PMU inductor or diode connection, when used. If not used, connect to GND.  
PMU boosted output voltage feedback  
Pwr  
GND  
NC  
E-PAD  
Must be soldered to Ground  
Corner Tabs  
Do Not solder the tabs and keep other signal traces clear. All tabs are  
common to the lead frame or paddle which is grounded after the pad is  
grounded. While they are visible to the user, they do not extend to the bottom.  
Data Transmission Modes  
Functional Overview  
The CyFi radio transceiver supports two different data  
transmission modes:  
The CYRF7936 IC is designed to implement wireless device  
links operating in the worldwide 2.4 GHz ISM frequency band.  
It is intended for systems compliant with worldwide regulations  
covered by ETSI EN 301 489-1 V1.41, ETSI EN 300 328-1  
V1.3.1 (Europe), FCC CFR 47 Part 15 (USA and Industry  
Canada), and TELEC ARIB_T66_March, 2003 (Japan).  
In GFSK mode, data is transmitted at 1 Mbps, without any  
DSSS.  
In 8DR mode, DSSS is enabled and eight bits are encoded  
in each derived code symbol transmitted.  
The CYRF7936 contains a 2.4 GHz CyFi radio modem which  
features a 1 Mbps GFSK radio front-end, packet data buffering,  
packet framer, DSSS baseband controller, and Received  
Signal Strength Indication (RSSI). CYRF7936 features a SPI  
interface for data transfer and device configuration.  
Both 64 chip and 32 chip Pseudo Noise (PN) codes are  
supported in 8DR mode. In general, lower data rates reduce  
packet error rate in any given environment.  
Packet Framing  
The CyFi radio modem supports 98 discrete 1 MHz channels  
(regulations may limit the use of some of these channels in  
certain jurisdictions).  
The CYRF7936 IC device supports the following data packet  
framing features:  
SOP  
The baseband performs DSSS spreading and despreading,  
Start of Packet (SOP), End of Packet (EOP) detection, and  
CRC16 generation and checking. The baseband may also be  
configured to automatically transmit Acknowledge (ACK)  
handshake packets whenever a valid packet is received.  
Packets begin with a two-symbol Start-of-Packet (SOP)  
marker. The SOP_CODE_ADR PN code used for the SOP is  
different from that used for the “body” of the packet, and if  
necessary may be a different length. SOP must be configured  
to be the same length on both sides of the link.  
When in receive mode, with packet framing enabled, the  
device is always ready to receive data transmitted at any of the  
supported bit rates. This enables the implementation of  
mixed-rate systems in which different devices use different  
data rates. This also enables the implementation of dynamic  
data rate systems that use high data rates at shorter distances  
or in a low-moderate interference environment or both. It  
changes to lower data rates at longer distances or in high inter-  
ference environments or both.  
Length  
This is the first eight bits after the SOP symbol, and is  
transmitted at the payload data rate. An EOP condition is  
inferred after reception of the number of bytes defined in the  
length field, plus two bytes for the CRC16.  
CRC16  
The device may be configured to append a 16 bit CRC16 to  
each packet. The CRC16 uses the USB CRC polynomial with  
the added programmability of the seed. If enabled, the receiver  
verifies the calculated CRC16 for the payload data against the  
received value in the CRC16 field. The seed value for the  
CRC16 calculation is configurable, and the CRC16 transmitted  
may be calculated using either the loaded seed value or a zero  
seed. The received data CRC16 is checked against both the  
configured and zero CRC16 seeds.  
In addition, the CYRF7936 IC has a Power Management Unit  
(PMU), which allows direct connection of the device to any  
battery voltage in the range 1.8V to 3.6V. The PMU conditions  
the battery voltage to provide the supply voltages required by  
the device, and may supply external devices.  
Document Number: 001-48013 Rev*B  
Page 3 of 21  
[+] Feedback  
CYRF7936  
CRC16 detects the following errors:  
Any odd number of bits in error (irrespective of the location).  
An error burst as wide as the checksum itself.  
Any one bit in error.  
Figure 2 shows an example packet with SOP, CRC16, and  
lengths fields enabled, and Figure 3 shows a standard ACK  
packet.  
Any two bits in error (irrespective of how far apart, which  
column, and so on).  
Figure 2. Example Packet Format  
P ream ble  
n x 16us  
2nd Fram ing  
S ym bol*  
P
SO P 1  
SO P 2  
Length  
C R C 16  
Payload D ata  
P acket  
length  
1 B yte  
P eriod  
1st Fram ing  
S ym bol*  
*N ote:32 or 64us  
Figure 3. Example ACK Packet Format  
P r e a m b le  
2 n d F r a m in g  
S y m b o l*  
n
x 1 6 u s  
P
S O P  
1
S O P  
2
C R C 1 6  
C R C fie ld fr o m  
r e c e iv e d p a c k e t.  
1 s t F r a m in g  
S y m b o l*  
* N o te :3 2 o r 6 4 u s  
2
B y te p e r io d s  
Similarly, when receiving in transaction mode, the device  
automatically:  
Packet Buffers  
All data transmission and reception use the 16 byte packet  
buffers - one for transmission and one for reception.  
Waits in receive mode for a valid packet to be received  
Transitions to transmit mode, transmits an ACK packet  
The transmit buffer allows loading a complete packet of up to 16  
bytes of payload data in one burst SPI transaction. This is then  
transmitted with no further MCU intervention. Similarly, the  
receive buffer allows receiving an entire packet of payload data  
up to 16 bytes with no firmware intervention required until the  
packet reception is complete.  
Transitions to the transaction end state (receive mode to await  
the next packet, and so on.)  
The contents of the packet buffers are not affected by the  
transmission or reception of ACK packets.  
Maximum packet length depends on the accuracy of the clock on  
each end of the link. Packet lengths up to 40 bytes are supported  
when the delta between the transmitter and receiver crystals is  
60 ppm or better. Interrupts are provided to allow an MCU to use  
the transmit and receive buffers as FIFOs. When transmitting a  
packet longer than 16 bytes, the MCU can load 16 bytes initially,  
and add further bytes to the transmit buffer as transmission of  
data creates space in the buffer. Similarly, when receiving  
packets longer than 16 bytes, the MCU must fetch received data  
from the FIFO periodically during packet reception to prevent it  
from overflowing.  
In each case, the entire packet transaction takes place without  
any need for MCU firmware action (as long as packets of 16  
bytes or less are used). To transmit data, the MCU must load the  
data packet to be transmitted, set the length, and set the TX GO  
bit. Similarly, when receiving packets in transaction mode,  
firmware must retrieve the fully received packet in response to  
an interrupt request indicating reception of a packet.  
Data Rates  
The CYRF7936 IC supports the following data rates by  
combining the PN code lengths and data transmission modes  
described in the previous sections:  
Auto Transaction Sequencer (ATS)  
1000 kbps (GFSK)  
The CYRF7936 IC provides automated support for transmission  
and reception of acknowledged data packets.  
250 kbps (32 chip 8DR)  
125 kbps (64 chip 8DR)  
When transmitting in transaction mode, the device automatically:  
Starts the crystal and synthesizer  
Enters transmit mode  
Transmits the packet in the transmit buffer  
Transitions to receive mode and waits for an ACK packet  
Transitions to the transaction end state when an ACK packet  
is received or a timeout period expires  
Document Number: 001-48013 Rev*B  
Page 4 of 21  
[+] Feedback  
CYRF7936  
SPI communication may be described as the following:  
Functional Block Overview  
Command Direction (bit 7) = ‘1’ enables SPI write transaction.  
When it equals a ‘0’, it enables SPI read transactions.  
2.4 GHz CyFi Radio Modem  
The CyFi radio Modem is a dual conversion low IF architecture  
optimized for power, range, and robustness. The CyFi radio  
modem employs channel-matched filters to achieve high  
performance in the presence of interference. An integrated  
Power Amplifier (PA) provides up to +4 dBm transmit power, with  
an output power control range of 34 dB in seven steps. The  
supply current of the device is reduced as the RF output power  
is reduced.  
Command Increment (bit 6) = ‘1’ enables SPI auto address  
increment. When set, the address field automatically  
increments at the end of each data byte in a burst access.  
Otherwise the same address is accessed.  
Six bits of address  
Eight bits of data  
The device receives SCK from an application MCU on the SCK  
pin. Data from the application MCU is shifted in on the MOSI pin.  
Data to the application MCU is shifted out on the MISO pin. The  
active LOW Slave Select (SS#) pin must be asserted to initiate  
an SPI transfer.  
Table 2. Internal PA Output Power Step Table  
PA Setting  
Typical Output Power (dBm)  
7
6
5
4
3
2
1
0
+4  
0
The application MCU can initiate SPI data transfers using a  
multibyte transaction. The first byte is the Command/Address  
byte, and the following bytes are the data bytes shown in Table 3  
through Figure 6 on page 6.  
–5  
–13  
–18  
–24  
–30  
–35  
The SPI communications interface has a burst mechanism,  
where the first byte can be followed by as many data bytes as  
required. A burst transaction is terminated by deasserting the  
slave select (SS# = 1).  
The SPI communications interface single read and burst read  
sequences are shown in Figure 4 and Figure 5 on page 6,  
respectively.  
Frequency Synthesizer  
The SPI communications interface single write and burst write  
sequences are shown in Figure 6 and Figure 7 on page 6,  
respectively.  
Before transmission or reception may begin, the frequency  
synthesizer must settle. The settling time varies depending on  
channel; 25 fast channels are provided with a maximum settling  
time of 100 µs.  
This interface may be optionally operated in a 3-pin mode with  
the MISO and MOSI functions combined in a single bidirectional  
data pin (SDAT). When using 3-pin mode, user firmware must  
ensure that the MOSI pin on the MCU is in a high impedance  
state except when MOSI is actively transmitting data.  
The ‘fast channels’ (less than 100 µs settling time) are every third  
channel, starting at 0 up to and including 72 (for example, 0, 3,  
6, 9 …. 69, 72).  
Baseband and Framer  
The device registers may be written to or read from one byte at  
a time, or several sequential register locations may be written or  
read in a single SPI transaction using incrementing burst mode.  
In addition to single byte configuration registers, the device  
includes register files. Register files are FIFOs written to and  
read from using nonincrementing burst SPI transactions.  
The baseband and framer blocks provide the DSSS encoding  
and decoding, SOP generation and reception, CRC16  
generation and checking, and EOP detection and length field.  
Packet Buffers and Radio Configuration Registers  
The IRQ pin function may be optionally multiplexed onto the  
MOSI pin. When this option is enabled, the IRQ function is not  
available while the SS# pin is LOW. When using this  
configuration, user firmware must ensure that the MOSI pin on  
the MCU is in a high impedance state whenever the SS# pin is  
HIGH.  
Packet data and configuration registers are accessed through  
the SPI interface. All configuration registers are directly  
addressed through the address field in the SPI packet.  
Configuration registers allow configuration of DSSS PN codes,  
data rate, operating mode, interrupt masks, interrupt status, and  
so on.  
The SPI interface is not dependent on the internal 12 MHz clock.  
Registers may therefore be read from or written to when the  
device is in sleep mode, and the 12 MHz oscillator disabled.  
SPI Interface  
The CYRF7936 IC has an SPI interface supporting  
communication between an application MCU and one or more  
slave devices (including the CYRF7936). The SPI interface  
supports single-byte and multi-byte serial transfers using either  
4-pin or 3-pin interfacing. The SPI communications interface  
consists of Slave Select (SS#), Serial Clock (SCK), Master  
Out-Slave In (MOSI), Master In-Slave Out (MISO), or Serial Data  
(SDAT).  
The SPI interface and the IRQ and RST pins have a separate  
voltage reference pin (VIO). This enables the device to interface  
directly to MCUs operating at voltages below the CYRF7936 IC  
supply voltage.  
Document Number: 001-48013 Rev*B  
Page 5 of 21  
[+] Feedback  
CYRF7936  
Table 3. SPI Transaction Format  
Parameter  
Byte 1  
Byte 1+N  
[7:0]  
Bit #  
7
6
[5:0]  
Bit Name  
DIR  
INC  
Address  
Data  
Figure 4. SPI Single Read Sequence  
SCK  
SS  
cmd  
addr  
DIR  
0
INC  
A5  
A4  
A3  
A2  
A1  
A0  
MOSI  
MISO  
data to mcu  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 5. SPI Incrementing Burst Read Sequence  
SCK  
SS  
cmd  
addr  
DIR  
0
MOSI  
MISO  
INC  
A5  
A4  
A3  
A2  
A1  
A0  
data to mcu1  
data to mcu1+N  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 6. SPI Single Write Sequence  
SCK  
SS  
cmd  
addr  
data from mcu  
DIR  
1
INC  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MOSI  
MISO  
Figure 7. SPI Incrementing Burst Write Sequence  
SCK  
SS  
cmd  
addr  
data from mcu1  
data from mcu1+N  
DIR  
1
INC  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MOSI  
MISO  
Document Number: 001-48013 Rev*B  
Page 6 of 21  
[+] Feedback  
CYRF7936  
and 2.7V. VREG may be used to provide up to 15 mA (average  
load) to external devices. It is possible to disable the PMU and  
provide an externally regulated DC supply voltage to the device’s  
main supply in the range 2.4V to 3.6V. The PMU also provides a  
regulated 1.8V supply to the logic.  
Interrupts  
The device provides an interrupt (IRQ) output, which is  
configurable to indicate the occurrence of different events. The  
IRQ pin may be programmed to be either active HIGH or active  
LOW, and be either a CMOS or open drain output. The available  
interrupts are described in the section Register Descriptions on  
page 12.  
The PMU is designed to provide high boost efficiency (74–85%  
depending on input voltage, output voltage, and load) when  
using a Schottky diode and power inductor, eliminating the need  
for an external boost converter in many systems where other  
components require a boosted voltage. However, reasonable  
efficiencies (69–82% depending on input voltage, output voltage,  
and load) may be achieved when using low cost components  
such as SOT23 diodes and 0805 inductors.  
The CYRF7936 IC features three sets of interrupts: transmit,  
receive, and system interrupts. These interrupts all share a  
single pin (IRQ), but can be independently enabled or disabled.  
The contents of the enable registers are preserved when  
switching between transmit and receive modes.  
If more than one interrupt is enabled at any time, it is necessary  
to read the relevant status register to determine which event  
caused the IRQ pin to assert. Even when a given interrupt source  
is disabled, the status of the condition that would otherwise  
cause an interrupt can be determined by reading the appropriate  
status register. It is therefore possible to use the devices without  
the IRQ pin, by polling the status registers to wait for an event,  
rather than using the IRQ pin.  
The current through the diode must stay within the linear  
operating range of the diode. For some loads the SOT23 diode  
is sufficient, but with higher loads it is not and a SS12 diode must  
be used to stay within this linear range of operation. Along with  
the diode, the inductor used must not saturate its core. In higher  
loads, a lower resistance/higher saturation coil such as the  
inductor from Sumida must be used.  
The PMU also provides a configurable low battery detection  
function, which may be read over the SPI interface. One of seven  
thresholds between 1.8V and 2.7V may be selected. The  
interrupt pin may be configured to assert when the voltage on the  
VBAT pin falls below the configured threshold. LV IRQ is not a  
latched event. Battery monitoring is disabled when the device is  
in sleep mode.  
Clocks  
A 12 MHz crystal (30 ppm or better) is directly connected  
between XTAL and GND without the need for external  
capacitors. A digital clock out function is provided, with  
selectable output frequencies of 0.75, 1.5, 3, 6, or 12 MHz. This  
output may be used to clock an external microcontroller (MCU)  
or ASIC. This output is enabled by default, but may be disabled.  
Receiver Front End  
The requirements to directly connect the crystal to the XTAL pin  
and GND are:  
The gain of the receiver can be controlled directly by writing to  
the Low Noise Amplifier (LNA) bit and the Attenation (ATT) bit of  
the RX_CFG_ADR register. Clearing the LNA bit reduces the  
receiver gain approximately 20 dB, allowing accurate reception  
of very strong received signals (for example, when operating a  
receiver very close to the transmitter). Approximately 30 dB of  
receiver attenuation can be added by setting the Attenuation  
(ATT) bit. This limits data reception to devices at very short  
ranges. Enabling LNA is recommended, unless receiving from a  
device using external PA.  
Nominal Frequency: 12 MHz  
Operating Mode: Fundamental Mode  
Resonance Mode: Parallel Resonant  
Frequency Stability: ±30 ppm  
Series Resistance: <60 ohms  
Load Capacitance: 10 pF  
When the device is in receive mode the RSSI_ADR register  
returns the relative signal strength of the on-channel signal  
power.  
Drive Level: 100 µW  
Power Management  
When receiving, the device automatically measures and stores  
the relative strength of the signal being received as a five bit  
value. An RSSI reading is taken automatically when the SOP is  
detected. In addition, a new RSSI reading is taken every time the  
previous reading is read from the RSSI_ADR register. This  
allows the background RF energy level on any given channel to  
be easily measured when RSSI is read while no signal is being  
received. A new reading can occur as fast as once every 12 µs.  
The operating voltage of the device is 1.8V to 3.6V DC, which is  
applied to the VBAT pin. The device can be shut down to a fully  
static sleep mode by writing to the FRC END = 1 and  
END STATE = 000 bits in the XACT_CFG_ADR register over the  
SPI interface. The device enters sleep mode within 35 µs after  
the last SCK positive edge at the end of this SPI transaction.  
Alternatively, the device may be configured to automatically  
enter sleep mode after completing the packet transmission or  
reception. When in sleep mode, the on-chip oscillator is stopped,  
but the SPI interface remains functional. The device wakes from  
sleep mode automatically when the device is commanded to  
enter transmit or receive mode. When resuming from sleep  
mode, there is a short delay while the oscillator restarts. The  
device can be configured to assert the IRQ pin when the  
oscillator has stabilized.  
The output voltage (VREG) of the Power Management Unit  
(PMU) is configurable to several minimum values between 2.4V  
Document Number: 001-48013 Rev*B  
Page 7 of 21  
[+] Feedback  
CYRF7936  
Application Examples  
Figure 8. Recommended Circuit for Systems where VBAT 2.4V  
Document Number: 001-48013 Rev*B  
Page 8 of 21  
[+] Feedback  
CYRF7936  
Table 4. Recommended BoM for Systems where VBAT 2.4V  
Item Qty CY Part Number Reference Description  
ANT1  
Manufacturer  
Mfr Part Number  
1
1
NA  
2.5 GHz H-STUB Wiggle Antenna for NA  
32 MIL PCB  
NA  
2
3
1
1
730-10012  
730-11955  
C1  
C3  
CAP 15 PF 50V CERAMIC NPO 0402 Panasonic  
CAP 2.0 PF 50V CERAMIC NPO 0402 Kemet  
ECJ-0EC1H150J  
C0402C209C5GAC  
TU  
4
5
6
1
1
2
730-11398  
730R-13322  
730-13037  
C4  
CAP 1.5PF 50V CERAMIC NPO 0402 PANASONIC  
SMD  
ECJ-0EC1H1R5C  
C5  
CAP CER .47 uF 6.3V X5R 0402  
Murata  
GRM155R60J474K  
E19D  
C12,C7  
CAP CERAMIC 10 uF 6.3V X5R 0805 Kemet  
C0805C106K9PAC  
TU  
7
8
1
6
730-13400  
730-13404  
C8  
CAP 1 uF 6.3V CERAMIC X5R 0402 Panasonic  
ECJ-0EB0J105M  
0402YD473KAT2A  
C9,C10,C11, CAP 0.047 uF 50V CERAMIC X5R  
C13,C15,C16 0402  
AVX  
9
1
730R-11952  
C17  
CAP .10UF 10V CERAMIC X5R 0402 Kemet  
C0402C104K8PAC  
TU  
10  
11  
1
1
800-13317  
420-11976  
D1  
J1  
Diode Schottky 0.5A 40V SOT23 DIODES INC  
BAT400D-7-F  
CONN HEADER 12 PIN 2MM GOLD Hirose Electric  
Co. LTD.  
DF11-12DP-2DSA(0  
1)  
12  
13  
1
1
800-13401  
800-11651  
L1  
L2  
INDUCTOR 22NH 2% FIXED 0603  
SMD  
Panasonic - ECG ELJ-RE22NGF2  
INDUCTOR 1.8NH +-.3NH FIXED  
0402 SMD  
Panasonic - ECG ELJ-RF1N8DF  
14  
15  
1
1
800-10594  
630-11356  
L3  
COIL 10UH 1100MA CHOKE 0805  
Newark  
30K5421  
R1  
RES 1.00 OHM 1/8W 1% 0805 SMD Yageo  
9C08052A1R00FK  
HFT  
16  
17  
1
1
610-13402  
R2  
U1  
RES 47 OHM 1/16W 5% 0402 SMD Panasonic - ECG ERJ-2GEJ470X  
CYRF7936-40LFXC  
IC, LP 2.4 GHz Radio SoC QFN-40 Cypress  
Semiconductor  
CYRF7936-40LFXC  
18  
19  
1
1
800-13259  
Y1  
Crystal 12.00 MHZ HC49 SMD  
Printed Circuit Board  
eCERA  
GF-1200008  
PDCR-9515 REV01  
PCB  
Cypress  
Semiconductor  
PDCR-9515 REV01  
20  
21  
1
1
920-11206  
LABEL1  
LABEL2  
Serial Number  
PCA #  
920-51500 REV01  
121R-51500 REV01  
Document Number: 001-48013 Rev*B  
Page 9 of 21  
[+] Feedback  
CYRF7936  
Figure 9. Recommended Circuit for Systems where VBAT is 2.4V - 3.6V (PMU Disabled)  
2
1
0 4 0 2  
0 4 0 2  
0 4 0
D
V D  
3 5  
C V C 3  
C V C 2  
C V C 1  
1 6  
7
3
P A E D -  
4 1  
E G V R  
V I O  
4 0  
3 3  
G N D 1  
1 2  
V B A T 0  
V B A T 1  
V B A T 2  
3 8  
6
8
0 4 0
V D D  
V S S  
V S S  
4 9  
2 2  
5 0  
9 1  
C
V C  
G N D  
2
0 4 0 2  
Document Number: 001-48013 Rev*B  
Page 10 of 21  
[+] Feedback  
CYRF7936  
Table 5. Recommended BoM for Systems where VBAT is 2.4V - 3.6V (PMU disabled)  
Item Qty CY Part Number Reference  
Description  
Manufacturer  
NA  
Mfr Part Number  
1
1
NA  
ANT1  
2.5 GHz H-STUB Wiggle Antenna for  
32MIL PCB  
NA  
2
3
4
1
1
1
730-10012  
730-11955  
730-11398  
C1  
C3  
C4  
CAP 15 PF 50V CERAMIC NPO 0402  
CAP 2.0 PF 50V CERAMIC NPO 0402  
Panasonic  
Kemet  
ECJ-0EC1H150J  
C0402C209C5GACTU  
ECJ-0EC1H1R5C  
CAP 1.5 PF 50V CERAMIC NPO 0402  
SMD  
PANASONIC  
5
6
1
6
730-13322  
730-13404  
C5  
CAP 0.47 uF 6.3V CERAMIC X5R 0402  
Murata  
GRM155R60J474KE19D  
0402YD473KAT2A  
C6,C7,C8, CAP 0.047 uF 16V CERAMIC X5R 0402 AVX  
C9,C10,  
C11  
7
8
9
1
1
1
730-11953  
730-13040  
730-12003  
C12  
C13  
C14  
CAP 1500PF 50V CERAMIC X7R 0402  
CAP CERAMIC 4.7UF 6.3V XR5 0805  
CAP CER 2.2 uF 10V 10% X7R 0805  
Kemet  
Kemet  
C0402C152K5RACTU  
C0805C475K9PACTU  
GRM21BR71A225KA01L  
Murata  
Electronics North  
America  
10  
11  
12  
13  
1
1
1
1
800-13333  
420-13046  
800-13401  
800-11651  
D1  
J1  
L1  
L2  
LED GREEN/RED BICOLOR 1210 SMD LITEON  
CONN USB PLUG TYPE A PCB SMT ACON  
LTST-C155KGJRKT  
UAR72-4N5J10  
INDUCTOR 22NH 2% FIXED 0603 SMD Panasonic - ECG ELJ-RE22NGF2  
INDUCTOR 1.8NH +-.3NH FIXED 0402  
SMD  
Panasonic - ECG ELJ-RF1N8DF  
14  
15  
16  
17  
18  
2
1
3
2
2
610-10037  
610-10343  
610-10016  
610-13472  
610-10684  
R1, R2  
R4  
RES 24 OHM 1/16W 5% 0603 SMD  
RES ZERO OHM 1/16W 0402 SMD  
Panasonic - ECG ERJ-3GEYJ240V  
Panasonic - ECG ERJ-2GE0R00X  
R5, R6, R7 RES CHIP 1K OHM 1/16W 5% 0402 SMD Panasonic - ECG ERJ-2GEJ102X  
R9,R8 RES CHIP 620 OHM 1/16W 5% 0402 SMD Panasonic - ECG ERJ-2GEJ621X  
R10, R11 RES CHIP 100 OHM 1/16W 5% 0402 SMD Phycomp USA  
Inc  
9C1A04021000FLHF3  
19  
20  
1
1
200-13471  
S1  
SWITCH LT 3.5MMX2.9MM 160GF SMD Panasonic - ECG EVQ-P7J01K  
CYRF7936-40LFC U1  
IC, 2.4 GHz CyFi Transceiver QFN-40  
Cypress  
Semiconductor  
CYRF7936 Rev A5  
CY8C24794-24LFXI  
GF-1200008  
21  
1
CY8C24794-24LF U2  
XI  
PSoC Mixed Signal Array  
Cypress  
Semiconductor  
22  
23  
1
1
800-13259  
Y1  
Crystal 12.00 MHZ HC49 SMD  
Serial Number  
eCERA  
LABEL1  
XXXXXX  
Document Number: 001-48013 Rev*B  
Page 11 of 21  
[+] Feedback  
CYRF7936  
Register Descriptions  
All registers are read and writable, except where noted. Registers may be written to or read from individually or in sequential groups.[5]  
Table 6. Register Map Summary  
Address  
Mnemonic  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default[1] Access[1]  
0x00  
CHANNEL_ADR  
Not Used  
Channel  
-1001000  
00000000  
00000011  
-bbbbbbb  
bbbbbbbb  
bbbbbbbb  
0x01  
0x02  
0x03  
0x04  
TX_LENGTH_ADR  
TX_CTRL_ADR  
TX_CFG_ADR  
TX Length  
TXB15 IRQEN  
TXB8  
TXB0  
IRQEN  
TXBERR  
IRQEN  
TXC  
TXE  
TX GO  
TX CLR  
IRQEN  
IRQEN  
IRQEN  
DATA CODE  
LENGTH  
DATA MODE  
--000101  
--------  
--bbbbbb  
rrrrrrrr  
Not Used  
Not Used  
RSVD  
PA SETTING  
OS  
IRQ  
LV  
IRQ  
TXB15  
IRQ  
TXB8  
IRQ  
TXB0  
IRQ  
TXBERR  
IRQ  
TXC  
IRQ  
TXE  
IRQ  
TX_IRQ_STATUS_ADR  
RX_CTRL_ADR  
RX_CFG_ADR  
RXB16 IRQEN  
RXB8  
IRQEN  
RXB1  
IRQEN  
RXBERR  
IRQEN  
RXC  
IRQEN  
RXE  
IRQEN  
00000111  
10010-10  
--------  
bbbbbbbb  
bbbbb-bb  
brrrrrrr  
0x05  
0x06  
RX GO  
RSVD  
RSVD  
LNA  
FAST TURN  
EN  
ATT  
HILO  
Not Used  
RXOW EN  
RSVD  
RXOW  
IRQ  
SOPDET  
IRQ  
RXB16  
IRQ  
RXB8  
IRQ  
RXB1  
IRQ  
RXBERR  
IRQ  
RXC  
IRQ  
RXE  
IRQ  
0x07  
0x08  
0x09  
0x0A  
0x0B  
RX_IRQ_STATUS_ADR  
RX_STATUS_ADR  
RX_COUNT_ADR  
RX_LENGTH_ADR  
PWR_CTRL_ADR  
RX ACK  
PKT ERR  
EOP ERR  
CRC0  
Bad CRC  
RX Code  
RX Data Mode  
--------  
rrrrrrrr  
rrrrrrrr  
RX Count  
RX Length  
PFET  
00000000  
00000000  
10100000  
rrrrrrrr  
PMU EN  
LVIRQ EN  
PMU Mode  
Force  
LVI TH  
PMU OUTV  
bbb-bbbb  
[7]  
disable  
Not Used  
XOUT OD PACTL OD PACTL GPIO SPI 3PIN  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
XTAL_CTRL_ADR  
IO_CFG_ADR  
XOUT FN  
XSIRQ EN  
MISO OD  
PACTL OP  
FRC END  
RSVD  
Not Used  
FREQ  
000--100  
00000000  
0000----  
bbb--bbb  
bbbbbbbb  
bbbbrrrr  
IRQ OD  
XOUT OP  
ACK EN  
RSVD  
IRQ POL  
MISO OP  
Not Used  
SOP LEN  
Not Used  
Not Used  
Not Used  
IRQ GPIO  
IRQ IP  
GPIO_CTRL_ADR  
XACT_CFG_ADR  
FRAMING_CFG_ADR  
DATA32_THOLD_ADR  
DATA64_THOLD_ADR  
RSSI_ADR  
IRQ OP  
XOUT IP  
MISO IP  
PACTL IP  
END STATE  
ACK TO  
1-000000  
10100101  
----0100  
b-bbbbbb  
bbbbbbbb  
----bbbb  
SOP TH  
Not Used  
Not Used  
SOP  
Not Used  
Not Used  
LNA  
Not Used  
TH32  
TH64  
RSSI  
---01010  
0-100000  
10100100  
---bbbbb  
r-rrrrrr  
[6]  
HEN  
HINT  
EOP  
bbbbbbbb  
EOP_CTRL_ADR  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
CRC_SEED_LSB_ADR  
CRC_SEED_MSB_ADR  
TX_CRC_LSB_ADR  
CRC SEED LSB  
CRC SEED MSB  
CRC LSB  
00000000  
00000000  
--------  
bbbbbbbb  
bbbbbbbb  
rrrrrrrr  
TX_CRC_MSB_ADR  
RX_CRC_LSB_ADR  
CRC MSB  
--------  
rrrrrrrr  
CRC LSB  
11111111  
11111111  
00000000  
----0000  
00000--0  
0000000-  
rrrrrrrr  
RX_CRC_MSB_ADR  
TX_OFFSET_LSB_ADR  
TX_OFFSET_MSB_ADR  
MODE_OVERRIDE_ADR  
CRC MSB  
rrrrrrrr  
STRIM LSB  
Not Used  
bbbbbbbb  
----bbbb  
wwwww--w  
bbbbbbb-  
Not Used  
RSVD  
Not Used  
RSVD  
Not Used  
FRC SEN  
STRIM MSB  
FRC AWAKE  
Not Used  
Not Used  
RST  
FRC RXDR  
0x1E  
RX_OVERRIDE_ADR  
ACK RX  
RXTX DLY  
MAN RXACK  
DIS CRC0 DIS RXCRC  
OVRD ACK DIS TXCRC  
ACE  
Not Used  
MAN  
TXACK  
00000000  
bbbbbbbb  
0x1F  
0x26  
TX_OVERRIDE_ADR  
XTAL_CFG_ADR  
ACK TX  
RSVD  
RSVD  
RSVD  
RSVD  
FRC PRE  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RXF  
TX INV  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
START DLY  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
00000000  
00000000  
00000000  
00000000  
00000011  
00000000  
00000000  
wwwwwwww  
wwwwwwww  
wwwwwwww  
wwwwwwww  
wwwwwwww  
wwwwwwww  
wwwwwwww  
0x27  
CLK_OVERRIDE_ADR  
CLK_EN_ADR  
RSVD  
RSVD  
0x28  
RSVD  
RSVD  
RSVD  
RXF  
0x29  
RX_ABORT_ADR  
RSVD  
ABORT EN  
RSVD  
RSVD  
0x32  
AUTO_CAL_TIME_ADR  
AUTO_CAL_OFFSET_ADR  
ANALOG_CTRL_ADR  
AUTO_CAL_TIME  
0x35  
AUTO_CAL_OFFSET  
0x39  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RX INV  
ALL SLOW  
Register Files  
0x20  
TX_BUFFER_ADR  
RX_BUFFER_ADR  
SOP_CODE_ADR  
DATA_CODE_ADR  
PREAMBLE_ADR  
MFG_ID_ADR  
TX Buffer File  
--------  
--------  
Note 2  
Note 3  
Note 4  
NA  
wwwwwwww  
rrrrrrrr  
0x21  
RX Buffer File  
SOP Code File  
Data Code File  
Preamble File  
MFG ID File  
0x22  
bbbbbbbb  
bbbbbbbb  
bbbbbbbb  
rrrrrrrr  
0x23  
0x24  
0x25  
Notes  
1. b = read/write; r = read only; w = write only; ‘-’ = not used, default value is undefined.  
2. SOP_CODE_ADR default = 0x17FF9E213690C782.  
3. DATA_CODE_ADR default = 0x02F9939702FA5CE3012BF1DB0132BE6F.  
4. PREAMBLE_ADR default = 0x333302. The count value must be great than 4 for DDR and greater than 8 for SDR  
5. Registers must be configured or accessed only when the radio is in IDLE or SLEEP mode. The PMU, GPIOs, and RSSI registers can be accessed in Active Tx and  
Rx mode.  
6. EOP_CTRL_ADR[6:4] must never have the value of “000”, that is, EOP Hint Symbol count must never be “0”  
7. PFET Bit: Setting this bit to "1" disables the FET, therefore safely allowing Vbat to be connected to a separate reference from Vcc when the PMU is disabled to the radio.  
Document Number: 001-48013 Rev*B  
Page 12 of 21  
[+] Feedback  
CYRF7936  
Static Discharge Voltage (Digital)[9] ...........................>2000V  
Static Discharge Voltage (RF)[9].................................. 1100V  
Latch Up Current .................................... +200 mA, –200 mA  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Storage Temperature ..................................65°C to +150°C  
Ambient Temperature with Power Applied..55°C to +125°C  
Operating Conditions  
VCC .................................................................... 2.4V to 3.6V  
VIO ..................................................................... 1.8V to 3.6V  
VBAT ................................................................... 1.8V to 3.6V  
TA (Ambient Temperature Under Bias) ............. 0°C to +70°C  
Ground Voltage..................................................................0V  
FOSC (Crystal Frequency)...........................12MHz±30ppm  
Supply Voltage on any power supply pin  
relative to VSS ................................................ –0.3V to +3.9V  
DC Voltage to Logic Inputs[8] ...................0.3V to VIO +0.3V  
DC Voltage applied to Outputs  
in High-Z State .........................................0.3V to VIO +0.3V  
DC Characteristics  
(T = 25°C, V  
= 2.4V, PMU disabled, f  
= 12.000000 MHz)  
OSC  
BAT  
Parameter  
VBAT  
Description  
Conditions  
Min  
1.8  
Typ  
Max  
Unit  
V
Battery Voltage  
0–70°C  
3.6  
[10]  
VREG  
PMU Output Voltage  
PMU Output Voltage  
VIO Voltage  
2.4V mode  
2.7V mode  
2.4  
2.43  
2.73  
V
[10]  
VREG  
2.7  
V
[11]  
VIO  
1.8  
3.6  
3.6  
V
2.4[12]  
VIO – 0.2  
VIO – 0.4  
VCC  
VOH1  
VOH2  
VOL  
VIH  
VCC Voltage  
0–70°C  
V
Output High Voltage Condition 1  
Output High Voltage Condition 2  
Output Low Voltage  
At IOH = –100.0 µA  
At IOH = –2.0 mA  
At IOL = 2.0 mA  
VIO  
VIO  
0
V
V
0.45  
VIO  
V
Input High Voltage  
0.7VIO  
V
VIL  
Input Low Voltage  
0
0.3VIO  
+1  
V
IIL  
Input Leakage Current  
Pin Input Capacitance  
Average TX ICC, 1 Mbps, slow channel  
Average TX ICC, 250 kbps, fast channel  
Sleep Mode ICC  
0 < VIN < VIO  
–1  
0.26  
3.5  
µA  
pF  
mA  
mA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
%
CIN  
except XTAL, RFN, RFP, RFBIAS  
PA = 5, 2 way, 4 bytes/10 ms  
PA = 5, 2 way, 4 bytes/10 ms  
10  
ICC (GFSK)[13]  
ICC (32-8DR)[13]  
0.87  
1.2  
[14]  
0.8  
10  
ISB  
[14]  
Sleep Mode ICC  
PMU enabled  
31.4  
1.0  
ISB  
IDLE ICC  
Isynth  
Radio off, XTAL Active  
ICC during Synth Start  
ICC during Transmit  
XOUT disabled  
8.4  
TX ICC  
TX ICC  
TX ICC  
RX ICC  
RX ICC  
Boost Eff  
PA = 5 (–5 dBm)  
PA = 6 (0 dBm)  
PA = 7 (+4 dBm)  
LNA off, ATT on  
LNA on, ATT off  
20.8  
26.2  
34.1  
18.4  
21.2  
81  
ICC during Transmit  
ICC during Transmit  
ICC during Receive  
ICC during Receive  
PMU Boost Converter Efficiency  
V
BAT = 2.5V, VREG = 2.73V,  
I
LOAD = 20 mA  
[15]  
ILOAD_EXT  
Average PMU External Load current  
Average PMU External Load current  
VBAT = 1.8V, VREG = 2.73V,  
0–50°C, RX Mode  
15  
10  
mA  
mA  
[15]  
ILOAD_EXT  
VBAT =1.8V, VREG=2.73V, 50–70°C, RX  
Mode  
Notes  
8. It is permissible to connect voltages above V to inputs through a series resistor limiting input current to 1 mA. AC timing not guaranteed.  
IO  
9. Human Body Model (HBM).  
10. V  
depends on battery input voltage.  
REG  
11. In sleep mode, the IO interface voltage reference is V  
.
BAT  
12. In sleep mode, V min. can be as low as 1.8V.  
CC  
13. Includes current drawn while starting crystal, starting synthesizer, transmitting packet (including SOP and CRC16), changing to receive mode, and receiving ACK  
handshake. Device is in sleep except during this transaction.  
14. ISB is not guaranteed if any IO pin is connected to voltages higher than V  
.
IO  
15. I  
is dependant on external components and this entry applies when the components connected to L/D are SS12 series diode and DH53100LC inductor from  
LOAD_EXT  
Sumida.  
Document Number: 001-48013 Rev*B  
Page 13 of 21  
[+] Feedback  
CYRF7936  
AC Characteristics  
Table 7. SPI Interface[16, 17]  
Parameter  
Description  
Min  
238.1  
100  
100  
25  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCK_CYC  
tSCK_HI  
SPI Clock Period  
SPI Clock High Time  
tSCK_LO  
tDAT_SU  
tDAT_HLD  
tDAT_VAL  
tDAT_VAL_TRI  
tSS_SU  
SPI Clock Low Time  
SPI Input Data Setup Time  
SPI Input Data Hold Time  
SPI Output Data Valid Time  
10  
0
50  
20  
SPI Output Data Tri-state (MOSI from Slave Select Deassert)  
SPI Slave Select Setup Time before first positive edge of SCK[18]  
SPI Slave Select Hold Time after last negative edge of SCK  
SPI Slave Select Minimum Pulse Width  
10  
10  
20  
10  
10  
10  
tSS_HLD  
tSS_PW  
tSCK_SU  
tSCK_HLD  
tRESET  
SPI Slave Select Setup Time  
SPI SCK Hold Time  
Minimum RST Pin Pulse Width  
Figure 10. SPI Timing  
tSCK_CYC  
tSCK_HI  
tSCK_LO  
SCK  
nSS  
tSCK_HLD  
tSCK_SU  
tSS_SU  
tSS_HLD  
tDAT_SU  
tDAT_HLD  
MOSI input  
MISO  
tDAT_VAL  
tDAT_VAL_TRI  
MOSI output  
Notes  
16. AC values are not guaranteed if voltage on any pin exceeding V  
.
IO  
17. C  
= 30 pF  
LOAD  
18. SCK must start low at the time SS# goes LOW, otherwise the success of SPI transactions are not guaranteed.  
Document Number: 001-48013 Rev*B  
Page 14 of 21  
[+] Feedback  
CYRF7936  
RF Characteristics  
Table 8. Radio Parameters  
Parameter Description  
Conditions  
Refer Note 19  
Min  
Typ  
Max  
Unit  
RF Frequency Range  
2.400  
2.497  
GHz  
Receiver (T = 25°C, V = 3.0V, f  
= 12.000000 MHz, BER < 1E-3)  
OSC  
CC  
Sensitivity 125 kbps 64-8DR  
Sensitivity 250 kbps 32-8DR  
Sensitivity  
BER 1E-3  
–97  
–93  
–87  
–84  
22.8  
–31.7  
–6  
dBm  
dBm  
BER 1E-3  
CER 1E-3  
–80  
–15  
dBm  
Sensitivity GFSK  
LNA Gain  
BER 1E-3, ALL SLOW = 1  
dBm  
dB  
ATT Gain  
dB  
Maximum Received Signal  
LNA On  
LNA On  
dBm  
RSSI Value for PWRin –60 dBm  
RSSI Slope  
21  
Count  
dB/Count  
1.9  
Interference Performance (CER 1E-3)  
Co-channel Interference rejection  
Carrier-to-Interference (C/I)  
C = –60 dBm  
9
dB  
Adjacent (±1 MHz) channel selectivity C/I 1 MHz  
Adjacent (±2 MHz) channel selectivity C/I 2 MHz  
Adjacent (> 3 MHz) channel selectivity C/I > 3 MHz  
Out-of-Band Blocking 30 MHz–12.75 MHz[20]  
Intermodulation  
C = –60 dBm  
3
dB  
dB  
C = –60 dBm  
–30  
–38  
–30  
–36  
C = –67 dBm  
dB  
C = –67 dBm  
dBm  
dBm  
C = –64 dBm, Δf = 5,10 MHz  
Receive Spurious Emission  
800 MHz  
100 kHz ResBW  
100 kHz ResBW  
100 kHz ResBW  
–79  
–71  
–65  
dBm  
dBm  
dBm  
1.6 GHz  
3.2 GHz  
Transmitter (T = 25°C, V = 3.0V)  
CC  
Maximum RF Transmit Power  
Maximum RF Transmit Power  
Maximum RF Transmit Power  
Maximum RF Transmit Power  
RF Power Control Range  
PA = 7  
PA = 6  
PA = 5  
PA = 0  
+2  
–2  
–7  
4
+6  
+2  
–3  
dBm  
dBm  
dBm  
dBm  
dB  
0
–5  
–35  
39  
RF Power Range Control Step Size  
Frequency Deviation Min  
Seven steps, monotonic  
PN Code Pattern 10101010  
PN Code Pattern 11110000  
>0 dBm  
5.6  
270  
323  
10  
dB  
kHz  
kHz  
%rms  
kHz  
Frequency Deviation Max  
Error Vector Magnitude (FSK error)  
Occupied Bandwidth  
–6 dBc, 100 kHz ResBW  
500  
876  
Transmit Spurious Emission (PA = 7)  
In-band Spurious Second Channel Power (±2 MHz)  
In-band Spurious Third Channel Power (>3 MHz)  
–38  
–44  
dBm  
dBm  
Notes  
19. Subject to regulation.  
20. Exceptions F/3 & 5C/3.  
Document Number: 001-48013 Rev*B  
Page 15 of 21  
[+] Feedback  
CYRF7936  
Table 8. Radio Parameters (continued)  
Parameter Description  
NonHarmonically Related Spurs (800 MHz)  
NonHarmonically Related Spurs (1.6 GHz)  
NonHarmonically Related Spurs (3.2 GHz)  
Harmonic Spurs (Second Harmonic)  
Harmonic Spurs (Third Harmonic)  
Fourth and Greater Harmonics  
Power Management (Crystal PN# eCERA GF-1200008)  
Crystal Start to 10ppm  
Conditions  
Min  
Typ  
–38  
–34  
–47  
–43  
–48  
–59  
Max  
Unit  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
0.7  
0.6  
1.3  
ms  
ms  
µs  
Crystal Start to IRQ  
XSIRQ EN = 1  
Synth Settle  
Slow channels  
Medium channels  
Fast channels  
GFSK  
270  
180  
100  
30  
Synth Settle  
µs  
Synth Settle  
µs  
Link Turnaround Time  
µs  
Link Turnaround Time  
250 kbps  
62  
µs  
Link Turnaround Time  
125 kbps  
94  
µs  
Link Turnaround Time  
<125 kbps  
31  
µs  
Max Packet Length  
<60 ppm crystal-to-crystal  
40  
bytes  
Document Number: 001-48013 Rev*B  
Page 16 of 21  
[+] Feedback  
CYRF7936  
Typical Operating Characteristics  
The typical operating characteristics of CYRF7936 follow[21]  
Transmit Power vs. Temperature  
2.7v)  
Transmit Power vs. Vcc  
(PMU off)  
Transmit Power vs. Channel  
(Vcc  
=
6
4
PA7  
PA6  
6
4
6
4
PA7  
PA6  
PA7  
PA6  
2
2
2
0
0
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-2  
-4  
-6  
-8  
-10  
-12  
-14  
PA5  
PA4  
PA5  
PA4  
PA5  
PA4  
0
20  
40  
Temp (deg C)  
60  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
0
20  
40  
60  
80  
Vcc  
Channel  
Typical RSSI Count vs Input Power  
Average RSSI vs. Temperature  
(Rx signal -70dBm)  
Average RSSI vs. Vcc  
(Rx signal -70dBm)  
=
=
32  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
19  
18  
17  
16  
15  
14  
13  
12  
24  
16  
8
LNA ON  
LNA OFF  
ATT ON  
LNA OFF  
0
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
0
20  
40  
60  
-120  
-100  
-80  
-60  
-40  
-20  
Vcc  
Temp (deg C)  
Input Power (dBm)  
RSSI vs. Channel  
Rx Sensitivity vs. Vcc  
(1Mbps CER)  
Rx Sensitivity vs. Temperature  
(1Mbps CER)  
(Rx signal  
= -70dBm)  
18  
16  
14  
12  
10  
8
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
CER  
CER  
6
4
8DR32  
8DR32  
2
0
0
20  
40  
Channel  
60  
80  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
0
20  
40  
60  
Vcc  
Temp (deg C)  
Receiver Sensitivity vs Channel  
(3.0v, Room Temp)  
Receiver Sensitivity vs. Frequency Offset  
Carrier to Interferer  
(Narrow band, LP modulation)  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
-81  
-83  
-85  
-87  
-89  
-91  
-93  
-95  
20.0  
10.0  
GFSK  
CER  
0.0  
GFSK  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
-60.0  
8DR64  
8DR32  
-10  
-5  
0
5
10  
-150  
-100  
-50  
0
50  
100  
150  
0
10  
20  
30  
40  
50  
60  
70  
80  
Channel Offset (MHz)  
Channel  
Crystal Offset (ppm)  
Note  
21. With LNA on, ATT off, above -2dBm erroneous RSSI values may be read. Cross-checking RSSI with LNA off/on is recommended for accurate readings.  
Document Number: 001-48013 Rev*B  
Page 17 of 21  
[+] Feedback  
CYRF7936  
Typical Operating Characteristics (continued)  
BER vs. Data Threshold (32-8DR)  
(SOP Threshold 5, C38 slow)  
GFSK vs. BER  
=
(SOP Threshold  
=
5, C38 slow)  
10  
1
100  
10  
0
Thru 7  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.00001  
0.001  
0.0001  
0.00001  
GFSK  
-100  
-95  
-90  
-85  
-80  
-75  
-70  
-100  
-80  
-60  
-40  
-20  
0
Input Power (dBm)  
Input Power (dBm)  
ICC RX  
(LNA OFF)  
ICC RX  
(LNA ON)  
ICC RX SYNTH  
9.2  
9.1  
9
25  
24.5  
24  
21  
20.5  
20  
3.3V  
3.3V  
3.3V  
3.0V  
2.7V  
2.4V  
3.0V  
2.7V  
2.4V  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8
3.0V  
2.7V  
2.4V  
23.5  
23  
19.5  
19  
22.5  
22  
21.5  
21  
18.5  
18  
20.5  
20  
17.5  
17  
19.5  
7.9  
7.8  
19  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
ICC TX  
@ PA1  
ICC TX SYNTH  
ICC TX @ PA0  
9.2  
9.1  
9
17  
16.5  
16  
17.5  
17  
3.3V  
3.0V  
2.7V  
2.4V  
3.3V  
3.0V  
2.7V  
2.4V  
3.3V  
3.0V  
2.7V  
2.4V  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8
16.5  
16  
15.5  
15  
15.5  
15  
14.5  
14.5  
14  
7.9  
7.8  
14  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
ICC TX  
@ PA4  
ICC TX  
@
PA2  
ICC TX @ PA3  
20.5  
20  
18  
17.5  
17  
19  
18.5  
18  
3.3V  
3.0V  
2.7V  
2.4V  
3.3V  
3.3V  
3.0V  
2.7V  
2.4V  
3.0V  
2.7V  
2.4V  
19.5  
19  
17.5  
17  
18.5  
18  
16.5  
16  
16.5  
16  
17.5  
17  
15.5  
15  
15.5  
0
16.5  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
Document Number: 001-48013 Rev*B  
Page 18 of 21  
[+] Feedback  
CYRF7936  
Typical Operating Characteristics (continued)  
ICC TX  
@ PA7  
ICC TX  
@
PA5  
ICC TX @ PA6  
40.5  
40  
30  
29.5  
29  
23.5  
23  
3.3V  
3.0V  
2.7V  
2.4V  
39.5  
39  
3.3V  
3.0V  
2.7V  
2.4V  
3.3V  
3.0V  
2.7V  
2.4V  
38.5  
38  
22.5  
22  
28.5  
28  
37.5  
37  
27.5  
27  
36.5  
36  
21.5  
21  
35.5  
35  
26.5  
26  
34.5  
34  
20.5  
20  
25.5  
25  
33.5  
33  
32.5  
19.5  
24.5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
TEMPERATURE (C)  
Figure 11. AC Test Loads and Waveforms for Digital Pins  
AC Test Loads  
OUTPUT  
DC Test Load  
OUTPUT  
R1  
V
CC  
5 pF  
30 pF  
OUTPUT  
INCLUDING  
JIG AND  
SCOPE  
INCLUDING  
JIG AND  
SCOPE  
R2  
Max  
Typical  
ALL INPUT PULSES  
V
Parameter  
R1  
Unit  
Ω
Ω
Ω
V
CC  
90%  
10%  
90%  
10%  
1071  
937  
500  
1.4  
GND  
R2  
Fall time: 1 V/ns  
RTH  
Rise time: 1 V/ns  
VTH  
THÉVENIN EQUIVALENT  
Equivalent to:  
OUTPUT  
VCC  
3.00  
V
R
TH  
V
TH  
Ordering Information  
Part Number  
Radio  
Package Name  
40 QFN  
Package Type  
40 Quad Flat Package No Leads Pb-Free CYRF7936 Commercial  
40 QFN (Sawn type) Commercial  
Operating Range  
CYRF7936-40LFXC Transceiver  
CYRF7936-40LTXC  
Transceiver  
40 QFN  
Document Number: 001-48013 Rev*B  
Page 19 of 21  
[+] Feedback  
CYRF7936  
Package Description  
Figure 12. 40-Pin Pb-Free QFN 6 x 6 mm LY40  
SOLDERABLE  
EXPOSED  
PAD  
NOTES:  
1.  
HATCH IS SOLDERABLE EXPOSED AREA  
2. REFERENCE JEDEC#: MO-220  
(SUBCON Punch Type PKG WITH 3.50X3.50 EPAD)  
3. PACKAGE WEIGHT: 0.086g  
4. ALL DIMENSIONS ARE IN MM [MIN/MAX]  
5. PACKAGE CODE  
PART #  
LF40A  
LY40A  
DESCRIPTION  
STANDARD  
PB-FREE  
001-12917 *A  
The recommended dimension of the PCB pad size for the E-PAD underneath the QFN is 3.5 mm × 3.5 mm (width x length).  
Figure 13. 40-Pin Sawn QFN (6X6X0.90 mm)  
SEE NOTE 1  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
001-44328 *C  
Document Number: 001-48013 Rev*B  
Page 20 of 21  
[+] Feedback  
CYRF7936  
Document History Page  
Description Title: CYRF7936 2.4 GHz CyFi™ Transceiver  
Document Number: 001-48013 Rev*B  
Orig. of  
Change  
Submission  
Date  
REV.  
ECN  
Description of Change  
**  
2557501  
2615458  
KKU/AESA  
KKU/AESA  
08/25/2008 New Data Sheet  
*A  
01/13/2009 Updated block diagram, changed SoP to SOP, changed EoP to EOP,  
changed Frequency Initial Stability to Frequency Stability, change  
section on Low Noise Amplifier.... to Receiver Front End and removed  
AGC enable. Updated Register Map Summary.  
*B  
2672793  
DPT/PYRS  
03/12/2009 Updated packaging and ordering information.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2008-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-48013 Rev*B  
Revised March 11, 2009  
Page 21 of 21  
CyFi, WirelessUSB, PSoC, and enCoRe are trademarks of Cypress Semiconductor. All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  
厂商 型号 描述 页数 下载

KYOCERA AVX

CYR10 玻璃电容器CYR10 , 15 (可靠性指标) M23269 / 01 , 02 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR10, 15 (Established Reliability) M23269/01, 02 (QPL to MIL-PRF-23269) ] 2 页

FOXCONN

CYR2-AP03MJ04 [ Interconnection Device ] 1 页

KYOCERA AVX

CYR51 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

KYOCERA AVX

CYR52 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

KYOCERA AVX

CYR53 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

CYPRESS

CYRF69103 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 73 页

CYPRESS

CYRF69103-40LFXC 无线可编程片上低功耗的16位自由运行定时器[ Programmable Radio on Chip Low Power 16-bit free running timer ] 68 页

CYPRESS

CYRF69103-40LTXC 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 72 页

CYPRESS

CYRF69103A-40LFXC 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 68 页

CYPRESS

CYRF69103_08 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 65 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.157426s