找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYP15G0403DXB_09

型号:

CYP15G0403DXB_09

描述:

独立时钟四路的HOTLink II收发器[ Independent Clock Quad HOTLink II Transceiver ]

品牌:

CYPRESS[ CYPRESS ]

页数:

45 页

PDF大小:

1106 K

CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Independent Clock Quad HOTLink II™  
Transceiver  
• Per-channel Link Quality Indicator  
Features  
— Analog signal detect  
• Second-generation HOTLink® technology  
• Compliant to multiple standards  
— Digital signal detect  
• Low-power 3W @ 3.3V typical  
— ESCON, DVB-ASI, SMPTE-292M, SMPTE-259M, Fibre  
Channel and Gigabit Ethernet (IEEE802.3z)  
• Single 3.3V supply  
• 256-ball thermally enhanced BGA  
• Pb-Free package option available  
• 0.25μ BiCMOS technology  
— CPRI™ compliant  
— CYW15G0403DXB compliant to OBSAI-RP3  
— 8B/10B coded data or 10 bit uncoded data  
Functional Description  
• Quad channel transceiver operates from 195 to  
1500 MBaud serial data rate  
The CYP(V)15G0403DXB[1] Independent Clock Quad  
HOTLink II™ Transceiver is a point-to-point or point-to-multi-  
point communications building block enabling transfer of data  
over a variety of high-speed serial links like optical fiber,  
balanced, and unbalanced copper transmission lines. The  
signaling rate can be anywhere in the range of 195 to 1500  
MBaud per serial link. Each channel operates independently  
with its own reference clock allowing different rates. Each  
transmit channel accepts parallel characters in an Input  
Register, encodes each character for transport, and then  
converts it to serial data. Each receive channel accepts serial  
data and converts it to parallel data, decodes the data into  
characters, and presents these characters to an Output  
Register. Figure 1 on page 2 illustrates typical connections  
between independent host systems and corresponding  
CYP(V)(W)15G0403DXB chips  
— CYW15G0403DXB operates from 195 to 1540 MBaud  
— Aggregate throughput of up to 12 Gbits/second  
• Second-generation HOTLink technology  
• Truly independent channels  
— Each channel can operate at a different signaling rate  
— Each channel can transport a different type of data  
• Selectable input/output clocking options  
• Internal phase-locked loops (PLLs) with no external PLL  
components  
• Dual differential PECL-compatible serial inputs per channel  
• Internal DC-restoration  
• Dual differential PECL-compatible serial outputs per  
channel  
The CYW15G0403DXB[1] operates from 195 to 1540 MBaud,  
which includes operation at the OBSAI RP3 datarate of both  
1536 MBaud and 768 MBaud.  
— Source matched for 50Ω transmission lines  
— No external bias resistors required  
— Signaling-rate controlled edge-rates  
• MultiFrame™ Receive Framer provides alignment options  
— Bit and byte alignment  
The CYV15G0403DXB satisfies the SMPTE-259M and  
SMPTE-292M compliance as per SMPTE EG34-1999 Patho-  
logical Test Requirements.  
As  
a
second-generation  
HOTLink  
device,  
the  
CYP(V)(W)15G0403DXB extends the HOTLink family with  
enhanced levels of integration and faster data rates, while  
maintaining serial-link compatibility (data, command, and  
BIST) with other HOTLink devices. The transmit (TX) section  
of the CYP(V)(W)15G0403DXB Quad HOTLink II consists of  
four independent byte-wide channels. Each channel can  
accept either 8-bit data characters or preencoded 10-bit trans-  
mission characters. Data characters may be passed from the  
Transmit Input Register to an integrated 8B/10B Encoder to  
improve their serial transmission characteristics. These  
encoded characters are then serialized and output from dual  
Positive ECL (PECL) compatible differential transmission-line  
drivers at a bit-rate of either 10 or 20 times the input reference  
clock for that channel.  
— Comma or Full K28.5 detect  
— Single or Multi-byte Framer for byte alignment  
— Low-latency option  
• Synchronous LVTTL parallel interface  
• JTAG boundary scan  
• Built-In Self-Test (BIST) for at-speed link testing  
• Compatible with  
— Fiber-optic modules  
— Copper cables  
— Circuit board traces  
.
Note  
1. CYV15G0403DXB refers to SMPTE 259M and SMPTE 292M compliant devices. CYW15G0403DXB refers to OBSAI RP3 compliant devices (maximum operating  
data rate is 1540 MBaud). CYP15G0403DXB refers to devices not compliant to SMPTE 259M and SMPTE 292M pathological test requirements and also OBSAI  
RP3 operating datarate of 1536 MBaud. CYP(V)(W)15G0403DXB refers to all three devices.  
Cypress Semiconductor Corporation  
Document #: 38-02065 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 2, 2007  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Figure 1. HOTLink II™ System Connections  
10  
10  
Serial Links  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
Serial Links  
Independent  
CYP(V)(W)15G0403DXB  
Independent  
CYP(V)(W)15G0403DXB  
10  
10  
Serial Links  
10  
10  
Backplane or  
Cabled  
Connections  
Serial Links  
The receive (RX) section of the CYP(V)(W)15G0403DXB  
Quad HOTLink II consists of four independent byte-wide  
channels. Each channel accepts a serial bit-stream from one  
of two PECL-compatible differential line receivers, and using  
a completely integrated Clock and Data Recovery PLL,  
recovers the timing information necessary for data recon-  
struction. Each recovered bit-stream is deserialized and  
framed into characters, 8B/10B decoded, and checked for  
transmission errors. Recovered decoded characters are then  
written to an internal Elasticity Buffer, and presented to the  
destination host system.  
The parallel I/O interface may be configured for numerous  
forms of clocking to provide the highest flexibility in system  
architecture. In addition to clocking the transmit path with a  
local reference clock, the receive interface may also be  
configured to present data relative to a recovered clock or to a  
local reference clock.  
Each transmit and receive channel contains an independent  
BIST pattern generator and checker. This BIST hardware  
allows at-speed testing of the high-speed serial data paths in  
each transmit and receive section, and across the intercon-  
necting links.  
The integrated 8B/10B encoder/decoder may be bypassed for  
systems that present externally encoded or scrambled data at  
the parallel interface.  
The CYP(V)(W)15G0403DXB is ideal for port applications  
where different data rates and serial interface standards are  
necessary for each channel. Some applications include  
multi-protocol routers, aggregation equipment, and switches.  
Document #: 38-02065 Rev. *F  
Page 2 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
CYP(V)(W)15G0403DXB Transceiver Logic Block Diagram  
x10  
x11  
x10  
x10  
x10  
x11  
x11  
x11  
Phase  
Align  
Buffer  
Phase  
Align  
Buffer  
Phase  
Phase  
Align  
Buffer  
Elasticity  
Buffer  
Elasticity  
Buffer  
Elasticity  
Buffer  
Elasticity  
Buffer  
Align  
Buffer  
Decoder  
8B/10B  
Decoder  
8B/10B  
Decoder  
8B/10B  
Encoder  
8B/10B  
Decoder  
8B/10B  
Encoder  
8B/10B  
Encoder  
8B/10B  
Encoder  
8B/10B  
Framer  
Framer  
Framer  
Framer  
Serializer  
Serializer  
Deserializer  
Deserializer  
Serializer  
Deserializer  
Serializer  
Deserializer  
RX  
RX  
RX  
RX  
TX  
TX  
TX  
TX  
Document #: 38-02065 Rev. *F  
Page 3 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
TXLB[A..D] are Internal Serial Loopback Signals  
Transmit Path Block Diagram  
REFCLKA+  
REFCLKA–  
TXRATEA  
= Internal Signal  
Bit-Rate Clock  
OEA[2..1]  
TransmitPLL
ClockMultiplierA
SPDSELA  
TXCLKOA  
ENCBYPA  
Character-Rate Clock A  
PABRSTA  
TXERRA  
TXCLKA  
OEA[2..1]  
A
TXBIST  
0
1
TXCKSELA  
8
OUTA1+  
OUTA1–  
TXDA[7:0]  
10  
10  
10  
10  
2
OUTA2+  
OUTA2–  
TXCTA[1:0]  
TXLBA  
REFCLKB+  
REFCLKB–  
Bit-Rate Clock  
OEB[2..1]  
Transmit PLL  
Clock Multiplier B  
TXRATEB  
SPDSELB  
TXCLKOB  
ENCBYPB  
Character-Rate Clock B  
PABRSTB  
TXERRB  
TXCLKB  
B
TXBIST  
OEB[2..1]  
0
1
TXCKSELB  
OUTB1+  
OUTB1–  
8
10  
10  
10  
10  
TXDB[7:0]  
OUTB2+  
OUTB2–  
2
TXCTB[1:0]  
TXLBB  
REFCLKC+  
REFCLKC–  
Bit-Rate Clock  
OEC[2..1]  
Transmit PLL  
Clock Multiplier C  
TXRATEC  
SPDSELC  
TXCLKOC  
ENCBYPC  
Character-Rate Clock C  
PABRSTC  
TXERRC  
TXCLKC  
OEC[2..1]  
C
TXBIST  
0
1
TXCKSELC  
8
OUTC1+  
OUTC1–  
TXDC[7:0]  
10  
10  
10  
10  
2
OUTC2+  
OUTC2–  
TXCTC[1:0]  
TXLBC  
REFCLKD+  
REFCLKD–  
Bit-Rate Clock  
OED[2..1]  
Transmit PLL  
Clock Multiplier D  
TXRATED  
SPDSELD  
TXCLKOD  
TXERRD  
ENCBYPD  
OED[2..1]  
Character-Rate Clock D  
PABRSTD  
TXBISTD  
TXCLKD  
0
1
TXCKSELD  
OUTD1+  
OUTD1–  
10  
8
10  
10  
10  
TXDD[7:0]  
OUTD2+  
OUTD2–  
2
TXCTD[1:0]  
TXLBD  
Document #: 38-02065 Rev. *F  
Page 4 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
TXLB[A..D] are Internal Serial Loopback Signals  
Receive Path Block Diagram  
= Internal Signal  
RESET  
TRST  
JTAG  
TMS  
TCLK  
TDI  
SPDSELA  
Boundary  
Scan  
RXPLLPDA  
SDASELA[1:0]  
Controller  
TDO  
LFIA  
Receive  
LPENA  
INSELA  
Signal  
Monitor  
INA1+  
INA1–  
8
RXDA[7:0]  
INA2+  
INA2–  
Clock &  
Data  
Recovery  
PLL  
TXLBA  
3
RXSTA[2:0]  
ULCA  
SPDSELB  
RXPLLPDB  
SDASELB[1:0]  
RXCLKA+  
RXCLKA–  
Clock  
Select  
÷2  
Receive  
Signal  
Monitor  
LPENB  
INSELB  
LFIB  
INB1+  
INB1–  
8
RXDB[7:0]  
Clock &  
Data  
Recovery  
PLL  
INB2+  
INB2–  
3
TXLBB  
RXSTB[2:0]  
ULCB  
SPDSELC  
Clock  
Select  
RXCLKB+  
RXCLKB–  
RXPLLPDC  
SDASELC[1:0]  
÷2  
LPENC  
INSELC  
Receive  
Signal  
Monitor  
LFIC  
INC1+  
INC1–  
8
RXDC[7:0]  
INC2+  
INC2–  
Clock &  
Data  
Recovery  
PLL  
3
TXLBC  
RXSTC[2:0]  
ULCC  
SPDSELD  
RXPLLPDD  
SDASELD[1:0]  
Clock  
Select  
RXCLKC+  
RXCLKC–  
÷2  
LPEND  
INSELD  
Receive  
Signal  
Monitor  
LFID  
IND1+  
IND1–  
8
RXDD[7:0]  
IND2+  
IND2–  
Clock &  
Data  
Recovery  
PLL  
3
TXLBD  
RXSTD[2:0]  
ULCD  
Clock  
Select  
RXCLKD+  
RXCLKD–  
LDTDEN  
÷2  
RFMODE[A..D][1:0]  
RFEN[A..D]  
FRAMCHAR[A..D]  
DECMODE[A..D]  
RXBIST[A..D]  
RXCKSEL[A..D]  
DECBYP[A..D]  
RXRATE[A..D]  
Document #: 38-02065 Rev. *F  
Page 5 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Device Configuration and Control Block Diagram  
= Internal Signal  
RFMODE[A..D][1:0]  
RFEN[A..D]  
FRAMCHAR[A..D]  
DECMODE[A..D]  
RXBIST[A..D]  
WREN  
Device Configuration  
and Control Interface  
ADDR[3:0]  
RXCKSEL[A..D]  
DECBYP[A..D]  
RXRATE[A..D]  
SDASEL[2..1][A..D][1:0]  
RXPLLPD[A..D]  
TXRATE[A..D]  
TXCKSEL[A..D]  
PABRST[A..D]  
TXBIST[A..D]  
DATA[7:0]  
OE[2..1][A..D]  
ENCBYP[A..D]  
GLEN[11..0]  
FGLEN[2..0]  
Pin Configuration (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
IN  
C1–  
OUT  
C1–  
IN  
C2–  
OUT  
C2–  
IN  
D1–  
OUT  
D1–  
IN  
D2–  
OUT  
D2–  
IN  
A1–  
OUT  
A1–  
IN  
A2–  
OUT  
A2–  
IN  
B1–  
OUT  
B1–  
IN  
B2–  
OUT  
B2–  
V
GND  
GND  
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
IN  
C1+  
OUT  
C1+  
IN  
C2+  
OUT  
C2+  
IN  
D1+  
OUT  
D1+  
IN  
D2+  
OUT  
D2+  
IN  
A1+  
OUT  
A1+  
IN  
A2+  
OUT  
A2+  
IN  
B1+  
OUT  
B1+  
IN  
B2+  
OUT  
B2+  
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
TDI  
TMS INSELC INSELB  
ULCD ULCC  
DATA  
[7]  
DATA  
[5]  
DATA  
[3]  
DATA  
[1]  
NC  
SPD  
SELD  
LDTD TRST LPEND TDO  
EN  
TCLK RESET INSELD INSELA  
ULCA  
SPD  
SELC  
DATA  
[6]  
DATA  
[4]  
DATA  
[2]  
DATA  
[0]  
LPENB ULCB  
LPENA LTEN1 SCAN TMEN3  
EN2  
V
V
V
V
V
V
V
V
E
F
CC  
RX  
DC[6] DC[7] DC[0]  
TX TX  
CC  
CC  
CC  
CC  
CC  
RX  
STB[1] CLKOB STB[0]  
CC  
CC  
RX  
TX  
NC  
NC  
TX  
RX  
TX  
SPD  
SELB  
LP  
ENC  
SPD  
SELA DB[1]  
RX  
G
DC[7] WREN DC[4] DC[1]  
GND GND GND GND  
GND GND GND GND  
H
J
TX  
TX  
TX  
TX  
RX  
RX  
RX  
RX  
CTC[1] DC[5] DC[2] DC[3]  
STB[2] DB[0]  
DB[5]  
DB[2]  
RX REF TX TX  
DC[2] CLKC– CTC[0] CLKC  
RX  
DB[3]  
RX  
DB[4]  
RX  
DB[7]  
K
L
LFIB  
TX  
RX  
REF  
LFIC  
NC  
TX  
DC[6]  
RX  
RX  
RX  
DC[3] CLKC+  
DB[6] CLKB+ CLKB– DB[6]  
RX RX  
DC[4] DC[5]  
TX  
ERRC  
REF REF TX TX  
M
CLKB+ CLKB– ERRB CLKB  
GND GND GND GND  
GND GND GND GND  
N
P
RX RX RX RX  
TX  
DB[5]  
TX  
DB[4]  
TX  
DB[3]  
TX  
DB[2]  
DC[1] DC[0] STC[0] STC[1]  
RX TX RX RX  
STC[2] CLKOC CLKC+ CLKC–  
TX  
DB[1]  
TX  
TX  
TX  
R
DB[0] CTB[1] DB[7]  
V
V
V
V
V
V
V
V
T
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
U
TX  
TX  
TX  
TX  
RX  
RX  
TX  
CTA[1]  
ADDR  
[0]  
REF  
CLKD– DA[1]  
TX  
TX  
TX  
RX  
TX  
RX  
RX  
V
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
DD[0] DD[1] DD[2] CTD[1]  
DD[2] DD[1]  
DA[4] CTA[0]  
DA[2] CTB[0] STA[2] STA[1]  
V
W
Y
TX  
TX  
TX  
RX  
RX  
RX  
RX  
STD[2]  
ADDR  
[2]  
REF  
CLKD+ CLKOA  
TX  
TX  
DA[3]  
TX  
DA[7]  
RX  
DA[7]  
RX  
DA[3]  
RX  
RX  
DD[3] DD[4] CTD[0] DD[6]  
DD[3] STD[0]  
DA[0] STA[0]  
TX  
TX  
LFID  
RX  
RX  
CLKD–  
RX  
RX  
ADDR ADDR  
[3]  
RX  
TX  
TX  
DA[2]  
TX  
DA[6]  
LFIA  
REF  
CLKA+ DA[4]  
RX  
RX  
DA[1]  
DD[5] DD[7]  
DD[4] STD[1]  
[1]  
CLKA+ ERRA  
TX  
TX  
RX  
RX  
RX  
TX  
CLKOD  
NC  
TX  
RX  
TX  
DA[0]  
TX  
DA[5]  
TX  
REF RX  
RX  
DA[5]  
DD[6] CLKD DD[7] CLKD+  
DD[5] DD[0]  
CLKA CLKA–  
ERRD CLKA– DA[6]  
Document #: 38-02065 Rev. *F  
Page 6 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Pin Configuration (Bottom View)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
OUT  
B2–  
IN  
B2–  
OUT  
B1–  
IN  
B1–  
OUT  
A2–  
IN  
A2–  
OUT  
A1–  
IN  
A1–  
OUT  
D2–  
IN  
D2–  
OUT  
D1–  
IN  
D1–  
OUT  
C2–  
IN  
C2–  
OUT  
C1–  
IN  
C1–  
V
GND  
GND  
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A
B
C
D
E
F
OUT  
B2+  
IN  
B2+  
OUT  
B1+  
IN  
B1+  
OUT  
A2+  
IN  
A2+  
OUT  
A1+  
IN  
A1+  
OUT  
D2+  
IN  
D2+  
OUT  
D1+  
IN  
D1+  
OUT  
C2+  
IN  
2+  
OUT  
C1+  
IN  
C1+  
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
TDO  
LP  
END  
TRST LDTD  
EN  
SPD  
SELD  
NC  
DATA  
[1]  
DATA  
[3]  
DATA  
[5]  
DATA  
[7]  
ULCC ULCD  
IN  
IN  
TMS  
TDI  
SELB SELC  
TMEN3 SCAN LTEN1  
EN2  
LP  
ENA  
ULCB  
LP  
ENB  
DATA  
[0]  
DATA  
[2]  
DATA  
[4]  
DATA  
[6]  
SPD  
SELC  
ULCA  
IN  
IN  
RESET TCLK  
SELA SELD  
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
RX  
TX  
RX  
NC  
NC  
TX  
TX  
RX  
Rx  
STB[0] CLKOB STB[1]  
DC[0] DC[7] DC[6]  
RX  
SPD  
LP  
SPD  
TX  
WREN  
TX  
G
H
J
DB[1] SELA  
ENC  
SELB  
DC[1] DC[4]  
DC[7]  
GND GND GND GND  
GND GND GND GND  
RX  
RX  
RX  
RX  
TX  
TX  
TX  
TX  
DB[2]  
DB[5]  
DB[0] STB[2]  
DC[3] DC[2] DC[5] CTC[1]  
LFIB  
TX  
RX  
DB[7]  
RX  
DB[4]  
RX  
DB[3]  
TX  
TX  
REF  
RX  
K
L
CLKC CTC[0] CLKC– DC[2]  
RX  
RX  
RX  
TX  
DC[6]  
LFIC  
NC  
REF  
CLKC+ DC[3]  
RX  
DB[6] CLKB– CLKB+ DB[6]  
TX  
TX  
REF  
REF  
TX  
RX  
RX  
M
N
P
R
T
CLKB ERRB CLKB– CLKB+  
ERRC  
DC[5] DC[4]  
GND GND GND GND  
GND GND GND GND  
TX  
TX  
TX  
TX  
RX  
RX  
RX  
RX  
DB[2]  
DB[3]  
DB[4]  
DB[5]  
STC[1] STC[0] DC[0] DC[1]  
TX  
TX  
TX  
TX  
RX  
RX  
TX  
RX  
DB[7] CTB[1] DB[0]  
DB[1]  
CLKC– CLKC+ CLKOC STC[2]  
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
RX  
RX  
TX  
RX  
TX  
TX  
TX  
REF  
ADDR  
[0]  
TXC  
TA[1]  
RX  
RX  
TX  
TX  
TX  
TX  
V
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
U
V
W
Y
STA[1] STA[2] CTB[0] DA[2]  
CTA[0] DA[4]  
DA[1] CLKD–  
DD[1] DD[2]  
CTD[1] DD[2] DD[1] DD[0]  
RX  
RX  
RX  
DA[3]  
RX  
DA[7]  
TX  
DA[7]  
TX  
DA[3]  
TX  
REF  
ADDR  
[2]  
RX  
STD[2]  
RX  
RX  
RX  
TX  
TX  
TX  
STA[0] DA[0]  
CLKOA CLKD+  
STD[0] DD[3]  
DD[6] CTD[0] DD[4] DD[3]  
RX  
DA[1]  
RX  
REF  
LFIA  
TX  
DA[6]  
TX  
DA[2]  
TX  
RX  
ADDR ADDR  
[1]  
RX  
RX  
RX  
CLKD–  
LFID  
RX  
TX  
TX  
DA[4] CLKA+  
ERRA CLKA+  
[3]  
STD[1] DD[4]  
DD[7] DD[5]  
RX  
DA[5]  
RX  
REF  
TX  
TX  
DA[5]  
TX  
DA[0]  
RX  
TX  
NC  
TX  
CLKOD  
RX  
RX  
RX  
TX  
TX  
DA[6] CLKA– ERRD  
CLKA– CLKA  
DD[0] DD[5]  
CLKD+ DD[7] CLKD DD[6]  
Document #: 38-02065 Rev. *F  
Page 7 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Pin Descriptions  
CYP(V)(W)15G0403DXB Quad HOTLink II Transceiver  
Name  
I/O Characteristics Signal Description  
Transmit Path Data and Status Signals  
TXDA[7:0]  
TXDB[7:0]  
TXDC[7:0]  
TXDD[7:0]  
LVTTL Input,  
synchronous,  
sampled by the  
associated  
Transmit Data Inputs. TXDx[7:0] data inputs are captured on the rising edge of the  
transmit interface clock. The transmit interface clock is selected by the TXCKSELx  
latch via the device configuration interface, and passed to the encoder or Transmit  
Shifter. When the Encoder is enabled, TXDx[7:0] specifies the specific data or  
command character sent.  
TXCLKxor  
REFCLKx[2]  
TXCTA[1:0]  
TXCTB[1:0]  
TXCTC[1:0]  
TXCTD[1:0]  
LVTTL Input,  
synchronous,  
sampled by the  
associated  
Transmit Control. TXCTx[1:0] inputs are captured on the rising edge of the transmit  
interface clock. The transmit interface clock is selected by the TXCKSELx latch via  
the device configuration interface, and passed to the Encoder or Transmit Shifter. The  
TXCTA[1:0] inputs identify how the associated TXDx[7:0] characters are interpreted.  
When the Encoder is bypassed, these inputs are interpreted as data bits. When the  
Encoder is enabled, these inputs determine if the TXDx[7:0] character is encoded as  
Data, a Special Character code, or replaced with other Special Character codes. See  
Table 3 on page 14 for details.  
TXCLKxor  
REFCLKx[2]  
TXERRA  
TXERRB  
TXERRC  
TXERRD  
LVTTL Output,  
synchronous to  
Transmit Path Error. TXERRx is asserted HIGH to indicate detection of a transmit  
Phase-Align Buffer underflow or overflow. If an underflow or overflow condition is  
detected, TXERRx, for the channel in error, is asserted HIGH and remains asserted  
until either a Word Sync Sequence is transmitted on that channel, or the transmit  
Phase-Align Buffer is re-centered with the PABRSTx latch via the device configuration  
interface. When TXBISTx = 0, the BIST progress is presented on the associated  
TXERRx output. The TXERRx signal pulses HIGH for one transmit-character clock  
period to indicate a pass through the BIST sequence once every 511 or 527  
(depending on RXCKSELx) character times. If RXCKSELx = 1, a one character pulse  
occurs every 527 character times. If RXCKSELx = 0, a one character pulse occurs  
REFCLKx[3]  
,
synchronous to  
RXCLKx when  
selected as  
REFCLKx,  
asynchronous to  
transmit channel  
enable / disable,  
asynchronoustoloss every 511 character times.  
or return of  
TXERRx is also asserted HIGH, when any of the following conditions is true:  
REFCLKx±  
• The TXPLL for the associated channel is powered down. This occurs when OE2x  
and OE1x for a given channel are both disabled by setting OE2x = 0 and OE1x = 0.  
• The absence of the REFCLKx± signal  
Transmit Path Clock Signals  
REFCLKA±  
REFCLKB±  
REFCLKC±  
REFCLKD±  
Differential LVPECL Reference Clock. REFCLKx± clock inputs are used as the timing references for the  
or single-ended  
transmit and receive PLLs. These input clocks may also be selected to clock the  
transmit and receive parallel interfaces. When driven by a single-ended LVCMOS or  
LVTTL clock source, connect the clock source to either the true or complement  
REFCLKx input, and leave the alternate REFCLKx input open (floating). When driven  
by an LVPECL clock source, the clock must be a differential clock, using both inputs.  
LVTTL input clock  
TXCLKA  
TXCLKB  
TXCLKC  
TXCLKD  
LVTTL Clock Input, Transmit Path Input Clock. When configuration latch TXCKSELx = 0, the associated  
internal pull-down  
TXCLKx input is selected as the character-rate input clock for the TXDx[7:0] and  
TXCTx[1:0] inputs. In this mode, the TXCLKx input must be frequency-coherent to its  
associated TXCLKOx output clock, but may be offset in phase by any amount. Once  
initialized, TXCLKx is allowed to drift in phase as much as ±180 degrees. If the input  
phase of TXCLKx drifts beyond the handling capacity of the Phase Align Buffer,  
TXERRx is asserted to indicate the loss of data, and remains asserted until the Phase  
Align Buffer is initialized. The phase of the TXCLKx input clock relative to its  
associated REFCLKx± is initialized when the configuration latch PABRSTx is written  
as 0. When the associated TXERRx is deasserted, the Phase Align Buffer is initialized  
and input characters are correctly captured.  
Notes  
2. When REFCLKx± is configured for half-rate operation, these inputs are sampled relative to both the rising and falling edges of the associated REFCLKx±.  
3. When REFCLKx± is configured for half-rate operation, these outputs are presented relative to both the rising and falling edges of the associated REFCLKx±.  
Document #: 38-02065 Rev. *F  
Page 8 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Pin Descriptions (continued)  
CYP(V)(W)15G0403DXB Quad HOTLink II Transceiver  
Name  
I/O Characteristics Signal Description  
TXCLKOA  
TXCLKOB  
TXCLKOC  
TXCLKOD  
LVTTL Output  
Transmit Clock Output. TXCLKOx output clock is synthesized by each channel’s  
transmit PLL and operates synchronous to the internal transmit character clock.  
TXCLKOx operates at either the same frequency as REFCLKx± (TXRATEx = 0), or  
at twice the frequency of REFCLKx± (TXRATEx = 1). The transmit clock outputs have  
no fixed phase relationship to REFCLKx±.  
Receive Path Data and Status Signals  
RXDA[7:0]  
RXDB[7:0]  
RXDC[7:0]  
RXDD[7:0]  
LVTTL Output,  
Parallel Data Output. RXDx[7:0] parallel data outputs change relative to the receive  
synchronous to the interface clock. The receive interface clock is selected by the RXCKSELx latch. If  
selected RXCLK± RXCLKx± is a full-rate clock, the RXCLKx± clock outputs are complementary clocks  
output or REFCLKx± operating at the character rate. The RXDx[7:0] outputs for the associated receive  
input  
channels follow rising edge of RXCLKx+ or falling edge of RXCLKx–. If RXCLKx± is  
a half-rate clock, the RXCLKx± clock outputs are complementary clocks operating at  
half the character rate. The RXDx[7:0] outputs for the associated receive channels  
follow both the falling and rising edges of the associated RXCLKx± clock outputs.  
RXSTA[2:0]  
RXSTB[2:0]  
RXSTC[2:0]  
RXSTD[2:0]  
LVTTL Output,  
Parallel Status Output. RXSTA[2:0] status outputs change relative to the receive  
synchronous to the interface clock. The receive interface clock is selected by the RXCKSELx latch. If  
selected RXCLK± RXCLKx± is a full-rate clock, the RXCLKx± clock outputs are complementary clocks  
output or REFCLKx± operating at the character rate. The RXSTAx[2:0] outputs for the associated receive  
input  
channels follow rising edge of RXCLKx+ or falling edge of RXCLKx–. If RXCLKx± is  
a half-rate clock, the RXCLKx± clock outputs are complementary clocks operating at  
half the character rate. The RXSTAx[2:0] outputs for the associated receive channels  
follow both the falling and rising edges of the associated RXCLKx± clock outputs.  
When the decoder is bypassed, RXSTx[1:0] become the two low-order bits of the  
10-bit received character. RXSTx[2] = HIGH indicates the presence of a Comma  
character in the Output Register. When the decoder is enabled, RXSTx[2:0] provide  
status of the received signal. See Table 11 on page 25 for a list of received character  
status.  
Receive Path Clock Signals  
RXCLKA±  
RXCLKB±  
RXCLKC±  
RXCLKD±  
LVTTL Output Clock Receive Clock Output. RXCLKx± is the receive interface clock used to control timing  
of the RXDx[7:0] and RXSTA[2:0] parallel outputs. The source of the RXCLKx±  
outputs is selected by the RXCKSELx latch via the device configuration interface.  
These true and complement clocks are used to control timing of data output transfers.  
These clocks are output continuously at either the dual-character rate (1/20th the  
serial bit-rate) or character rate (1/10th the serial bit-rate) of the data being received,  
as selected by RXRATEx. When configured such that the output data path is clocked  
by the REFCLKx± instead of a recovered clock, the RXCLKx± output drivers present  
a buffered or divided form (depending on RXRATEx) of the associated REFCLKx±  
that are delayed in phase to align with the data. This phase difference allows the user  
to select the optimal clock (REFCLKx± or RXCLK±) for setup/hold timing for their  
specific system.  
When REFCLKx± is a full-rate clock, the RXCLKx± rate depends on the value of  
RXRATEx.  
When REFCLKx± is a half-rate clock and RXCKSELx = 0, the RXCLKx± rate depends  
on the value of RXRATEx.  
When REFCLKx± is a half-rate clock and RXCKSELx=1, the RXCLKx± rate does not  
depend on the value of RXRATEx and operates at the same rate as REFCLKx±.  
Document #: 38-02065 Rev. *F  
Page 9 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Pin Descriptions (continued)  
CYP(V)(W)15G0403DXB Quad HOTLink II Transceiver  
Name  
I/O Characteristics Signal Description  
Device Control Signals  
RESET  
LVTTL Input,  
asynchronous,  
internal pull-up  
Asynchronous Device Reset. RESET initializes all state machines, counters, and  
configuration latches in the device to a known state. RESET must be asserted LOW  
for a minimum pulse width. When the reset is removed, all state machines, counters  
and configuration latches are at an initial state. As per the JTAG specifications the  
device RESET cannot reset the JTAG controller. Therefore, the JTAG controller has  
to be reset separately. Refer to “JTAG Support” on page 24 for the methods to reset  
the JTAG state machine. See Table 9 on page 20 for the initialize values of the device  
configuration latches.  
LDTDEN  
LVTTL Input,  
internal pull-up  
Level Detect Transition Density Enable. When LDTDEN is HIGH, the Signal Level  
Detector, Range Controller, and Transition Density Detector are all enabled to  
determine if the RXPLL tracks REFCLKx± or the selected input serial data stream. If  
the Signal Level Detector, Range Controller, or Transition Density Detector are out of  
their respective limits while LDTDEN is HIGH, the RXPLL locks to REFCLK± until  
such a time they become valid. The (SDASEL[A..D][1:0]) are used to configure the  
trip level of the Signal Level Detector. The Transition Density Detector limit is one  
transition in every 60 consecutive bits. When LDTDEN is LOW, only the Range  
Controller is used to determine if the RXPLL tracks REFCLKx± or the selected input  
serial data stream. For the cases when RXCKSELx = 0 (recovered clock), it is recom-  
mended to set LDTDEN = HIGH.  
ULCA  
ULCB  
ULCC  
ULCD  
LVTTL Input,  
internal pull-up  
Use Local Clock. When ULCx is LOW, the RXPLL is forced to lock to REFCLKx±  
instead of the received serial data stream. While ULCx is LOW, the LFIx for the  
associated channel is LOW indicating a link fault.  
When ULCx is HIGH, the RXPLL performs Clock and Data Recovery functions on the  
input data streams. This function is used in applications in which a stable RXCLKx±  
is needed. In cases when there is an absence of valid data transitions for a long period  
of time, or the high-gain differential serial inputs (INx±) are left floating, there may be  
brief frequency excursions of the RXCLKx± outputs from REFCLKx±.  
SPDSELA  
SPDSELB  
SPDSELC  
SPDSELD  
3-Level Select[4]  
static control input  
Serial Rate Select. The SPDSELx inputs specify the operating signaling-rate range  
of each channel’s transmit and receive PLL.  
LOW = 195 – 400 MBaud  
MID = 400 – 800 MBaud  
HIGH = 800 – 1500 MBaud (800–1540 MBaud for CYW15G0403DXB)  
INSELA  
INSELB  
INSELC  
INSELD  
LVTTL Input,  
asynchronous  
Receive Input Selector. The INSELx input determines which external serial bit  
stream is passed to the receiver’s Clock and Data Recovery circuit. When INSELx is  
HIGH, the Primary Differential Serial Data Input, INx1±, is selected for the associated  
receive channel. When INSELx is LOW, the Secondary Differential Serial Data Input,  
INx2±, is selected for the associated receive channel.  
LPENA  
LPENB  
LPENC  
LPEND  
LVTTL Input,  
asynchronous,  
internal pull-down  
Loop-Back-Enable. The LPENx input enables the internal serial loop-back for the  
associated channel. When LPENx is HIGH, the transmit serial data from the  
associated channel is internally routed to the associated receive Clock and Data  
Recovery (CDR) circuit. All enabled serial drivers on the channel are forced to differ-  
ential logic-1, and the serial data inputs are ignored. When LPENx is LOW, the internal  
serial loop-back function is disabled.  
Note  
4. 3-Level Select inputs are used for static configuration. These are ternary inputs that make use of logic levels of LOW, MID, and HIGH. The LOW level is usually  
implemented by direct connection to V (ground). The HIGH level is usually implemented by direct connection to V (power). The MID level is usually  
SS  
CC  
implemented by not connecting the input (left floating), which allows it to self bias to the proper level.  
Document #: 38-02065 Rev. *F  
Page 10 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Pin Descriptions (continued)  
CYP(V)(W)15G0403DXB Quad HOTLink II Transceiver  
Name  
I/O Characteristics Signal Description  
LFIA  
LFIB  
LFIC  
LFID  
LVTTL Output,  
asynchronous  
Link Fault Indication Output. LFIx is an output status indicator signal. LFIx is the  
logical OR of six internal conditions. LFIx is asserted LOW when any of the following  
conditions is true:  
• Received serial data rate outside expected range  
• Analog amplitude below expected levels  
• Transition density lower than expected  
• Receive channel disabled  
• ULCx is LOW  
• Absence of REFCLKx±.  
Device Configuration and Control Bus Signals  
WREN  
LVTTL input,  
asynchronous,  
Control Write Enable. The WREN input writes the values of the DATA[7:0] bus into  
the latch specified by the address location on the ADDR[3:0] bus.[5]  
internal pull-up  
ADDR[3:0]  
LVTTL input  
asynchronous,  
internal pull-up  
Control Addressing Bus. The ADDR[3:0] bus is the input address bus used to  
configure the device. The WREN input writes the values of the DATA[7:0] bus into the  
latch specified by the address location on the ADDR[3:0] bus.[5] Table 9 on page 20  
lists the configuration latches within the device, and the initialization value of the  
latches upon the assertion of RESET. Table 10 on page 24 shows how the latches  
are mapped in the device.  
DATA[7:0]  
LVTTL input  
asynchronous,  
internal pull-up  
Control Data Bus. The DATA[7:0] bus is the input data bus used to configure the  
device. The WREN input writes the values of the DATA[7:0] bus into the latch  
specified by address location on the ADDR[3:0] bus.[5 ] Table 9 lists the configuration  
latches within the device, and the initialization value of the latches upon the assertion  
of RESET. Table 10 shows how the latches are mapped in the device.  
Internal Device Configuration Latches  
RFMODE[A..D][1:0] Internal Latch[6]  
FRAMCHAR[A..D] Internal Latch[6]  
DECMODE[A..D] Internal Latch[6]  
Reframe Mode Select.  
Framing Character Select.  
Receiver Decoder Mode Select.  
Receiver Decoder Bypass.  
Receive Clock Select.  
DECBYP[A..D]  
RXCKSEL[A..D]  
RXRATE[A..D]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Receive Clock Rate Select.  
Signal Detect Amplitude Select.  
Transmit Encoder Bypassed.  
Transmit Clock Select.  
SDASEL[A..D][1:0] Internal Latch[6]  
ENCBYP[A..D]  
TXCKSEL[A..D]  
TXRATE[A..D]  
RFEN[A..D]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Transmit PLL Clock Rate Select.  
Reframe Enable.  
RXPLLPD[A..D]  
RXBIST[A..D]  
TXBIST[A..D]  
OE2[A..D]  
Receive Channel Power Control.  
Receive Bist Disabled.  
Transmit Bist Disabled.  
Differential Serial Output Driver 2 Enable.  
Differential Serial Output Driver 1 Enable.  
OE1[A..D]  
Notes  
5. See “Device Configuration and Control Interface” on page 20 for detailed information on the operation of the Configuration Interface.  
6. See “Device Configuration and Control Interface” on page 20 for detailed information on the internal latches.  
Document #: 38-02065 Rev. *F  
Page 11 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Pin Descriptions (continued)  
CYP(V)(W)15G0403DXB Quad HOTLink II Transceiver  
Name  
I/O Characteristics Signal Description  
PABRST[A..D]  
GLEN[11..0]  
FGLEN[2..0]  
Factory Test Modes  
LTEN1  
Internal Latch[6]  
Internal Latch[6]  
Internal Latch[6]  
Transmit Clock Phase Alignment Buffer Reset.  
Global Latch Enable.  
Force Global Latch Enable.  
LVTTL input,  
Factory Test 1. LTEN1 input is for factory testing only. This input may be left as a NO  
CONNECT, or GND only.  
internal pull-down  
SCANEN2  
TMEN3  
LVTTL input,  
internal pull-down  
Factory Test 2. SCANEN2 input is for factory testing only. This input may be left as  
a NO CONNECT, or GND only.  
LVTTL input,  
internal pull-down  
Factory Test 3. TMEN3 input is for factory testing only. This input may be left as a  
NO CONNECT, or GND only.  
Analog I/O  
OUTA1±  
OUTB1±  
OUTC1±  
OUTD1±  
CML Differential  
Output  
Primary Differential Serial Data Output. The OUTx1± PECL-compatible CML  
outputs (+3.3V referenced) are capable of driving terminated transmission lines or  
standard fiber-optic transmitter modules, and must be AC-coupled for  
PECL-compatible connections.  
OUTA2±  
OUTB2±  
OUTC2±  
OUTD2±  
CML Differential  
Output  
Secondary Differential Serial Data Output. The OUTx2± PECL-compatible CML outputs  
(+3.3V referenced) are capable of driving terminated transmission lines or standard  
fiber-optic transmitter modules, and must be AC-coupled for PECL-compatible connec-  
tions.  
INA1±  
INB1±  
INC1±  
IND1±  
Differential Input  
Differential Input  
Primary Differential Serial Data Input. The INx1± input accepts the serial data  
stream for deserialization and decoding. The INx1± serial stream is passed to the  
receive CDR circuit to extract the data content when INSELx = HIGH.  
INA2±  
INB2±  
INC2±  
IND2±  
Secondary Differential Serial Data Input. The INx2± input accepts the serial data  
stream for deserialization and decoding. The INx2± serial stream is passed to the  
receiver CDR circuit to extract the data content when INSELx = LOW.  
JTAG Interface  
TMS  
LVTTL Input,  
internal pull-up  
Test Mode Select. Used to control access to the JTAG Test Modes. If maintained  
high for 5 TCLK cycles, the JTAG test controller is reset.  
TCLK  
TDO  
TDI  
LVTTL Input,  
internal pull-down  
JTAG Test Clock.  
3-State LVTTL  
Output  
Test Data Out. JTAG data output buffer. High-Z while JTAG test mode is not selected.  
Test Data In. JTAG data input port.  
LVTTL Input,  
internal pull-up  
TRST  
LVTTL Input,  
internal pull-up  
JTAG reset signal. When asserted (LOW), this input asynchronously resets the  
JTAG test access port controller.  
Power  
VCC  
+3.3V Power.  
GND  
Signal and Power Ground for all internal circuits.  
Document #: 38-02065 Rev. *F  
Page 12 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
If the phase offset, between the initialized location of the input  
clock and REFCLKx¦, exceeds the skew handling capabilities  
of the Phase-Align Buffer, an error is reported on that  
channel’s TXERRx output. This output indicates an error  
continuously until the Phase-Align Buffer for that channel is  
reset. While the error remains active, the transmitter for that  
channel outputs a continuous C0.7 character to indicate to the  
remote receiver that an error condition is present in the link.  
CYP(V)(W)15G0403DXB HOTLink II Operation  
The CYP(V)(W)15G0403DXB is  
a highly configurable,  
independent clocking, quad-channel transceiver designed to  
support reliable transfer of large quantities of data, using  
high-speed serial links from multiple sources to multiple desti-  
nations. This device supports four single-byte channels.  
CYP(V)(W)15G0403DXB Transmit Data Path  
Each Phase-Align Buffer may be individually reset with  
minimal disruption of the serial data stream. When a  
Phase-Align Buffer error is present, the transmission of a Word  
Sync Sequence re-centers the Phase-Align Buffer and clears  
the error indication.  
Input Register  
The bits in the Input Register for each channel support  
different assignments, based on if the input data is encoded or  
unencoded. These assignments are shown in Table 1.  
Note. K28.5 characters may be added or removed from the  
data stream during the Phase Align Buffer reset operation.  
When used with non-Cypress devices that require a complete  
16-character Word Sync Sequence for proper receive  
Elasticity Buffer Operation, it is recommend that the Phase  
Alignment Buffer reset be followed by a Word Sync Sequence  
to ensure proper operation.  
When the ENCODER is enabled, each input register captures  
eight data bits and two control bits on each input clock cycle.  
When the Encoder is bypassed, the control bits are part of the  
pre-encoded 10-bit character.  
When the Encoder is enabled, the TXCTx[1:0] bits are inter-  
preted along with the associated TXDx[7:0] character to  
generate a specific 10-bit transmission character.  
Encoder  
Phase-Align Buffer  
Each character received from the Input Register or  
Phase-Align Buffer is passed to the Encoder logic. This block  
interprets each character and any associated control bits, and  
outputs a 10-bit transmission character.  
Data from each Input Register is passed to the associated  
Phase-Align Buffer, when the TXDx[7:0] and TXCTx[1:0] input  
registers are clocked using TXCLKx¦ (TXCKSELx = 0 and  
TXRATEx = 0). When the TXDx[7:0] and TXCTx[1:0] input  
registers are clocked using REFCLKx± (TXCKSELx = 1) and  
REFCLKx± is a full-rate clock, the associated Phase  
Alignment Buffer in the transmit path is bypassed. These  
buffers are used to absorb clock phase differences between  
the TXCLKx input clock and the internal character clock for  
that channel.  
Depending on the operational mode, the generated trans-  
mission character may be  
• the 10-bit pre-encoded character accepted in the Input  
Register.  
• the 10-bit equivalent of the 8-bit Data character accepted in  
the Input Register.  
• the 10-bit equivalent of the 8-bit Special Character code  
accepted in the Input Register.  
Once initialized, TXCLKx is allowed to drift in phase as much  
as ±180 degrees. If the input phase of TXCLKx drifts beyond  
the handling capacity of the Phase Align Buffer, TXERRx is  
asserted to indicate the loss of data, and remains asserted  
until the Phase Align Buffer is initialized. The phase of the  
TXCLKx relative to its associated internal character rate clock  
is initialized when the configuration latch PABRSTx is written  
as 0. When the associated TXERRx is deasserted, the Phase  
Align Buffer is initialized and input characters are correctly  
captured.  
• the 10-bit equivalent of the C0.7 violation character if a  
Phase-Align Buffer overflow or underflow error is present.  
• a character that is part of the 511-character BIST sequence.  
• a K28.5 character generated as an individual character or  
as part of the 16-character Word Sync Sequence.  
Data Encoding  
Raw data, as received directly from the Transmit Input  
Register, is seldom in a form suitable for transmission across  
a serial link. The characters must usually be processed or  
transformed to guarantee  
Table 1. Input Register Bit Assignments[7]  
Signal Name  
TXDx[0] (LSB)  
TXDx[1]  
Unencoded  
DINx[0]  
DINx[1]  
DINx[2]  
DINx[3]  
DINx[4]  
DINx[5]  
DINx[6]  
DINx[7]  
DINx[8]  
DINx[9]  
Encoded  
TXDx[0]  
TXDx[1]  
TXDx[2]  
TXDx[3]  
TXDx[4]  
TXDx[5]  
TXDx[6]  
TXDx[7]  
TXCTx[0]  
TXCTx[1]  
• a minimum transition density (to allow the receive PLL to  
extract a clock from the serial data stream).  
TXDx[2]  
• a DC-balance in the signaling (to prevent baseline wander).  
TXDx[3]  
• run-length limits in the serial data (to limit the bandwidth  
requirements of the serial link).  
TXDx[4]  
• the remote receiver a way of determining the correct  
character boundaries (framing).  
TXDx[5]  
TXDx[6]  
When the Encoder is enabled (ENCBYPx = 1), the characters  
transmitted are converted from Data or Special Character  
codes to 10-bit transmission characters, using an integrated  
8B/10B encoder. When directed to encode the character as a  
Special Character code, the encoder uses the Special  
TXDx[7]  
TXCTx[0]  
TXCTx[1] (MSB)  
Note  
7. LSB shifted out first.  
Document #: 38-02065 Rev. *F  
Page 13 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Character encoding rules listed in Table 16 on page 43. When  
directed to encode the character as a Data character, it is  
encoded using the Data Character encoding rules in Table 15  
on page 39.  
Table 3. Transmit Modes  
TXCTx[1] TXCTx[0]  
Characters Generated  
0
0
1
1
0
1
0
1
Encoded data character  
K28.5 fill character  
The 8B/10B encoder is standards compliant with ANSI/NCITS  
ASC X3.230-1994 Fibre Channel, IEEE 802.3z Gigabit  
Ethernet, the IBM® ESCON® and FICON™ channels, ETSI  
DVB-ASI, and ATM Forum standards for data transport.  
Special character code  
16-character Word Sync Sequence  
Many of the Special Character codes listed in Table 16 may be  
generated by more than one input character. The  
CYP(V)(W)15G0403DXB is designed to support two  
independent (but non-overlapping) Special Character code  
tables. This allows the CYP(V)(W)15G0403DXB to operate in  
mixed environments with other Cypress HOTLink devices  
using the enhanced Cypress command code set, and the  
reduced command sets of other non-Cypress devices. Even  
when used in an environment that normally uses non-Cypress  
Special Character codes, the selective use of Cypress  
command codes can permit operation where running disparity  
and error handling must be managed.  
Word Sync Sequence  
When TXCTx[1:0] = 11, a 16-character sequence of K28.5  
characters, known as a Word Sync Sequence, is generated on  
the associated channel. This sequence of K28.5 characters  
may start with either a positive or negative disparity K28.5 (as  
determined by the current running disparity and the 8B/10B  
coding rules). The disparity of the second and third K28.5  
characters in this sequence are reversed from what normal  
8B/10B coding rules would generate. The remaining K28.5  
characters in the sequence follow all 8B/10B coding rules. The  
disparity of the generated K28.5 characters in this sequence  
follow  
a
pattern of either ++––+–+–+–+–+–+– or  
Following conversion of each input character from eight bits to  
a 10-bit transmission character, it is passed to the Transmit  
Shifter and is shifted out LSB first, as required by ANSI and  
IEEE standards for 8B/10B coded serial data streams.  
––++–+–+–+–+–+–+.  
The generation of this sequence, once started, cannot be  
stopped until all 16 characters have been sent. The content of  
the associated input registers are ignored for the duration of  
this sequence. At the end of this sequence, if the TXCTx[1:0]  
= 11 condition is sampled again, the sequence restarts and  
remains uninterruptible for the following 15 character clocks.  
Transmit Modes  
Encoder Bypass  
When the Encoder is bypassed, the character captured from  
the TXDx[7:0] and TXCTx[1:0] input register is passed directly  
to the transmit shifter without modification. With the encoder  
bypassed, the TXCTx[1:0] inputs are considered part of the  
data character and do not perform a control function that would  
otherwise modify the interpretation of the TXDx[7:0] bits. The  
bit usage and mapping of these control bits when the Encoder  
is bypassed is shown in Table 2.  
Transmit BIST  
Each transmit channel contains an internal pattern generator  
that can be used to validate both the link and device operation.  
These generators are enabled by the associated TXBISTx  
latch via the device configuration interface. When enabled, a  
register in the associated transmit channel becomes a  
signature pattern generator by logically converting to a Linear  
Feedback Shift Register (LFSR). This LFSR generates a  
511-character (or 526-character) sequence that includes all  
Data and Special Character codes, including the explicit  
Table 2. Encoder Bypass Mode  
Signal Name  
TXDx[0] (LSB)  
TXDx[1]  
Bus Weight  
10B Name  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
a[7]  
b
c
d
e
i
violation symbols. This provides  
pseudo-random sequence that can be matched to an identical  
LFSR in the attached Receiver(s).  
a
predictable yet  
TXDx[2]  
A device reset (RESET sampled LOW) presets the BIST  
Enable Latches to disable BIST on all channels.  
TXDx[3]  
TXDx[4]  
All data and data-control information present at the associated  
TXDx[7:0] and TXCTx[1:0] inputs are ignored when BIST is  
active on that channel. If the receive channels are configured  
for reference clock operation, each pass is preceded by a  
16-character Word Sync Sequence to allow Elasticity Buffer  
alignment and management of clock-frequency variations.  
TXDx[5]  
TXDx[6]  
f
TXDx[7]  
g
h
j
TXCTx[0]  
TXCTx[1] (MSB)  
Transmit PLL Clock Multiplier  
Each Transmit PLL Clock Multiplier accepts a character-rate  
or half-character-rate external clock at the associated  
REFCLKx± input, and that clock is multiplied by 10 or 20 (as  
selected by TXRATEx) to generate a bit-rate clock for use by  
the transmit shifter. It also provides a character-rate clock used  
by the transmit paths, and outputs this character rate clock as  
TXCLKOx.  
When the encoder is enabled, the TXCTx[1:0] data control bits  
control the interpretation of the TXDx[7:0] bits and the  
characters generated by them. These bits are interpreted as  
listed in Table 3.  
Document #: 38-02065 Rev. *F  
Page 14 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Each clock multiplier PLL can accept a REFCLKx± input  
between 19.5 MHz and 150 MHz (19.5 MHz and 154 MHz for  
CYW15G0403DXB), however, this clock range is limited by  
the operating mode of the CYP(V)(W)15G0403DXB clock  
multiplier (TXRATEx) and by the level on the associated  
SPDSELx input.  
SPDSELx are 3-level select[4] inputs that select one of three  
operating ranges for the serial data outputs and inputs of the  
associated channel. The operating serial signaling-rate and  
allowable range of REFCLKx± frequencies are listed in  
Table 4.  
When a driver is disabled via the configuration interface, it is  
internally powered down to reduce device power. If both serial  
drivers for a channel are in this disabled state, the associated  
internal logic for that channel is also powered down. A device  
reset (RESET sampled LOW) disables all output drivers.  
Note. When a disabled transmit channel (i.e., both outputs  
disabled) is re-enabled:  
• data on the serial outputs may not meet all timing specifi-  
cations for up to 250 μs  
• the state of the phase-align buffer cannot be guaranteed,  
and a phase-align reset is required if the phase-align buffer  
is used  
Table 4. Operating Speed Settings  
REFCLKx±  
Frequency  
(MHz)  
CYP(V)(W)15G0403DXB Receive Data Path  
Signaling Rate  
SPDSELx TXRATE  
(MBaud)  
Serial Line Receivers  
LOW  
MID (Open)  
HIGH  
1
0
1
0
1
0
reserved  
19.5–40  
20–40  
195–400  
Two differential Line Receivers, INx1± and INx2±, are  
available on each channel for accepting serial data streams.  
The active Serial Line Receiver on a channel is selected using  
the associated INSELx input. The Serial Line Receiver inputs  
are differential, and can accommodate wire interconnect and  
filtering losses or transmission line attenuation greater than  
16 dB. For normal operation, these inputs should receive a  
signal of at least VIDIFF > 100 mV, or 200 mV peak-to-peak  
differential. Each Line Receiver can be DC- or AC-coupled to  
+3.3V powered fiber-optic interface modules (any ECL/PECL  
family, not limited to 100K PECL) or AC-coupled to +5V  
powered optical modules. The common-mode tolerance of  
these line receivers accommodates a wide range of signal  
termination voltages. Each receiver provides internal  
DC-restoration, to the center of the receiver’s common mode  
range, for AC-coupled signals.  
400–800  
40–80  
40–75  
800–1500  
(800–1540 for  
CYW15G0403DXB)  
80–150  
The REFCLKx± inputs are differential inputs with each input  
internally biased to 1.4V. If the REFCLKx+ input is connected  
to a TTL, LVTTL, or LVCMOS clock source, the input signal is  
recognized when it passes through the internally biased  
reference point. When driven by a single-ended TTL, LVTTL,  
or LVCMOS clock source, connect the clock source to either  
the true or complement REFCLKx input, and leave the  
alternate REFCLKx input open (floating).  
The local internal loopback (LPENx) allows the serial transmit  
data outputs to be routed internally back to the Clock and Data  
Recovery circuit associated with each channel. When  
configured for local loopback, the associated transmit serial  
driver outputs are forced to output a differential logic-1. This  
prevents local diagnostic patterns from being broadcast to  
attached remote receivers.  
When both the REFCLKx+ and REFCLKx– inputs are  
connected, the clock source must be a differential clock. This  
can either be a differential LVPECL clock that is DC-or  
AC-coupled or a differential LVTTL or LVCMOS clock.  
By connecting the REFCLKx– input to an external voltage  
source, it is possible to adjust the reference point of the  
REFCLKx+ input for alternate logic levels. When doing so it is  
necessary to ensure that the input differential crossing point  
remains within the parametric range supported by the input.  
Signal Detect/Link Fault  
Each selected Line Receiver (i.e., that routed to the clock and  
data recovery PLL) is simultaneously monitored for  
• analog amplitude above amplitude level selected by  
SDASELx  
Serial Output Drivers  
The serial output interface drivers use differential Current  
Mode Logic (CML) drivers to provide source-matched drivers  
for transmission lines. These drivers accept data from the  
Transmit Shifters. These drivers have signal swings equivalent  
to that of standard PECL drivers, and are capable of driving  
AC-coupled optical modules or transmission lines. When  
configured for local loopback (LPENx = HIGH), all enabled  
serial drivers are configured to drive a static differential logic  
1. To achieve OBSAI RP3 compliancy, the serial output drivers  
must be AC-coupled to the transmission medium.  
• transition density above the specified limit  
• range controls report the received data stream inside  
normal frequency range (±1500 ppm[30]  
• receive channel enabled  
)
• Presence of reference clock  
• ULCx is not asserted.  
All of these conditions must be valid for the Signal Detect block  
to indicate a valid signal is present. This status is presented on  
the LFIx (Link Fault Indicator) output associated with each  
receive channel, which changes synchronous to the selected  
receive interface clock.  
Transmit Channels Enabled  
Each driver can be enabled or disabled separately via the  
device configuration interface.  
Document #: 38-02065 Rev. *F  
Page 15 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Analog Amplitude  
locks to the input data stream, after which LFIx should be  
HIGH.  
While most signal monitors are based on fixed constants, the  
analog amplitude level detection is adjustable to allow  
operation with highly attenuated signals, or in high-noise  
environments. The analog amplitude level detection is set by  
the SDASELx latch via device configuration interface. The  
SDASELx latch sets the trip point for the detection of a valid  
signal at one of three levels, as listed in Table 5. This control  
input affects the analog monitors for all receive channels.  
Receive Channel Enabled  
The CYP(V)(W)15G0403DXB contains four receive channels  
that can be independently enabled and disabled. Each  
channel can be enabled or disabled separately through the  
RXPLLPDx input latch as controlled by the device configu-  
ration interface. When the RXPLLPDx latch = 0, the  
associated PLL and analog circuitry of the channel is disabled.  
Any disabled channel indicates a constant link fault condition  
on the LFIx output. When RXPLLPDx = 1, the associated PLL  
and receive channel is enabled to receive and decode a serial  
stream.  
Table 5. Analog Amplitude Detect Valid Signal Levels[8]  
SDASEL Typical Signal with Peak Amplitudes Above  
00  
01  
10  
11  
Analog Signal Detector is disabled  
140 mV p-p differential  
Note. When a disabled receive channel is reenabled, the  
status of the associated LFIx output and data on the parallel  
outputs for the associated channel may be indeterminate for  
up to 2 ms.  
280 mV p-p differential  
420 mV p-p differential  
The Analog Signal Detect monitors are active for the Line  
Receiver as selected by the associated INSELx input. When  
configured for local loopback, no input receivers are selected,  
and the LFIx output for each channel reports only the receive  
VCO frequency out-of-range and transition density status of  
the associated transmit signal. When local loopback is active,  
the associated Analog Signal Detect Monitor is disabled.  
Clock/Data Recovery  
The extraction of a bit-rate clock and recovery of bits from each  
received serial stream is performed by a separate CDR block  
within each receive channel. The clock extraction function is  
performed by an integrated PLL that tracks the frequency of  
the transitions in the incoming bit stream and align the phase  
of the internal bit-rate clock to the transitions in the selected  
serial data stream.  
Transition Density  
Each CDR accepts a character-rate (bit-rate ÷ 10) or  
half-character-rate (bit-rate ÷ 20) reference clock from the  
associated REFCLKx± input. This REFCLKx± input is used to  
The Transition Detection logic checks for the absence of  
transitions spanning greater than six transmission characters  
(60 bits). If no transitions are present in the data received, the  
Detection logic for that channel asserts LFIx.  
• ensure that the VCO (within the CDR) is operating at the  
correct frequency (rather than a harmonic of the bit-rate)  
Range Controls  
• reduce PLL acquisition time  
The CDR circuit includes logic to monitor the frequency of the  
PLL Voltage Controlled Oscillator (VCO) used to sample the  
incoming data stream. This logic ensures that the VCO  
operates at, or near the rate of the incoming data stream for  
two primary cases:  
• limit unlocked frequency excursions of the CDR VCO when  
there is no input data present at the selected Serial Line  
Receiver.  
Regardless of the type of signal present, the CDR attempts to  
recover a data stream from it. If the signalling rate of the  
recovered data stream is outside the limits set by the range  
control monitors, the CDR tracks REFCLKx± instead of the  
data stream. Once the CDR output (RXCLK±) frequency  
returns back close to REFCLKx± frequency, the CDR input is  
switched back to the input data stream. If no data is present at  
the selected line receiver, this switching behavior may result  
in brief RXCLK± frequency excursions from REFCLKx±.  
However, the validity of the input data stream is indicated by  
the LFIx output. The frequency of REFCLKx± is required to be  
within ±1500 ppm[30] of the frequency of the clock that drives  
the REFCLKx± input of the remote transmitter to ensure a lock  
to the incoming data stream.  
• when the incoming data stream resumes after a time in  
which it has been “missing.”  
• when the incoming data stream is outside the acceptable  
signaling rate range.  
To perform this function, the frequency of the RXPLL VCO is  
periodically compared to the frequency of the REFCLKx±  
input. If the VCO is running at a frequency beyond  
±1500 ppm[30] as defined by the REFCLKx± frequency, it is  
periodically forced to the correct frequency (as defined by  
REFCLKx±, SPDSELx, and TXRATEx) and then released in  
an attempt to lock to the input data stream.  
The sampling and relock period of the Range Control is calcu-  
lated as follows: RANGE_CONTROL_ SAMPLING_PERIOD  
= (RECOVERED BYTE CLOCK PERIOD) * (4096).  
For systems using multiple or redundant connections, the LFIx  
output can be used to select an alternate data stream. When  
an LFIx indication is detected, external logic can toggle  
selection of the associated INx1± and INx2± input through the  
associated INSELx input. When a port switch takes place, it is  
necessary for the receive PLL for that channel to reacquire the  
During the time that the Range Control forces the RXPLL VCO  
to track REFCLKx±, the LFIx output is asserted LOW. After a  
valid serial data stream is applied, it may take up to one  
RANGE CONTROL SAMPLING PERIOD before the PLL  
Note  
8. The peak amplitudes listed in this table are for typical waveforms that have generally 3–4 transitions for every ten bits. In a worse case environment the signals  
may have a sine-wave appearance (highest transition density with repeating 0101...). Signal peak amplitudes levels within this environment type could increase  
the values in the table above by approximately 100 mV.  
Document #: 38-02065 Rev. *F  
Page 16 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
new serial stream and frame to the incoming character bound-  
aries.  
causes the Receiver to update its character boundaries incor-  
rectly.  
When RFMODEx[1:0] = 10, the Cypress-Mode Multi-Byte  
framer is selected. The required detection of multiple framing  
characters makes the associated link much more robust to  
incorrect framing due to aliased SYNC characters in the data  
stream. In this mode, the framer does not adjust the character  
clock boundary, but instead aligns the character to the already  
recovered character clock. This ensures that the recovered  
clock does not contain any significant phase changes or hops  
during normal operation or framing, and allows the recovered  
clock to be replicated and distributed to other external circuits  
or components using PLL-based clock distribution elements.  
In this framing mode the character boundaries are only  
adjusted if the selected framing character is detected at least  
twice within a span of 50 bits, with both instances on identical  
10-bit character boundaries.  
Deserializer/Framer  
Each CDR circuit extracts bits from the associated serial data  
stream and clocks these bits into the Shifter/Framer at the  
bit-clock rate. When enabled, the Framer examines the data  
stream looking for one or more COMMA or K28.5 characters  
at all possible bit positions. The location of this character in the  
data stream is used to determine the character boundaries of  
all following characters.  
Framing Character  
The CYP(V)(W)15G0403DXB allows selection of different  
framing characters on each channel. Two combinations of  
framing characters are supported to meet the requirements of  
different interfaces. The selection of the framing character is  
made through the FRAMCHARx latches via the configuration  
interface.  
When RFMODEx[1:0] = 01, the Alternate-mode Multi-Byte  
Framer is enabled. Like the Cypress-mode Multi-Byte Framer,  
multiple framing characters must be detected before the  
character boundary is adjusted. In this mode, the data stream  
must contain a minimum of four of the selected framing  
characters, received as consecutive characters, on identical  
10-bit boundaries, before character framing is adjusted.  
The specific bit combinations of these framing characters are  
listed in Table 6. When the specific bit combination of the  
selected framing character is detected by the framer, the  
boundaries of the characters present in the received data  
stream are known.  
10B/8B Decoder Block  
Table 6. Framing Character Selector  
The decoder logic block performs two primary functions:  
Bits detected in framer  
FRAMCHARx  
• decoding the received transmission characters to Data and  
Special Character codes  
Character Name  
Bits Detected  
0
1
COMMA+  
COMMA–  
00111110XX[9]  
or 11000001XX  
• comparing generated BIST patterns with received  
characters to permit at-speed link and device testing.  
–K28.5  
+K28.5  
0011111010 or  
1100000101  
The framed parallel output of each deserializer shifter is  
passed to its associated 10B/8B Decoder where, if the  
decoder is enabled, the input data is transformed from a 10-bit  
transmission character back to the original Data or Special  
Character code. This block uses the 10B/8B decoder patterns  
in Table 15 on page 39 and Table 16 on page 43. Received  
Special Code characters are decoded using Table 16. Valid  
data characters are indicated by a 000b bit-combination on the  
associated RXSTx[2:0] status bits, and Special Character  
codes are indicated by a 001b bit-combination of these status  
outputs. Framing characters, Invalid patterns, disparity errors,  
and synchronization status are presented as alternate combi-  
nations of these status bits.  
Framer  
The framer on each channel operates in one of three different  
modes. Each framer may be enabled or disabled using the  
RFENx latches via the configuration interface. When the  
framer is disabled (RFENx = 0), no combination of received  
bits alters the frame information.  
When the Low-Latency framer is selected (RFMODEx[1:0] =  
00), the framer operates by stretching the recovered character  
clock until it aligns with the received character boundaries. In  
this mode the framer starts its alignment process on the first  
detection of the selected framing character. To reduce the  
impact on external circuits that use the recovered clock, the  
clock period is not stretched by more than two bit-periods in  
any one clock cycle. When operated with a character-rate  
output clock, the output of properly framed characters may be  
delayed by up to nine character-clock cycles from the  
detection of the selected framing character. When operated  
with a half-character-rate output clock, the output of properly  
framed characters may be delayed by up to 14 character-clock  
cycles from the detection of the framing character.  
When DECBYPx = 0, the 10B/8B decoder is bypassed via the  
configuration interface. When bypassed, raw 10-bit characters  
are passed through the receiver and presented at the  
RXDx[7:0] and the RXSTA[1:0] outputs as 10-bit wide  
characters.  
When the decoder is enabled by setting DECBYPx = 1 via the  
configuration interface, the 10-bit transmission characters are  
decoded using Table 15 and Table 16. Received Special  
characters are decoded using Table 16. The columns used in  
Table 16 are determined by the DECMODEx latch via the  
device configuration interface. When DECMODEx = 0 the  
ALTERNATE table is used and when DECMODEx = 1 the  
CYPRESS table is used.  
Note. When Receive BIST is enabled on a channel, the  
Low-Latency Framer must not be enabled. The BIST  
sequence contains an aliased K28.5 framing character, which  
Note  
9. The standard definition of a Comma contains only seven bits. However, since all valid Comma characters within the 8B/10B character set also have the eighth  
bit as an inversion of the seventh bit, the compare pattern is extended to a full eight bits to reduce the possibility of a framing error.  
Document #: 38-02065 Rev. *F  
Page 17 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Receive BIST Operation  
A device reset (RESET sampled LOW) presets the BIST  
Enable Latches to disable BIST on all channels.  
The receiver channel contains an internal pattern checker that  
can be used to validate both device and link operation. These  
pattern checkers are enabled by the associated RXBISTx  
latch via the device configuration interface. When enabled, a  
register in the associated receive channel becomes a  
signature pattern generator and checker by logically  
converting to a Linear Feedback Shift Register (LFSR). This  
LFSR generates a 511-character or 526-character sequence  
that includes all Data and Special Character codes, including  
the explicit violation symbols. This provides a predictable yet  
pseudo-random sequence that can be matched to an identical  
LFSR in the attached Transmitter(s). When synchronized with  
the received data stream, the associated Receiver checks  
each character in the Decoder with each character generated  
by the LFSR and indicates compare errors and BIST status at  
the RXSTx[2:0] bits of the Output Register.  
Receive Elasticity Buffer  
Each receive channel contains an Elasticity Buffer that is  
designed to support multiple clocking modes. These buffers  
allow data to be read using a clock that is asynchronous in both  
frequency and phase from the Elasticity Buffer write clock, or  
to be read using a clock that is frequency coherent but with  
uncontrolled phase relative to the Elasticity Buffer write clock.  
If the chip is configured for operation with a recovered clock,  
the Elasticity Buffer is bypassed.  
Each Elasticity Buffer is 10 characters deep, and supports and  
an 11 bit wide data path. It is capable of supporting a decoded  
character and three status bits for each character present in  
the buffer. The write clock for these buffers is always the  
recovered clock for the associated read channel.  
When BIST is first recognized as being enabled in the  
Receiver, the LFSR is preset to the BIST-loop start-code of  
D0.0. This code D0.0 is sent only once per BIST loop. The  
status of the BIST progress and any character mismatches are  
presented on the RXSTx[2:0] status outputs.  
Receive Modes  
When the receive channel is clocked by REFCLKx±, the  
RXCLKx± outputs present a buffered or divided (depending on  
RXRATEx) and delayed form of REFCLKx±. In this mode, the  
receive Elasticity Buffers are enabled. For REFCLKx±  
clocking, the Elasticity Buffers must be able to insert K28.5  
characters and delete framing characters as appropriate.  
Code rule violations or running disparity errors that occur as  
part of the BIST loop do not cause an error indication.  
RXSTx[2:0] indicates 010b or 100b for one character period  
per BIST loop to indicate loop completion. This status can be  
used to check test pattern progress. These same status values  
are presented when the decoder is bypassed and BIST is  
enabled on a receive channel.  
The insertion of a K28.5 or deletion of a framing character can  
occur at any time on any channel, however, the actual timing  
of these insertions and deletions is controlled in part by how  
the transmitter sends its data. Insertion of a K28.5 character  
can only occur when the receiver has a framing character in  
the Elasticity Buffer. Likewise, to delete a framing character,  
one must also be in the Elasticity Buffer. To prevent a buffer  
overflow or underflow on a receive channel, a minimum  
density of framing characters must be present in the received  
data streams.  
The specific status reported by the BIST state machine are  
listed in Table 11 on page 25. These same codes are reported  
on the receive status outputs.  
The specific patterns checked by each receiver are described  
in detail in the Cypress application note “HOTLink Built-In  
Self-Test.”  
The  
sequence  
compared  
by  
the  
CYP(V)(W)15G0403DXB is identical to that in the CY7B933,  
CY7C924DX, and CYP(V)(W)15G0401DXB, allowing interop-  
erable systems to be built when used at compatible serial  
signaling rates.  
When the receive channel Output Register is clocked by a  
recovered clock, no characters are added or deleted and the  
receiver Elasticity Buffer is bypassed.  
Power Control  
If the number of invalid characters received ever exceeds the  
number of valid characters by 16, the receive BIST state  
machine aborts the compare operations and resets the LFSR  
to the D0.0 state to look for the start of the BIST sequence  
again.  
The CYP(V)(W)15G0403DXB supports user control of the  
powered up or down state of each transmit and receive  
channel. The receive channels are controlled by the  
RXPLLPDx latch via the device configuration interface. When  
RXPLLPDx = 0, the associated PLL and analog circuitry of the  
channel is disabled. The transmit channels are controlled by  
the OE1x and the OE2x latches via the device configuration  
interface. When a driver is disabled via the configuration  
interface, it is internally powered down to reduce device power.  
If both serial drivers for a channel are in this disabled state, the  
associated internal logic for that channel is also powered  
down.  
When the receive paths are configured for REFCLKx±  
operation, each pass must be preceded by a 16-character  
Word Sync Sequence to allow management of clock  
frequency variations.  
The receive BIST state machine requires the characters to be  
correctly framed for it to detect the BIST sequence. If the Low  
Latency Framer is enabled, the Framer misaligns to an aliased  
SYNC character within the BIST sequence. If the Alternate  
Multi-Byte Framer is enabled and the Receiver outputs are  
clocked relative to a recovered clock, it is generally necessary  
to frame the receiver before BIST is enabled. If the receive  
outputs are clocked relative to REFCLKx±, the transmitter  
precedes every 511 character BIST sequence with a 16  
character-character Word Sync Sequence.  
Device Reset State  
When the CYP(V)(W)15G0403DXB is reset by assertion of  
RESET, all state machines, counters, and configuration  
latches in the device are initialized to a reset state, and the  
Elasticity Buffer pointers are set to a nominal offset.  
Additionally, the JTAG controller must also be reset to ensure  
valid operation (even if JTAG testing is not performed). See  
Document #: 38-02065 Rev. *F  
Page 18 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
“JTAG Support” on page 24 for JTAG state machine initial-  
ization. See Table 9 on page 20 for the initialize values of the  
configuration latches.  
Table 8. Decoder Bypass Mode  
Signal Name  
RXSTx[2] (LSB)  
RXSTx[1]  
RXSTx[0]  
RXDx[0]  
Bus Weight  
10 Bit Name  
COMDETx  
Following a device reset, it is necessary to enable the transmit  
and receive channels used for normal operation. This can be  
done by sequencing the appropriate values on the device  
configuration interface.[5]  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
a
b
c
d
e
i
Output Bus  
RXDx[1]  
RXDx[2]  
Each receive channel presents an 11-signal output bus  
consisting of  
RXDx[3]  
• an 8-bit data bus  
• a 3-bit status bus.  
RXDx[4]  
f
RXDx[5]  
g
h
j
The signals present on this output bus are modified by the  
present operating mode of the CYP(V)(W)15G0403DXB as  
selected by the DECBYPx configuration latch. This mapping  
is shown in Table 7.  
RXDx[6]  
RXDx[7] (MSB)  
framer logic such that the rising edge of RXCLKx+ occurs  
when COMDETx is present on the associated output bus.  
Table 7. Output Register Bit Assignments  
This adjustment only occurs when the framer is enabled.  
When the framer is disabled, the clock boundaries are not  
adjusted, and COMDETx may be asserted during the rising  
edge of RXCLKx– (if an odd number of characters were  
received following the initial framing).  
BYPASS ACTIVE  
(DECBYPx = 0)  
DECODER  
Signal Name  
(DECBYP = 1)  
RXSTx[2] (LSB)  
RXSTx[1]  
RXSTx[0]  
RXDx[0]  
COMDETx  
DOUTx[0]  
DOUTx[1]  
DOUTx[2]  
DOUTx[3]  
DOUTx[4]  
DOUTx[5]  
DOUTx[6]  
DOUTx[7]  
DOUTx[8]  
DOUTx[9]  
RXSTx[2]  
RXSTx[1]  
RXSTx[0]  
RXDx[0]  
RXDx[1]  
RXDx[2]  
RXDx[3]  
RXDx[4]  
RXDx[5]  
RXDx[6]  
RXDx[7]  
Receive Status Bits  
When the 10B/8B decoder is enabled, each character  
presented at the Output Register includes three associated  
status bits. These bits are used to identify  
RXDx[1]  
RXDx[2]  
• if the contents of the data bus are valid,  
• the type of character present,  
• the state of receive BIST operations,  
• character violations.  
RXDx[3]  
RXDx[4]  
RXDx[5]  
RXDx[6]  
These conditions often overlap; e.g. a valid data character  
received with incorrect running disparity is not reported as a  
valid data character. It is instead reported as a decoder  
violation of some specific type. This implies a hierarchy or  
priority level to the various status bit combinations. The  
hierarchy and value of each status are listed in Table 11.  
RXDx[7] (MSB)  
When the 10B/8B decoder is bypassed, the framed 10-bit  
value is presented to the associated Output Register, along  
with a status output signal indicating if the character in the  
Output Register is one of the selected framing characters. The  
bit usage and mapping of the external signals to the raw 10B  
transmission character is shown in Table 8.  
A second status mapping, listed in Table 11, is used when the  
receive channel is configured for BIST operation. This status  
is used to report receive BIST status and progress.  
The COMDETx status output operates the same regardless of  
the bit combination selected for character framing by the  
FRAMCHARx latch. COMDETx is HIGH when the character in  
the output register contains the selected framing character at  
the proper character boundary, and LOW for all other bit  
combinations.  
BIST Status State Machine  
When a receive path is enabled to look for and compare the  
received data stream with the BIST pattern, the RXSTx[2:0]  
bits identify the present state of the BIST compare operation.  
The BIST state machine has multiple states, as shown in  
Figure 2 and Table 11. When the receive PLL detects an  
out-of-lock condition, the BIST state is forced to the  
Start-of-BIST state, regardless of the present state of the BIST  
state machine. If the number of detected errors ever exceeds  
the number of valid matches by greater than 16, the state  
machine is forced to the WAIT_FOR_BIST state where it  
monitors the receive path for the first character of the next  
BIST sequence (D0.0). Also, if the Elasticity Buffer ever hits an  
overflow/underflow condition, the status is forced to the  
When the low-latency framer and half-rate receive port  
clocking are also enabled, the framer stretches the recovered  
clock to the nearest 20-bit boundary such that the rising edge  
of RXCLKx+ occurs when COMDETx is present on the  
associated output bus.  
When the Cypress or Alternate Mode Framer is enabled and  
half-rate receive port clocking is also enabled, the output clock  
is not modified when framing is detected, but a single pipeline  
stage may be added or subtracted from the data stream by the  
Document #: 38-02065 Rev. *F  
Page 19 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
BIST_START until the buffer is re-centered (approximately  
nine character periods).  
8 and 11. The GLENx bit cannot be modified by a global write  
operation.  
To ensure compatibility between the source and destination  
systems when operating in BIST modes, the sending and  
receiving ends of the link must use the same receive clock  
configuration.  
Force Global Enable Function  
FGLENx forces the global update of the target latch banks, but  
does not change the contents of the GLENx bits. If FGLENx =  
1 for the associated global channel, FGLENx forces the global  
update of the target latch banks.  
Device Configuration and Control Interface  
The CYP(V)(W)15G0403DXB is highly configurable via the  
configuration interface. The configuration interface allows the  
device to be configured globally or allows each channel to be  
configured independently. Table 9 lists the configuration  
latches within the device including the initialization value of the  
latches upon the assertion of RESET. Table 10 on page 24  
shows how the latches are mapped in the device. Each row in  
the Table 10 maps to a 8-bit latch bank. There are 16 such  
write-only latch banks. When WREN = 0, the logic value in the  
DATA[7:0] is latched to the latch bank specified by the values  
in ADDR[3:0]. The second column of Table 10 specifies the  
channels associated with the corresponding latch bank. For  
example, the first three latch banks (0,1 and 2) consist of  
configuration bits for channel A. The latch banks 12, 13 and 14  
consist of Global configuration bits and the last latch bank (15)  
is the Mask latch bank that can be configured to perform  
bit-by-bit configuration.  
Mask Function  
An additional latch bank (15) is used as a global mask vector  
to control the update of the configuration latch banks on a  
bit-by-bit basis. A logic 1 in a bit location allows for the update  
of that same location of the target latch bank(s), whereas a  
logic 0 disables it. The reset value of this latch bank is FFh,  
thereby making its use optional by default. The mask latch  
bank is not maskable. The FGLEN functionality is not affected  
by the bit 0 value of the mask latch bank.  
Latch Types  
There are two types of latch banks: static (S) and dynamic (D).  
Each channel is configured by 2 static and 1 dynamic latch  
banks. The S type contain those settings that normally do not  
change for a given application, whereas the D type controls  
the settings that could change dynamically during the appli-  
cation's lifetime.The first row of latches for each channel  
(address numbers 0, 3, 7, and 10) are the static receiver  
control latches. The second row of latches for each channel  
(address numbers 1, 4, 8, and 11) are the static transmitter  
control latches. The third row of latches for each channel  
(address numbers 2, 5, 9, and 12) are the dynamic control  
latches that are associated with enabling dynamic functions  
within the device.  
Global Enable Function  
The global enable function, controlled by the GLENx bits, is a  
feature that can be used to reduce the number of write opera-  
tions needed to setup the latch banks. This function is  
beneficial in systems that use a common configuration in  
multiple channels. The GLENx bit is present in bit 0 of latch  
banks 0 through 11 only. Its default value (1) enables the global  
update of the latch bank's contents. Setting the GLENx bit to  
0 disables this functionality.  
Latch Bank 14 is also useful for those users that do not need  
the latch-based programmable feature of the device. This  
latch bank could be used in those applications that do not need  
to modify the default value of the static latch banks, and that  
can afford a global (i.e., not independent) control of the  
dynamic signals. In this case, this feature becomes available  
when ADDR[3:0] is left unchanged with a value of “1110” and  
WREN is left asserted. The signals present in DATA[7:0] effec-  
tively become global control pins, and for the latch banks 2, 5,  
8 and 11.  
Latch Banks 12, 13, and 14 are used to load values in the  
related latch banks in a global manner. A write operation to  
latch bank 12 could do a global write to latch banks 0, 3, 6, and  
9 depending on the value of GLENx in these latch banks; latch  
bank 13 could do a global write to latch banks 1, 4, 7 and 10;  
and latch banks 14 could do a global write to latch banks 2, 5,  
Table 9. Device Configuration and Control Latch Descriptions  
Name  
Signal Description  
RFMODEA[1:0] Reframe Mode Select. The initialization value of the RFMODEx [1:0] latches = 10. RFMODEx is used to  
RFMODEB[1:0] select the operating mode of the framer. When RFMODEx[1:0] = 00, the low-latency framer is selected. This  
RFMODEC[1:0] frames on each occurrence of the selected framing character(s) in the received data stream. This mode of  
RFMODED[1:0] framing stretches the recovered clock for one or multiple cycles to align that clock with the recovered data.  
When RFMODEx[1:0] = 01, the alternate mode Multi-Byte parallel framer is selected. This requires detection  
of the selected framing character(s) in the received serial bit stream, on identical 10-bit boundaries, on four  
directly adjacent characters. The recovered character clock remains in the same phasing regardless of  
character offset. When RFMODEx[1:0] =10, the Cypress-mode Multi-Byte parallel framer is selected. This  
requires a pair of the selected framing character(s), on identical 10-bit boundaries, within a span of 50 bits,  
before the character boundaries are adjusted. The recovered character clock remains in the same phasing  
regardless of character offset. RFMODEx[1:0] = 11 is reserved for test.  
Document #: 38-02065 Rev. *F  
Page 20 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 9. Device Configuration and Control Latch Descriptions (continued)  
Name  
Signal Description  
FRAMCHARA  
FRAMCHARB  
FRAMCHARC  
FRAMCHARD  
Framing Character Select. The initialization value of the FRAMCHARx latch = 1. FRAMCHARx is used to  
select the character or portion of a character used for framing of each channel’s received data stream. When  
FRAMCHARx = 1, the framer looks for either disparity of the K28.5 character. When FRAMCHARx = 0, the  
framer looks for either disparity of the 8-bit Comma characters. The specific bit combinations of these framing  
characters are listed in Table 6 on page 17.  
DECMODEA  
DECMODEB  
DECMODEC  
DECMODED  
Receiver Decoder Mode Select. The initialization value of the DECMODEx latch = 1. DECMODEx selects  
the Decoder Mode used for the associated channel. When DECMODEx = 1 and decoder is enabled, the  
Cypress Decoding Mode is used. When DECMODEx = 0 and decoder is enabled, the Alternate Decoding  
mode is used. When the decoder is enabled (DECBYPx = 1), the 10-bit transmission characters are decoded  
using Table 15 on page 39 and Table 16 on page 43. The column used in the Special Characters Table 16 is  
determined by the DECMODEx latch.  
DECBYPA  
DECBYPB  
DECBYPC  
DECBYPD  
Receiver Decoder Bypass. The initialization value of the DECBYPx latch = 1. DECBYPx selects if the  
Receiver Decoder is enabled or bypassed. When DECBYPx = 1, the decoder is enabled and the Decoder  
Mode is selected by DECMODEx. When DECBYPx = 0, the decoder is bypassed and raw 10-bit characters  
are passed through the receiver.  
RXCKSELA  
RXCKSELB  
RXCKSELC  
RXCKSELD  
Receive Clock Select. The initialization value of the RXCKSELx latch = 1. RXCKSELx selects the receive  
clock source used to transfer data to the Output Registers and the clock source for the RXCLK± output. When  
RXCKSELx = 1, the associated Output Registers, are clocked by REFCLKx± at the associated RXCLKx±  
output buffer. When RXCKSELx = 0, the associated Output Registers, are clocked by the Recovered Byte  
clock at the associated RXCLKx± output buffer. These output clocks may operate at the character-rate or half  
the character-rate as selected by RXRATEx.  
RXRATEA  
RXRATEB  
RXRATEC  
RXRATED  
Receive Clock Rate Select. The initialization value of the RXRATEx latch = 1. RXRATEx is used to select  
the rate of the RXCLKx± clock output.  
When RXRATEx = 1 and RXCKSELx = 0, the RXCLKx± clock outputs are complementary clocks that follow  
the recovered clock operating at half the character rate. Data for the associated receive channels should be  
latched alternately on the rising edge of RXCLKx+ and RXCLKx–.  
When RXRATEx = 0 and RXCKSELx = 0, the RXCLKx± clock outputs are complementary clocks that follow  
the recovered clock operating at the character rate. Data for the associated receive channels should be latched  
on the rising edge of RXCLKx+ or falling edge of RXCLKx–.  
When RXRATEx = 1 with RXCKSELx = 1 and REFCLKx± is a full-rate clock, the RXCLKx± clock outputs are  
complementary clocks that follow the reference clock operating at half the character rate. Data for the  
associated receive channels should be latched alternately on the rising edge of RXCLKx+ and RXCLKx–.  
When RXRATEx = 0 with RXCKSELx = 1 and REFCLKx± is a full-rate clock, the RXCLKx± clock outputs are  
complementary clocks that follow the reference clock operating at the character rate. Data for the associated  
receive channels should be latched on the rising edge of RXCLKx+ or falling edge of RXCLKx–.  
When RXCKSELx = 1 and REFCLKx± is a half-rate clock, the value of RXRATEx is not interpreted and the  
RXCLKx± clock outputs are complementary clocks that follow the reference clock operating at half the  
character rate. Data for the associated receive channels should be latched alternately on the rising edge of  
RXCLKx+ and RXCLKx–.  
SDASEL1A[1:0] Primary Serial Data Input Signal Detector Amplitude Select. The initialization value of the SDASEL1x[1:0]  
SDASEL1B[1:0] latch = 10. SDASEL1x[1:0] selects the trip point for the detection of a valid signal for the INx1± Primary  
SDASEL1C[1:0] Differential Serial Data Inputs.  
SDASEL1D[1:0] When SDASEL1x[1:0] = 00, the Analog Signal Detector is disabled.  
When SDASEL1x[1:0] = 01, the typical p-p differential voltage threshold level is 140 mV.  
When SDASEL1x[1:0] = 10, the typical p-p differential voltage threshold level is 280 mV.  
When SDASEL1x[1:0] = 11, the typical p-p differential voltage threshold level is 420 mV.  
SDASEL2A[1:0] Secondary Serial Data Input Signal Detector Amplitude Select. The initialization value of the  
SDASEL2B[1:0] SDASEL2x[1:0] latch = 10. SDASEL2x[1:0] selects the trip point for the detection of a valid signal for the INx2±  
SDASEL2C[1:0] Secondary Differential Serial Data Inputs.  
SDASEL2D[1:0] When SDASEL2x[1:0] = 00, the Analog Signal Detector is disabled  
When SDASEL2x[1:0] = 01, the typical p-p differential voltage threshold level is 140 mV.  
When SDASEL2x[1:0] = 10, the typical p-p differential voltage threshold level is 280 mV.  
When SDASEL2x[1:0] = 11, the typical p-p differential voltage threshold level is 420 mV.  
Document #: 38-02065 Rev. *F  
Page 21 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 9. Device Configuration and Control Latch Descriptions (continued)  
Name  
Signal Description  
ENCBYPA  
ENCBYPB  
ENCBYPC  
ENCBYPD  
Transmit Encoder Bypassed. The initialization value of the ENCBYPx latch = 1. ENCBYPx selects if the  
Transmit Encoder is enabled or bypassed. When ENCBYPx = 1, the Transmit encoder is enabled. When  
ENCBYPx = 0, the Transmit Encoder is bypassed and raw 10-bit characters are transmitted.  
TXCKSELA  
TXCKSELB  
TXCKSELC  
TXCKSELD  
Transmit Clock Select. The initialization value of the TXCKSELx latch = 1. TXCKSELx selects the clock  
source used to write data into the Transmit Input Register. When TXCKSELx = 1, the associated input register,  
TXDx[7:0] and TXCTx[1:0], is clocked by REFCLKx↑. In this mode, the phase alignment buffer in the transmit  
path is bypassed. When TXCKSELx = 0, the associated TXCLKxis used to clock in the input registers,  
TXDx[7:0] and TXCTx[1:0].  
TXRATEA  
TXRATEB  
TXRATEC  
TXRATED  
Transmit PLL Clock Rate Select. The initialization value of the TXRATEx latch = 0. TXRATEx is used to  
select the clock multiplier for the Transmit PLL. When TXRATEx = 0, each transmit PLL multiples the  
associated REFCLKx± input by 10 to generate the serial bit-rate clock. When TXRATEx = 0, the TXCLKOx  
output clocks are full-rate clocks and follow the frequency and duty cycle of the associated REFCLKx± input.  
When TXRATEx = 1, each Transmit PLL multiplies the associated REFCLKx± input by 20 to generate the  
serial bit-rate clock. When TXRATEx = 1, the TXCLKOx output clocks are twice the frequency rate of the  
REFCLKx± input. When TXCKSELx = 1 and TXRATEx = 1, the Transmit Data Inputs are captured using both  
the rising and falling edges of REFCLKx. TXRATEx = 1 and SPDSELx is LOW, is an invalid state and this  
combination is reserved.  
RFENA  
RFENB  
RFENC  
RFEND  
Reframe Enable. The initialization value of the RFENx latch = 1. RFENx selects if the receiver framer is  
enabled or disabled. When RFENx = 1, the associated channel’s framer is enabled to frame per the presently  
enabled framing mode and selected framing character. When RFENx = 0, the associated channel’s framer is  
disabled, and no received bits alters the frame offset.  
RXPLLPDA  
RXPLLPDB  
RXPLLPDC  
RXPLLPDD  
Receive Channel Enable. The initialization value of the RXPLLPDx latch = 0. RXPLLPDx selects if the  
associated receive channel is enabled or powered-down. When RXPLLPDx = 0, the associated PLL and  
analog circuitry is powered-down. When RXPLLPDx = 1, the associated PLL and analog circuitry is enabled.  
RXBISTA  
RXBISTB  
RXBISTC  
RXBISTD  
Receive Bist Disabled. The initialization value of the RXBISTx latch = 1. RXBISTx selects if receive BIST is  
disabled or enabled. When RXBISTx = 1, the receiver BIST function is disabled. When RXBISTx = 0, the  
receive BIST function is enabled.  
TXBISTA  
TXBISTB  
TXBISTC  
TXBISTD  
Transmit Bist Disabled. The initialization value of the TXBISTx latch = 1. TXBISTx selects if the transmit  
BIST is disabled or enabled. When TXBISTx = 1, the transmit BIST function is disabled. When TXBISTx = 0,  
the transmit BIST function is enabled.  
OE2A  
OE2B  
OE2C  
OE2D  
Secondary Differential Serial Data Output Driver Enable. The initialization value of the OE2x latch = 0.  
OE2x selects if the OUT2± secondary differential output drivers are enabled or disabled. When OE2x = 1, the  
associated serial data output driver is enabled allowing data to be transmitted from the transmit shifter. When  
OE2x = 0, the associated serial data output driver is disabled. When a driver is disabled via the configuration  
interface, it is internally powered down to reduce device power. If both serial drivers for a channel are in this  
disabled state, the associated internal logic for that channel is also powered down. A device reset (RESET  
sampled LOW) disables all output drivers.  
OE1A  
OE1B  
OE1C  
OE1D  
Primary Differential Serial Data Output Driver Enable. The initialization value of the OE1x latch = 0. OE1x  
selects if the OUT1± primary differential output drivers are enabled or disabled. When OE1x = 1, the associated  
serial data output driver is enabled allowing data to be transmitted from the transmit shifter. When OE1x = 0,  
the associated serial data output driver is disabled. When a driver is disabled via the configuration interface,  
it is internally powered down to reduce device power. If both serial drivers for a channel are in this disabled  
state, the associated internal logic for that channel is also powered down. A device reset (RESET sampled  
LOW) disables all output drivers.  
PABRSTA  
PABRSTB  
PABRSTC  
PABRSTD  
Transmit Clock Phase Alignment Buffer Reset. The initialization value of the PABRSTx latch = 1. The  
PABRSTx is used to re-center the Transmit Phase Align Buffer. When the configuration latch PABRSTx is  
written as a 0, the phase of the TXCLKx input clock relative to its associated REFCLKx+/- is initialized.  
PABRST is an asynchronous input, but is sampled by each TXCLKxto synchronize it to the internal clock  
domain. PABRSTx is a self clearing latch. This eliminates the requirement of writing a 1 to complete the  
initialization of the Phase Alignment Buffer.  
Document #: 38-02065 Rev. *F  
Page 22 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 9. Device Configuration and Control Latch Descriptions (continued)  
Name  
Signal Description  
GLEN[11..0]  
Global Enable. The initialization value of the GLENx latch = 1. The GLENx is used to reconfigure several  
channels simultaneously in applications where several channels may have the same configuration. When  
GLENx = 1 for a given address, that address is allowed to participate in a global configuration. When GLENx  
= 0 for a given address, that address is disabled from participating in a global configuration.  
FGLEN[2..0]  
Force Global Enable. The initialization value of the FGLENx latch is NA. The FGLENx latch forces a GLobal  
ENable no matter what the setting is on the GLENx latch. If FGLENx = 1 for the associated Global channel,  
FGLEN forces the global update of the target latch banks.  
Device Configuration Strategy  
4. Set the dynamic bank of latches for the target channel.  
Enable the Receive PLLs and transmit channels. May be  
performed using a global operation, if the application  
permits it. [Required step.]  
The following is a series of ordered events needed to load the  
configuration latches on a per channel basis:  
1. Pulse RESET Low after device power-up. This operation  
resets all four channels. Initialize the JTAG state machine  
to its reset state as detailed in “JTAG Support” on page 24.  
5. Reset the Phase Alignment Buffer for the target channel.  
May be performed using a global operation, if the appli-  
cation permits it. [Optional if phase align buffer is  
bypassed.]  
2. Set the static receiver latch bank for the target channel. May  
be performed using a global operation, if the application  
permits it. [Optional step if the default settings match the  
desired configuration.]  
When a receive channel is configured with the decoder  
bypassed and the receive clock selected as recovered clock  
in half-rate mode (DECBYPx = 0, RXRATEx = 1, RXCKSELx  
= 0), the channel cannot be dynamically reconfigured to  
enable the decoder with RXCLKx selected as the REFCLKx  
(DECBYPx = 1, RXCKSELx = 1). If such a change is desired,  
a global reset should be performed and all channels should be  
reconfigured to the desired settings.  
3. Set the static transmitter latch bank for the target channel.  
May be performed using a global operation, if the appli-  
cation permits it. [Optional step if the default settings match  
the desired configuration.]  
Document #: 38-02065 Rev. *F  
Page 23 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 10.Device Control Latch Configuration Table  
Reset  
ADDR Channel Type  
DATA7  
RFMODEA[1] RFMODEA[0] FRAMCHARA  
SDASEL2A[1] SDASEL2A[0] SDASEL1A[1] SDASEL1A[0] ENCBYPA TXCKSELA TXRATEA  
RFENA RXPLLPDA RXBISTA TXBISTA OE2A OE1A PABRSTA  
RFMODEB[1] RFMODEB[0] FRAMCHARB DECMODEB DECBYPB RXCKSELB RXRATEB  
SDASEL2B[1] SDASEL2B[0] SDASEL1B[1] SDASEL1B[0] ENCBYPB TXCKSELB TXRATEB  
RFENB RXPLLPDB RXBISTB TXBISTB OE2B OE1B PABRSTB  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
Value  
0
A
S
S
D
S
S
D
S
S
D
S
S
D
S
S
D
D
DECMODEA DECBYPA RXCKSELA RXRATEA  
GLEN0  
10111111  
(0000b)  
1
A
GLEN1  
GLEN2  
GLEN3  
GLEN4  
GLEN5  
GLEN6  
GLEN7  
GLEN8  
10101101  
10110011  
10111111  
10101101  
10110011  
10111111  
10101101  
10110011  
10111111  
10101101  
10110011  
N/A  
(0001b)  
2
A
(0010b)  
3
B
(0011b)  
4
B
(0100b)  
5
B
(0101b)  
6
C
RFMODEC[1] RFMODEC[0] FRAMCHARC DECMODEC DECBYPC RXCKSELC RXRATEC  
SDASEL2C[1] SDASEL2C[0] SDASEL1C[1] SDASEL1C[0] ENCBYPC TXCKSELC TXRATEC  
(0110b)  
7
C
(0111b)  
8
C
D
RFENC  
RXPLLPDC  
RXBISTC  
TXBISTC  
OE2C  
OE1C  
PABRSTC  
(1000b)  
9
RFMODED[1] RFMODED[0] FRAMCHARD DECMODED DECBYPD RXCKSELD RXRATE D GLEN9  
SDASEL2D[1] SDASEL2D[0] SDASEL1D[1] SDASEL1D[0] ENCBYPD TXCKSELD TXRATED GLEN10  
(1001b)  
10  
(1010b)  
D
11  
(1011b)  
D
RFEND  
RXPLLPDD  
RXBISTD  
TXBISTD  
OE2D  
OE1D  
PABRSTD GLEN11  
12  
GLOBAL  
GLOBAL  
GLOBAL  
MASK  
RFMODEGL[1]  
RFMODE  
GL[0]  
FRAMCHARGL DECMODEGL DECBYPGL RXCKSELGL RXRATEG FGLEN0  
L
(1100b)  
13  
(1101b)  
SDASEL2GL[1] SDASEL2GL[ SDASEL1GL[1] SDASEL1GL[0 ENCBPGL TXCKSELGL TXRATEG FGLEN1  
N/A  
0]  
]
L
14  
(1110b)  
RFENGL  
D7  
RXPLLPDGL  
RXBISTGL  
D5  
TXBISTGL  
OE2GL  
D3  
OE1GL  
D2  
PABRSTG FGLEN2  
L
N/A  
15  
(1111b)  
D6  
D4  
D1  
D0  
11111111  
ensure that the JTAG controller does not enter any of the test  
modes after device power-up. In this JTAG reset state, the rest  
of the device will be in normal operation.  
JTAG Support  
The CYP(V)(W)15G0403DXB contains a JTAG port to allow  
system level diagnosis of device interconnect. Of the available  
JTAG modes, boundary scan, and bypass are supported. This  
capability is present only on the LVTTL inputs and outputs and  
the REFCLKx± clock input. The high-speed serial inputs and  
outputs are not part of the JTAG test chain.  
Note. The order of device reset (using RESET) and JTAG  
initialization does not matter.  
3-Level Select Inputs  
Each 3-Level select inputs reports as two bits in the scan  
register. These bits report the LOW, MID, and HIGH state of  
the associated input as 00, 10, and 11 respectively  
To ensure valid device operation after power-up (including  
non-JTAG operation), the JTAG state machine should also be  
initialized to a reset state. This should be done in addition to  
the device reset (using RESET). The JTAG state machine can  
be initialized using TRST (asserting it LOW and de-asserting  
it or leaving it asserted), or by asserting TMS HIGH for at least  
5 consecutive TCLK cycles. This is necessary in order to  
JTAG ID  
The JTAG device ID for the CYP(V)(W)15G0403DXB is  
‘0C810069’x.  
Document #: 38-02065 Rev. *F  
Page 24 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 11.Receive Character Status Bits  
RXSTx[2:0] Priority  
Description  
Receive BIST Status  
(Receive BIST = Enabled)  
Normal Status  
000  
7
Normal character received. The valid Data BIST Data Compare. Character compared correctly.  
character on the output bus meets all the  
formatting requirements of Data characters  
listed in Table 15 on page 39.  
001  
7
Special code detected. The valid special BIST Command Compare. Character compared  
character on the output bus meets all the correctly.  
formatting requirements of Special Code  
characters listed in Table 16 on page 43, but is  
not the presently selected framing character or a  
decoder violation indication.  
010  
011  
2
5
Receive Elasticity buffer underrun/overrun BIST Last Good. Last Character of BIST sequence  
error. The receive buffer was not able to detected and valid.  
add/drop a K28.5 or framing character  
Framing character detected. This indicates  
that a character matching the patterns identified  
as  
a framing character (as selected by  
FRAMCHARx) was detected. The decoded  
value of this character is present in the  
associated output bus.  
100  
101  
4
1
Codeword violation. The character on the BIST Last Bad. Last Character of BIST sequence  
output bus is a C0.7. This indicates that the detected invalid.  
received character cannot be decoded into any  
valid character.  
Loss of sync. This indicates a PLL Out of Lock BIST Start. Receive BIST is enabled on this channel,  
condition  
but character compares have not yet commenced. This  
also indicates a PLL Out of Lock condition, and  
Elasticity Buffer overflow/underflow conditions.  
110  
111  
6
3
Running disparity error. The character on the BIST Error. While comparing characters, a mismatch  
output bus is a C4.7, C1.7, or C2.7.  
was found in one or more of the decoded character bits.  
Reserved  
BIST Wait. The receiver is comparing characters. but  
has not yet found the start of BIST character to enable  
the LFSR.  
Document #: 38-02065 Rev. *F  
Page 25 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Figure 2. Receive BIST State Machine  
Monitor Data  
Receive BIST  
Received  
Detected LOW  
RXSTx =  
BIST_START (101)  
RX PLL  
Out of Lock  
RXSTx =  
BIST_START (101)  
RXSTx =  
BIST_WAIT (111)  
Elasticity  
Buffer Error  
Yes  
Start of  
BIST Detected  
No  
No  
Yes, RXSTx =  
BIST_DATA_COMPARE (000) / BIST_COMMAND_COMPARE (001)  
Compare  
Next Character  
RXSTx =  
Mismatch  
BIST_COMMAND_COMPARE (001)  
Match  
Command  
Data or  
Command  
Auto-Abort  
Condition  
Yes  
RXSTx =  
BIST_DATA_COMPARE (000)  
No  
Data  
End-of-BIST  
State  
End-of-BIST  
State  
No  
Yes, RXSTx =  
BIST_LAST_BAD (100)  
Yes, RXSTx =  
BIST_LAST_GOOD (010)  
No, RXSTx =  
BIST_ERROR (110)  
Document #: 38-02065 Rev. *F  
Page 26 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Static Discharge Voltage..........................................> 2000 V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
Above which the useful life may be impaired. User guidelines  
only, not tested  
Latch-up Current.....................................................> 200 mA  
Power-up Requirements  
Storage Temperature ..................................65°C to +150°C  
The CYP(V)(W)15G0403DXB requires one power-supply. The  
Voltage on any input or I/O pin cannot exceed the power pin  
during power-up.  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Supply Voltage to Ground Potential............... –0.5V to +3.8V  
Operating Range  
DC Voltage Applied to LVTTL Outputs  
in High-Z State .......................................–0.5V to VCC + 0.5V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VCC  
Output Current into LVTTL Outputs (LOW)..................60 mA  
DC Input Voltage....................................–0.5V to VCC + 0.5V  
+3.3V ±5%  
+3.3V ±5%  
–40°C to +85°C  
CYP(V)(W)15G0403DXB DC Electrical Characteristics  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
LVTTL-compatible Outputs  
VOHT  
VOLT  
IOST  
IOZL  
Output HIGH Voltage  
Output LOW Voltage  
IOH = 4 mA, VCC = Min.  
IOL = 4 mA, VCC = Min.  
VOUT = 0V[10], VCC = 3.3V  
VOUT = 0V, VCC  
2.4  
V
V
0.4  
–100  
20  
Output Short Circuit Current  
–20  
–20  
mA  
µA  
High-Z Output Leakage Current  
LVTTL-compatible Inputs  
VIHT  
VILT  
IIHT  
Input HIGH Voltage  
2.0  
VCC + 0.3  
0.8  
V
Input LOW Voltage  
Input HIGH Current  
–0.5  
V
REFCLKx Input, VIN = VCC  
Other Inputs, VIN = VCC  
REFCLKx Input, VIN = 0.0V  
Other Inputs, VIN = 0.0V  
1.5  
mA  
µA  
mA  
µA  
µA  
µA  
+40  
IILT  
Input LOW Current  
–1.5  
–40  
IIHPDT  
IILPUT  
Input HIGH Current with internal pull-down VIN = VCC  
+200  
–200  
Input LOW Current with internal pull-up  
VIN = 0.0V  
LVDIFF Inputs: REFCLKx±  
[11]  
VDIFF  
Input Differential Voltage  
400  
1.2  
0.0  
1.0  
VCC  
VCC  
mV  
V
VIHHP  
Highest Input HIGH Voltage  
Lowest Input LOW voltage  
Common Mode Range  
VILLP  
VCC/2  
V
[12]  
VCOMREF  
VCC – 1.2V  
V
3-Level Inputs  
VIHH  
VIMM  
VILL  
IIHH  
IIMM  
IILL  
Three-Level Input HIGH Voltage  
Min. VCC Max.  
Min. VCC Max.  
Min. VCC Max.  
VIN = VCC  
0.87 * VCC  
0.47 * VCC  
0.0  
VCC  
0.53 * VCC  
0.13 * VCC  
200  
V
V
Three-Level Input MID Voltage  
Three-Level Input LOW Voltage  
Input HIGH Current  
V
µA  
µA  
µA  
Input MID current  
VIN = VCC/2  
–50  
50  
Input LOW current  
VIN = GND  
–200  
Notes  
10. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle.  
11. This is the minimum difference in voltage between the true and complement inputs required to ensure detection of a logic-1 or logic-0. A logic-1 exists when the  
true (+) input is more positive than the complement () input. A logic-0 exists when the complement () input is more positive than true (+) input.  
12. The common mode range defines the allowable range of REFCLKx+ and REFCLKxwhen REFCLKx+ = REFCLKx. This marks the zero-crossing between  
the true and complement inputs as the signal switches between a logic-1 and a logic-0.  
Document #: 38-02065 Rev. *F  
Page 27 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
CYP(V)(W)15G0403DXB DC Electrical Characteristics (continued)  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
Differential CML Serial Outputs: OUTA1±, OUTA2±, OUTB1±, OUTB2±, OUTC1±, OUTC2±, OUTD1±, OUTD2±  
VOHC  
VOLC  
VODIF  
Output HIGH Voltage  
(Vcc Referenced)  
100Ω differential load  
150Ω differential load  
100Ω differential load  
150Ω differential load  
100Ω differential load  
150Ω differential load  
VCC – 0.5  
VCC – 0.5  
VCC – 1.4  
VCC – 1.4  
450  
VCC – 0.2  
VCC – 0.2  
VCC – 0.7  
VCC – 0.7  
900  
V
V
Output LOW Voltage  
(VCC Referenced)  
V
V
Output Differential Voltage  
|(OUT+) (OUT)|  
mV  
mV  
560  
1000  
Differential Serial Line Receiver Inputs: INA1±, INA2±, INB1±, INB2±, INC1±, INC2±, IND1±, IND2±  
[11]  
VDIFFs  
VIHE  
VILE  
Input Differential Voltage |(IN+) (IN)|  
Highest Input HIGH Voltage  
Lowest Input LOW Voltage  
Input HIGH Current  
100  
1200  
VCC  
mV  
V
VCC – 2.0  
V
IIHE  
VIN = VIHE Max.  
VIN = VILE Min.  
1350  
+3.1  
μA  
μA  
V
IILE  
Input LOW Current  
–700  
[13]  
VICOM  
Common Mode input range  
((VCC – 2.0V)+0.5)min,  
(VCC – 0.5V) max.  
+1.25  
Power Supply  
Typ.  
Max.  
1270  
1320  
1270  
1320  
[14, 15]  
ICC  
Max Power Supply Current  
REFCLKx= Commercial  
910  
mA  
mA  
mA  
mA  
MAX  
Industrial  
[14, 15]  
ICC  
Typical Power Supply Current  
REFCLKx= Commercial  
900  
125 MHz  
Industrial  
AC Test Loads and Waveforms  
3.3V  
RL = 100Ω  
R
L
R1  
R2  
R1 = 590Ω  
R2 = 435Ω  
CL 7 pF  
(Includes fixture and  
probe capacitance)  
(b) CML Output Test Load[16]  
CL  
(Includes fixture and  
probe capacitance)  
(a) LVTTL Output Test Load [16]  
VIHE  
3.0V  
VIHE  
2.0V  
0.8V  
2.0V  
0.8V  
80%  
80%  
Vth = 1.4V  
Vth = 1.4V  
20%  
20%  
VILE  
270 ps  
GND  
VILE  
270 ps  
1 ns  
1 ns  
(c) LVTTL Input Test Waveform[17]  
(d) CML/LVPECL Input Test Waveform  
Notes  
13. The common mode range defines the allowable range of INPUT+ and INPUTwhen INPUT+ = INPUT. This marks the zero-crossing between the true and  
complement inputs as the signal switches between a logic-1 and a logic-0.  
14. Maximum I is measured with V = MAX, RFENx = 0, T = 25°C, with all channels and Serial Line Drivers enabled, sending a continuous alternating 01  
CC  
CC  
A
pattern, and outputs unloaded.  
15. Typical I is measured under similar conditions except with V = 3.3V, T = 25°C, RFENx = 0, with all channels enabled and one Serial Line Driver per transmit  
CC  
CC  
A
channel sending a continuous alternating 01 pattern. The redundant outputs on each channel are powered down and the parallel outputs are unloaded.  
16. Cypress uses constant current (ATE) load configurations and forcing functions. This figure is for reference only.  
17. The LVTTL switching threshold is 1.4V. All timing references are made relative to where the signal edges cross the threshold voltage.  
Document #: 38-02065 Rev. *F  
Page 28 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
CYP(V)(W)15G0403DXB AC Electrical Characteristics  
Parameter  
Description  
Min.  
Max  
Unit  
CYP(V)(W)15G0403DXB Transmitter LVTTL Switching Characteristics Over the Operating Range  
fTS  
TXCLKx Clock Cycle Frequency  
TXCLKx Period=1/fTS  
19.5  
6.66[19]  
2.2  
150[18]  
51.28  
MHz  
ns  
tTXCLK  
[20]  
tTXCLKH  
TXCLKx HIGH Time  
ns  
[20]  
tTXCLKL  
TXCLKx LOW Time  
2.2  
ns  
[20, 21, 22, 23]  
tTXCLKR  
tTXCLKF  
tTXDS  
TXCLKx Rise Time  
0.2  
1.7  
1.7  
ns  
[20, 21, 22, 23]  
TXCLKx Fall Time  
0.2  
ns  
Transmit Data Set-up Time to TXCLKx(TXCKSELx 0)  
Transmit Data Hold Time from TXCLKx(TXCKSELx 0)  
TXCLKOx Clock Frequency = 1x or 2x REFCLKx Frequency  
TXCLKOx Period=1/fTOS  
2.2  
ns  
tTXDH  
1.0  
ns  
fTOS  
19.5  
6.66[19]  
–1.9  
150[18]  
51.28  
0
MHz  
ns  
tTXCLKO  
tTXCLKOD  
TXCLKO Duty Cycle centered at 60% HIGH time  
ns  
CYP(V)(W)15G0403DXB Receiver LVTTL Switching Characteristics Over the Operating Range  
fRS  
RXCLKx± Clock Output Frequency  
RXCLKx± Period = 1/fRS  
9.75  
6.66[19]  
–1.0  
150[18]  
102.56  
+1.0  
MHz  
ns  
tRXCLKP  
tRXCLKD  
RXCLKx± Duty Cycle Centered at 50% (Full Rate and Half Rate when  
RXCKSELx = 0)  
ns  
[20]  
tRXCLKR  
RXCLKx± Rise Time  
0.3  
0.3  
1.2  
1.2  
ns  
ns  
ns  
[20]  
tRXCLKF  
RXCLKx± Fall Time  
[24]  
tRXDv–  
Status and Data Valid Time to RXCLKx± (RXRATEx = 0, RXCKSELx = 5UI – 2.0[25]  
0) (Full Rate)  
Status and Data Valid Time to RXCLKx± (RXRATEx = 1, RXCKSELx = 5UI – 1.3[25]  
0) (Half Rate)  
ns  
ns  
ns  
5UI–1.8[25]  
[24]  
tRXDv+  
Status and Data Valid Time to RXCLKx± (RXRATEx = 0, RXCKSELx =  
0) (Full Rate)  
Status and Data Valid Time to RXCLKx± (RXRATEx = 1, RXCKSELx =0) 5UI – 2.6[25]  
(Half Rate)  
CYP(V)(W)15G0403DXB REFCLKx Switching Characteristics Over the Operating Range  
fREF  
REFCLKx Clock Frequency  
19.5  
6.66[19]  
5.9[26]  
2.9[20]  
5.9[26]  
2.9[20]  
30  
150[18]  
51.28  
MHz  
ns  
ns  
ns  
ns  
ns  
%
tREFCLK  
tREFH  
REFCLKx Period = 1/fREF  
REFCLKx HIGH Time (TXRATEx = 1)(Half Rate)  
REFCLKx HIGH Time (TXRATEx = 0)(Full Rate)  
REFCLKx LOW Time (TXRATEx = 1)(Half Rate)  
REFCLKx LOW Time (TXRATEx = 0)(Full Rate)  
REFCLKx Duty Cycle  
tREFL  
[27]  
tREFD  
70  
2
[20, 21, 22, 23]  
tREFR  
REFCLKx Rise Time (20%–80%)  
ns  
Notes  
18. This parameter is 154 MHz for CYW15G0403DXB.  
19. This parameter is 6.49 ns for CYW15G0403DXB.  
20. Tested initially and after any design or process changes that may affect these parameters, but not 100% tested.  
21. The ratio of rise time to falling time must not vary by greater than 2:1.  
22. For a given operating frequency, neither rise or fall specification can be greater than 20% of the clock-cycle period or the data sheet maximum time.  
23. All transmit AC timing parameters measured with 1 ns typical rise time and fall time.  
24. Parallel data output specifications are only valid if all outputs are loaded with similar DC and AC loads.  
25. Receiver UI (Unit Interval) is calculated as 1/(f  
* 20) (when TXRATEx = 1) or 1/(f  
* 10) (when TXRATEx = 0). In an operating link this is equivalent to t .  
REF  
R
E
F
B
26. If REFCLKx is selected as receive interface clock (RXCKSELx=1), then this parameter has to be greater than or equal to 6.3 ns.  
27. The duty cycle specification is a simultaneous condition with the t  
and t  
parameters. This means that at faster character rates the REFCLKx± duty  
REFL  
REFH  
cycle cannot be as large as 30%–70%.  
Document #: 38-02065 Rev. *F  
Page 29 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
CYP(V)(W)15G0403DXB AC Electrical Characteristics (continued)  
Parameter  
Description  
REFCLKx Fall Time (20%–80%)  
Min.  
Max  
Unit  
ns  
[20, 21, 22, 23]  
tREFF  
2
tTREFDS  
Transmit Data Set-up Time to REFCLKx - Full Rate  
(TXRATEx = 0, TXCKSELx = 1)  
2.4  
2.3  
1.0  
1.6  
ns  
Transmit Data Set-up Time to REFCLKx - Half Rate  
(TXRATEx = 1, TXCKSELx = 1)  
ns  
ns  
ns  
tTREFDH  
Transmit Data Hold Time from REFCLKx - Full Rate  
(TXRATEx = 0, TXCKSELx = 1)  
Transmit Data Hold Time from REFCLKx - Half Rate  
(TXRATEx = 1, TXCKSELx = 1)  
tRREFDA  
tRREFDW  
tREFxDV–  
Receive Data Access Time to REFCLKx (RXCKSELx = 1)  
Receive Data Valid Time Window (RXCKSELx = 1)  
9.7[28]  
ns  
ns  
ns  
10UI – 5.8  
10UI[25] – 6.16  
Received Data Valid Time to RXCLK when RXCKSELx = 1  
(TXRATEx = 0, RXRATEx = 0)  
Received Data Valid Time to RXCLK when RXCKSELx = 1  
5UI – 2.53[29]  
10UI – 5.86[29]  
1.4  
ns  
ns  
ns  
ns  
ns  
%
(TXRATEx = 0, RXRATEx = 1)  
Received Data Valid Time to RXCLK when RXCKSELx = 1  
(TXRATEx = 1)  
tREFxDV+  
Received Data Valid Time from RXCLK when RXCKSELx = 1  
(TXRATEx = 0, RXRATEx = 0)  
Received Data Valid Time from RXCLK when RXCKSELx = 1  
(TXRATEx = 0, RXRATEx = 1)  
5UI – 1.83[29]  
1.0[29]  
Received Data Valid Time from RXCLK when RXCKSELx = 1  
(TXRATEx = 1)  
[30]  
tREFRX  
REFCLKx Frequency Referenced to Received Clock Period  
–0.15  
+0.15  
CYP(V)(W)15G0403DXB Bus Configuration Write Timing Characteristics Over the Operating Range  
tDATAH  
tDATAS  
tWRENP  
Bus Configuration Data Hold  
0
ns  
ns  
ns  
Bus Configuration Data Set-up  
Bus Configuration WREN Pulse Width  
10  
10  
CYP(V)(W)15G0403DXB JTAG Test Clock Characteristics Over the Operating Range  
fTCLK  
tTCLK  
JTAG Test Clock Frequency  
JTAG Test Clock Period  
20  
MHz  
ns  
50  
30  
CYP(V)(W)15G0403DXB Device RESET Characteristics Over the Operating Range  
tRST Device RESET Pulse Width  
ns  
CYP(V)(W)15G0403DXB Transmit Serial Outputs and TX PLL Characteristics Over the Operating Range  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
tB  
Bit Time  
5128  
666  
ps  
Notes  
28. Since this timing parameter is greater than the minimum time period of REFCLK it sets an upper limit to the frequency in which REFCLKx can be used to clock  
the receive data out of the output register. For predictable timing, users can use this parameter only if REFCLK period is greater than sum of t  
and set-up  
RREFDA  
time of the upstream device. When this condition is not true, RXCLKx± (a buffered or divided version of REFCLK when RXCKSELx = 1) could be used to clock  
the receive data out of the device.  
29. Measured using a 50% duty cycle reference clock.  
30. REFCLKx has no phase or frequency relationship with the recovered clock and only acts as a centering reference to reduce clock synchronization time. REFCLKx  
must be within ±1500 ppm (±0.15%) of the remote transmitter’s PLL reference (REFCLKx) frequency. Although transmitting to a HOTLink II receiver channel  
necessitates the frequency difference between the transmitter and receiver reference clocks to be within ±1500 ppm, the stability of the crystal needs to be  
within the limits specified by the appropriate standard when transmitting to a remote receiver that is compliant to that standard. For example, to be IEEE 802.3z  
Gigabit Ethernet compliant, the frequency stability of the crystal needs to be within ±100 ppm.l.  
Document #: 38-02065 Rev. *F  
Page 30 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
CYP(V)(W)15G0403DXB AC Electrical Characteristics (continued)  
Parameter  
Description  
CML Output Rise Time 2080% (CML Test Load) SPDSELx = HIGH  
SPDSELx = MID  
Min.  
60  
Max  
270  
500  
1000  
270  
500  
1000  
27  
Unit  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
[20]  
tRISE  
100  
180  
60  
SPDSELx =LOW  
[20]  
tFALL  
CML Output Fall Time 8020% (CML Test Load)  
SPDSELx = HIGH  
SPDSELx = MID  
SPDSELx =LOW  
IEEE 802.3z  
100  
180  
[20, 31, 33]  
[20, 32, 33]  
[20]  
tDJ  
Deterministic Jitter (peak-peak)[34]  
Random Jitter (σ)[34]  
tRJ  
IEEE 802.3z  
11  
tREFJ  
REFCLKx jitter tolerance / Phase noise limits  
TBD  
200  
tTXLOCK  
Transmit PLLx lock to REFCLKx±  
μs  
CYP(V)(W)15G0403DXB Receive Serial Inputs and CDR PLL Characteristics Over the Operating Range  
tRXLOCK  
Receive PLL lock to input data stream (cold start)  
Receive PLL lock to input data stream  
Receive PLL Unlock Rate  
Total Jitter Tolerance[34]  
Deterministic Jitter Tolerance[34]  
376k  
376k  
46  
UI  
UI  
UI  
ps  
ps  
tRXUNLOCK  
[20]  
tJTOL  
IEEE 802.3z  
IEEE 802.3z  
600  
370  
[20]  
tDJTOL  
Capacitance[20]  
Parameter  
CINTTL  
Description  
Test Conditions  
Max.  
Unit  
TTL Input Capacitance  
PECL input Capacitance  
TA = 25°C, f0 = 1 MHz, VCC = 3.3V  
TA = 25°C, f0 = 1 MHz, VCC = 3.3V  
7
4
pF  
pF  
CINPECL  
Notes  
31. While sending continuous K28.5s, outputs loaded to a balanced 100Ω load, measured at the cross point of differential outputs, over the operating range.  
32. While sending continuous K28.7s, after 100,000 samples measured at the cross point of differential outputs, time referenced to REFCLKx± input, over the  
operating range.  
33. Total jitter is calculated at an assumed BER of 1E 12. Hence: Total Jitter (t ) = (t * 14) + t .  
DJ  
J
RJ  
34. Also meets all Jitter Generation and Jitter Tolerance requirements as specified by SMPTE 259M, SMPTE 292M, ESCON, FICON, Fibre Channel, and DVB-ASI.  
Document #: 38-02065 Rev. *F  
Page 31 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
CYP(V)(W)15G0403DXB HOTLink II Transmitter Switching Waveforms  
t
TXCLK  
Transmit Interface  
Write Timing  
TXCLKx selected  
t
t
TXCLKL  
TXCLKH  
TXCLKx  
t
t
TXDH  
TXDS  
TXDx[7:0],  
TXCTx[1:0],  
Transmit Interface  
Write Timing  
REFCLKx selected  
TXRATEx = 0  
t
REFCLK  
t
t
REFL  
REFH  
REFCLKx  
t
t
TREFDS  
TREFDH  
TXDx[7:0],  
TXCTx[1:0],  
Transmit Interface  
Write Timing  
REFCLKx selected  
TXRATEx = 1  
t
REFCLK  
t
t
REFL  
REFH  
REFCLKx  
Note 35  
t
t
t
TREFDS  
t
TREFDH  
TREFDS  
TREFDH  
TXDx[7:0],  
TXCTx[1:0],  
Transmit Interface  
TXCLKOx Timing  
tREFCLK  
tREFH  
tREFL  
TXRATEx = 1  
REFCLKx  
Note 36  
tTXCLKO  
Note 37  
TXCLKOx  
(internal)  
Notes  
35. When REFCLKx± is configured for half-rate operation (TXRATE = 1) and data is captured using REFCLKx instead of a TXCLKx clock. Data is captured using  
both the rising and falling edges of REFCLKx.  
36. The TXCLKOx output remains at the character rate regardless of the state of TXRATE and does not follow the duty cycle of REFCLKx±.  
37. The rising edge of TXCLKOx output has no direct phase relationship to the REFCLKx± input.  
Document #: 38-02065 Rev. *F  
Page 32 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
CYP(V)(W)15G0403DXB HOTLink II Transmitter Switching Waveforms (continued)  
Transmit Interface  
TXCLKOx Timing  
t
REFCLK  
t
t
REFH  
REFL  
TXRATEx = 0  
Note36  
REFCLKx  
t
TXCLKO  
t
t
TXOL  
TXOH  
Note37  
TXCLKOx  
Switching Waveforms for the CYP(V)(W)15G0403DXB HOTLink II Receiver  
Receive Interface  
tREFCLK  
Read Timing  
REFCLKx Selected  
Full-rate RXCLKx±  
tREFH  
t
REFL  
REFCLKx  
t
RREFDA  
t
t
RREFDW  
RREFDW  
RXDx[7:0],  
RXSTx[2:0],  
[39]  
TXERRx  
t
REFxDV+  
t
REFxDV  
RXCLKx  
Receive Interface  
Read Timing  
REFCLKx Selected  
Half-rate RXCLKx±  
tREFCLK  
tREFH  
t
REFL  
REFCLKx  
t
RREFDA  
t
RREFDW  
t
t
RREFDW  
RREFDA  
RXDx[7:0],  
RXSTx[2:0],  
[39]  
TXERRx  
t
REFxDV+  
t
REFxDV  
Note 38  
RXCLKx  
Notes  
38. When operated with a half-rate REFCLKx±, the set-up and hold specifications for data relative to RXCLKx are relative to both rising and falling edges of the  
respective clock output  
39. TXERRx is synchronous to RXCLKx only when RXCLKx is selected as REFCLK.  
Document #: 38-02065 Rev. *F  
Page 33 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Switching Waveforms for the CYP(V)(W)15G0403DXB HOTLink II Receiver  
Receive Interface  
tRXCLKP  
Read Timing  
Recovered Clock selected  
RXRATEx = 0  
RXCLKx+  
RXCLKx–  
RXDx[7:0],  
RXSTx[2:0],  
t
RXDV  
t
RXDV+  
Receive Interface  
Read Timing  
Recovered Clock selected  
RXRATEx = 1  
tRXCLKP  
RXCLKx+  
RXCLKx–  
t
RXDV  
RXDx[7:0],  
RXSTx[2:0]  
t
RXDV+  
Bus Configuration  
Write Timing  
ADDR[3:0]  
DATA[7:0]  
tWRENP  
tDATAS  
WREN  
tDATAH  
Document #: 38-02065 Rev. *F  
Page 34 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 12.Package Coordinate Signal Allocation  
Ball  
ID  
Ball  
ID  
Ball  
ID  
Signal Name  
Signal Type  
Signal Name  
Signal Type  
Signal Name  
Signal Type  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C01  
C02  
C03  
INC1–  
OUTC1–  
INC2–  
OUTC2–  
VCC  
CML IN  
CML OUT  
CML IN  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
E01  
E02  
E03  
E04  
E17  
E18  
E19  
E20  
F01  
ULCC  
GND  
LVTTL IN PU  
GROUND  
F17  
F18  
F19  
F20  
G01  
G02  
G03  
G04  
G17  
G18  
G19  
G20  
H01  
H02  
H03  
H04  
H17  
H18  
H19  
H20  
J01  
J02  
J03  
J04  
J17  
J18  
J19  
J20  
K01  
K02  
K03  
K04  
K17  
K18  
K19  
K20  
L01  
L02  
L03  
L04  
L17  
L18  
L19  
NC  
RXSTB[1]  
TXCLKOB  
RXSTB[0]  
TXDC[7]  
WREN  
NO CONNECT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL IN  
DATA[7]  
DATA[5]  
DATA[3]  
DATA[1]  
GND  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
CML OUT  
POWER  
CML IN  
IND1–  
OUTD1–  
GND  
LVTTL IN PU  
LVTTL IN  
CML OUT  
GROUND  
CML IN  
TXDC[4]  
TXDC[1]  
SPDSELB  
LPENC  
SPDSELA  
RXDB[1]  
GND  
NC  
NO CONNECT  
3-LEVEL SEL  
POWER  
LVTTL IN  
IND2–  
OUTD2–  
INA1–  
SPDSELD  
VCC  
3-LEVEL SEL  
LVTTL IN PD  
3-LEVEL SEL  
LVTTL OUT  
GROUND  
CML OUT  
CML IN  
LDTDEN  
TRST  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PD  
LVTTL 3-S OUT  
LVTTL IN PD  
LVTTL IN PU  
LVTTL IN  
OUTA1–  
GND  
CML OUT  
GROUND  
CML IN  
LPEND  
TDO  
INA2–  
GND  
GROUND  
OUTA2–  
VCC  
CML OUT  
POWER  
CML IN  
TCLK  
GND  
GROUND  
RESET  
INSELD  
INSELA  
VCC  
GND  
GROUND  
INB1–  
GND  
GROUND  
OUTB1–  
INB2–  
CML OUT  
CML IN  
LVTTL IN  
GND  
GROUND  
POWER  
GND  
GROUND  
OUTB2–  
INC1+  
OUTC1+  
INC2+  
OUTC2+  
VCC  
CML OUT  
CML IN  
ULCA  
LVTTL IN PU  
3-LEVEL SEL  
GROUND  
GND  
GROUND  
SPDSELC  
GND  
TXCTC[1]  
TXDC[5]  
TXDC[2]  
TXDC[3]  
RXSTB[2]  
RXDB[0]  
RXDB[5]  
RXDB[2]  
RXDC[2]  
REFCLKC–  
TXCTC[0]  
TXCLKC  
RXDB[3]  
RXDB[4]  
RXDB[7]  
LFIB  
LVTTL IN  
CML OUT  
CML IN  
LVTTL IN  
DATA[6]  
DATA[4]  
DATA[2]  
DATA[0]  
GND  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN PU  
GROUND  
LVTTL IN  
CML OUT  
POWER  
CML IN  
LVTTL IN  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
PECL IN  
IND1+  
OUTD1+  
GND  
CML OUT  
GROUND  
CML IN  
LPENB  
ULCB  
LVTTL IN PD  
LVTTL IN PU  
POWER  
IND2+  
OUTD2+  
INA1+  
CML OUT  
CML IN  
VCC  
LPENA  
LTEN1  
SCANEN2  
TMEN3  
VCC  
LVTTL IN PD  
LVTTL IN PD  
LVTTL IN PD  
LVTTL IN PD  
POWER  
LVTTL IN  
OUTA1+  
GND  
CML OUT  
GROUND  
CML IN  
LVTTL IN PD  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
PECL IN  
INA2+  
OUTA2+  
VCC  
CML OUT  
POWER  
CML IN  
VCC  
POWER  
INB1+  
VCC  
POWER  
RXDC[3]  
REFCLKC+  
LFIC  
OUTB1+  
INB2+  
CML OUT  
CML IN  
VCC  
POWER  
VCC  
POWER  
LVTTL OUT  
LVTTL IN  
OUTB2+  
TDI  
CML OUT  
LVTTL IN PU  
LVTTL IN PU  
LVTTL IN  
VCC  
POWER  
TXDC[6]  
RXDB[6]  
RXCLKB+  
RXCLKB–  
VCC  
POWER  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
TMS  
VCC  
POWER  
INSELC  
RXDC[6]  
LVTTL OUT  
Document #: 38-02065 Rev. *F  
Page 35 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 12.Package Coordinate Signal Allocation (continued)  
Ball  
ID  
Ball  
ID  
Ball  
ID  
Signal Name  
Signal Type  
Signal Name  
Signal Type  
Signal Name  
Signal Type  
C04  
C05  
C06  
M03  
M04  
INSELB  
VCC  
LVTTL IN  
POWER  
F02  
F03  
F04  
U03  
U04  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
V01  
V02  
V03  
V04  
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
W01  
W02  
RXDC[7]  
TXDC[0]  
NC  
LVTTL OUT  
LVTTL IN  
L20  
M01  
M02  
W03  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
TXDB[6]  
RXDC[4]  
RXDC[5]  
LFID  
LVTTL IN  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
POWER  
ULCD  
NC  
LVTTL IN PU  
NO CONNECT  
LVTTL OUT  
PECL IN  
NO CONNECT  
LVTTL IN  
TXDD[2]  
TXCTD[1]  
VCC  
TXERRC  
LVTTL IN  
RXCLKD–  
VCC  
M17 REFCLKB+  
M18 REFCLKB–  
POWER  
PECL IN  
RXDD[2]  
RXDD[1]  
GND  
LVTTL OUT  
LVTTL OUT  
GROUND  
LVTTL IN  
RXDD[4]  
RXSTD[1]  
GND  
LVTTL OUT  
LVTTL OUT  
GROUND  
M19  
M20  
N01  
N02  
N03  
N04  
N17  
N18  
N19  
N20  
P01  
P02  
P03  
P04  
P17  
P18  
P19  
P20  
R01  
R02  
R03  
R04  
R17  
R18  
R19  
R20  
T01  
T02  
T03  
T04  
T17  
T18  
T19  
T20  
U01  
U02  
TXERRB  
TXCLKB  
GND  
LVTTL OUT  
LVTTL IN PD  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
GROUND  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL IN  
LVTTL IN  
LVTTL IN  
LVTTL IN  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL IN  
LVTTL IN  
LVTTL IN  
LVTTL IN  
POWER  
TXCTA[1]  
ADDR [0]  
REFCLKD–  
TXDA[1]  
GND  
ADDR [3]  
ADDR [1]  
RXCLKA+  
TXERRA  
GND  
LVTTL IN PU  
LVTTL IN PU  
LVTTL OUT  
LVTTL OUT  
GROUND  
GND  
LVTTL IN PU  
PECL IN  
GND  
GND  
LVTTL IN  
GND  
GROUND  
LVTTL IN  
GND  
TXDA[4]  
TXCTA[0]  
VCC  
TXDA[2]  
TXDA[6]  
VCC  
LVTTL IN  
GND  
LVTTL IN  
LVTTL IN  
GND  
POWER  
POWER  
RXDC[1]  
RXDC[0]  
RXSTC[0]  
RXSTC[1]  
TXDB[5]  
TXDB[4]  
TXDB[3]  
TXDB[2]  
RXSTC[2]  
TXCLKOC  
RXCLKC+  
RXCLKC–  
TXDB[1]  
TXDB[0]  
TXCTB[1]  
TXDB[7]  
VCC  
RXDA[2]  
TXCTB[0]  
RXSTA[2]  
RXSTA[1]  
TXDD[3]  
TXDD[4]  
TXCTD[0]  
RXDD[6]  
VCC  
LVTTL OUT  
LVTTL IN  
LFIA  
LVTTL OUT  
PECL IN  
W18 REFCLKA+  
LVTTL OUT  
LVTTL OUT  
LVTTL IN  
W19  
W20  
Y01  
Y02  
Y03  
Y04  
Y05  
Y06  
Y07  
Y08  
Y09  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
RXDA[4]  
RXDA[1]  
TXDD[6]  
TXCLKD  
RXDD[7]  
RXCLKD+  
VCC  
LVTTL OUT  
LVTTL OUT  
LVTTL IN  
LVTTL IN  
LVTTL IN PD  
LVTTL OUT  
LVTTL OUT  
POWER  
LVTTL IN  
LVTTL OUT  
POWER  
RXDD[3]  
RXSTD[0]  
GND  
LVTTL OUT  
LVTTL OUT  
GROUND  
LVTTL OUT  
LVTTL IN PU  
PECL IN  
RXDD[5]  
RXDD[0]  
GND  
LVTTL OUT  
LVTTL OUT  
GROUND  
RXSTD[2]  
ADDR [2]  
REFCLKD+  
TXCLKOA  
GND  
TXCLKOD  
NC  
LVTTL OUT  
NO CONNECT  
LVTTL IN PD  
LVTTL OUT  
GROUND  
TXCLKA  
RXCLKA–  
GND  
LVTTL OUT  
GROUND  
LVTTL IN  
VCC  
POWER  
TXDA[3]  
TXDA[7]  
VCC  
TXDA[0]  
TXDA[5]  
VCC  
LVTTL IN  
VCC  
POWER  
LVTTL IN  
LVTTL IN  
VCC  
POWER  
POWER  
POWER  
VCC  
POWER  
RXDA[7]  
RXDA[3]  
RXDA[0]  
RXSTA[0]  
TXDD[5]  
TXDD[7]  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL OUT  
LVTTL IN  
TXERRD  
REFCLKA–  
RXDA[6]  
RXDA[5]  
LVTTL OUT  
PECL IN  
VCC  
POWER  
VCC  
POWER  
LVTTL OUT  
LVTTL OUT  
VCC  
POWER  
TXDD[0]  
TXDD[1]  
LVTTL IN  
LVTTL IN  
LVTTL IN  
Document #: 38-02065 Rev. *F  
Page 36 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
= LOW) or a Special Character (c is set to K, and SC/D =  
HIGH). When c is set to D, xx is the decimal value of the binary  
number composed of the bits E, D, C, B, and A in that order,  
and the y is the decimal value of the binary number composed  
of the bits H, G, and F in that order. When c is set to K, xx and  
y are derived by comparing the encoded bit patterns of the  
Special Character to those patterns derived from encoded  
Valid Data bytes and selecting the names of the patterns most  
similar to the encoded bit patterns of the Special Character.  
X3.230 Codes and Notation Conventions  
Information transmitted over a serial link is encoded eight bits  
at a time into a 10-bit Transmission Character and then sent  
serially, bit by bit. Information received over a serial link is  
collected ten bits at a time, and those Transmission  
Characters that are used for data characters are decoded into  
the correct eight-bit codes. The 10-bit Transmission Code  
supports all 256 8-bit combinations. Some of the remaining  
Transmission Characters (Special Characters) are used for  
functions other than data transmission.  
Under the above conventions, the Transmission Character  
used for the examples above, is referred to by the name D5.2.  
The Special Character K29.7 is so named because the first six  
bits (abcdei) of this character make up a bit pattern similar to  
that resulting from the encoding of the unencoded 11101  
pattern (29), and because the second four bits (fghj) make up  
a bit pattern similar to that resulting from the encoding of the  
unencoded 111 pattern (7).  
The primary use of a Transmission Code is to improve the  
transmission characteristics of a serial link. The encoding  
defined by the Transmission Code ensures that sufficient  
transitions are present in the serial bit stream to make clock  
recovery possible at the Receiver. Such encoding also greatly  
increases the likelihood of detecting any single or multiple bit  
errors that may occur during transmission and reception of  
information. In addition, some Special Characters of the Trans-  
mission Code selected by Fibre Channel Standard contain a  
distinct and easily recognizable bit pattern that assists the  
receiver in achieving character alignment on the incoming bit  
stream.  
Note. This definition of the 10-bit Transmission Code is based  
on the following references, which describe the same 10-bit  
transmission code.  
A.X. Widmer and P.A. Franaszek. “A DC-Balanced, Parti-  
tioned-Block, 8B/10B Transmission Code” IBM Journal of  
Research and Development, 27, No. 5: 440-451 (September,  
1983).  
Notation Conventions  
The documentation for the 8B/10B Transmission Code uses  
letter notation for the bits in an 8-bit byte. Fibre Channel  
Standard notation uses a bit notation of A, B, C, D, E, F, G, H  
for the 8-bit byte for the raw 8-bit data, and the letters a, b, c,  
d, e, i, f, g, h, j for encoded 10-bit data. There is a correspon-  
dence between bit A and bit a, B and b, C and c, D and d, E  
and e, F and f, G and g, and H and h. Bits i and j are derived,  
respectively, from (A,B,C,D,E) and (F,G,H).  
U.S. Patent 4,486,739. Peter A. Franaszek and Albert X.  
Widmer. “Byte-Oriented DC Balanced (0.4) 8B/10B Parti-  
tioned Block Transmission Code” (December 4, 1984).  
Fibre Channel Physical and Signaling Interface (ANS  
X3.230-1994 ANSI FC-PH Standard).  
IBM Enterprise Systems Architecture/390 ESCON I/O  
Interface (document number SA22-7202).  
The bit labeled A in the description of the 8B/10B Transmission  
Code corresponds to bit 0 in the numbering scheme of the  
FC-2 specification, B corresponds to bit 1, as shown below.  
8B/10B Transmission Code  
The following information describes how the tables are used  
for both generating valid Transmission Characters (encoding)  
and checking the validity of received Transmission Characters  
(decoding). It also specifies the ordering rules followed when  
transmitting the bits within a character and the characters  
within any higher-level constructs specified by a standard.  
FC-2 bit designation—  
HOTLink D/Q designation— 7  
8B/10B bit designation—  
7
6
6
G F  
5
5
4
4
E
3
3
D
2
2
C
1
1
B
0
0
A
H
To clarify this correspondence, the following example shows  
the conversion from an FC-2 Valid Data Byte to a Transmission  
Character.  
Transmission Order  
Within the definition of the 8B/10B Transmission Code, the bit  
positions of the Transmission Characters are labeled a, b, c,  
d, e, i, f, g, h, j. Bit “a” is transmitted first followed by bits b, c,  
d, e, i, f, g, h, and j in that order.  
FC-2 45H  
Bits: 7654 3210  
0100 0101  
Converted to 8B/10B notation, note that the order of bits has  
been reversed):  
Note that bit i is transmitted between bit e and bit f, rather than  
in alphabetical order.  
Data Byte Name D5.2  
Bits: ABCDE FGH  
10100 010  
Valid and Invalid Transmission Characters  
The following tables define the valid Data Characters and valid  
Special Characters (K characters), respectively. The tables  
are used for both generating valid Transmission Characters  
and checking the validity of received Transmission  
Characters. In the tables, each Valid-Data-byte or  
Special-Character-code entry has two columns that represent  
two Transmission Characters. The two columns correspond to  
the current value of the running disparity. Running disparity is  
a binary parameter with either a negative (–) or positive (+)  
value.  
Translated to a transmission Character in the 8B/10B Trans-  
mission Code:  
Bits: abcdei fghj  
101001 0101  
Each valid Transmission Character of the 8B/10B Trans-  
mission Code has been given a name using the following  
convention: cxx.y, where c is used to show whether the Trans-  
mission Character is a Data Character (c is set to D, and SC/D  
Document #: 38-02065 Rev. *F  
Page 37 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
After powering on, the Transmitter may assume either a  
positive or negative value for its initial running disparity. Upon  
transmission of any Transmission Character, the transmitter  
selects the proper version of the Transmission Character  
based on the current running disparity value, and the Trans-  
mitter calculates a new value for its running disparity based on  
the contents of the transmitted character. Special Character  
codes C1.7 and C2.7 can be used to force the transmission of  
a specific Special Character with a specific running disparity  
as required for some special sequences in X3.230.  
Transmission Character transmitted, a new value of the  
running disparity is calculated. This new value is used as the  
Transmitter’s current running disparity for the next Valid Data  
byte or Special Character byte encoded and transmitted.  
Table 13 shows naming notations and examples of valid trans-  
mission characters.  
Use of the Tables for Checking the Validity of Received  
Transmission Characters  
The column corresponding to the current value of the  
Receiver’s running disparity is searched for the received  
Transmission Character. If the received Transmission  
Character is found in the proper column, then the Trans-  
mission Character is valid and the associated Data byte or  
Special Character code is determined (decoded). If the  
received Transmission Character is not found in that column,  
then the Transmission Character is invalid. This is called a  
code violation. Independent of the Transmission Character’s  
validity, the received Transmission Character is used to  
calculate a new value of running disparity. The new value is  
used as the Receiver’s current running disparity for the next  
received Transmission Character.  
After powering on, the Receiver may assume either a positive  
or negative value for its initial running disparity. Upon reception  
of any Transmission Character, the Receiver decides whether  
the Transmission Character is valid or invalid according to the  
following rules and tables and calculates a new value for its  
Running Disparity based on the contents of the received  
character.  
The following rules for running disparity are used to calculate  
the new running-disparity value for Transmission Characters  
that have been transmitted and received.  
Running disparity for a Transmission Character is calculated  
from sub-blocks, where the first six bits (abcdei) form one  
sub-block and the second four bits (fghj) form the other  
sub-block. Running disparity at the beginning of the 6-bit  
sub-block is the running disparity at the end of the previous  
Transmission Character. Running disparity at the beginning of  
the 4-bit sub-block is the running disparity at the end of the  
6-bit sub-block. Running disparity at the end of the Trans-  
mission Character is the running disparity at the end of the  
4-bit sub-block.  
Table 13.Valid Transmission Characters  
Data  
DIN or QOUT  
Byte Name  
Hex Value  
765  
000  
000  
000  
43210  
00000  
00001  
00010  
D0.0  
D1.0  
D2.0  
00  
01  
02  
Running disparity for the sub-blocks is calculated as follows:  
1. Running disparity at the end of any sub-block is positive if  
the sub-block contains more ones than zeros. It is also pos-  
itive at the end of the 6-bit sub-block if the 6-bit sub-block  
is 000111, and it is positive at the end of the 4-bit sub-block  
if the 4-bit sub-block is 0011.  
.
.
.
.
.
.
.
.
D5.2  
010  
00101  
45  
.
.
.
.
.
.
.
.
2. Running disparity at the end of any sub-block is negative if  
the sub-block contains more zeros than ones. It is also  
negative at the end of the 6-bit sub-block if the 6-bit  
sub-block is 111000, and it is negative at the end of the 4-bit  
sub-block if the 4-bit sub-block is 1100.  
D30.7  
D31.7  
111  
111  
11110  
11111  
FE  
FF  
3. Otherwise, running disparity at the end of the sub-block is  
the same as at the beginning of the sub-block.  
Detection of a code violation does not necessarily show that  
the Transmission Character in which the code violation was  
detected is in error. Code violations may result from a prior  
error that altered the running disparity of the bit stream which  
did not result in a detectable error at the Transmission  
Character in which the error occurred. Table 14 shows an  
example of this behavior.  
Use of the Tables for Generating Transmission Characters  
The appropriate entry in Table 15 for the Valid Data byte or  
Table 16 for Special Character byte identify which Trans-  
mission Character is generated. The current value of the  
Transmitter’s running disparity is used to select the Trans-  
mission Character from its corresponding column. For each  
Table 14.Code Violations Resulting from Prior Errors  
RD  
Character  
D21.1  
RD  
Character  
D10.2  
RD  
Character  
D23.5  
RD  
+
Transmitted data character  
Transmitted bit stream  
Bit stream after error  
101010 1001  
101010 1011  
D21.0  
010101 0101  
010101 0101  
D10.2  
111010 1010  
111010 1010  
Code Violation  
+
+
+
+
Decoded data character  
+
+
+
Document #: 38-02065 Rev. *F  
Page 38 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 15.Valid Data Characters (TXCTx[0] = 0, RXSTx[2:0] = 000)  
Data  
Data  
Byte  
Bits  
Current RD−  
Current RD+  
abcdei fghj  
Bits  
Current RD−  
Current RD+  
abcdei fghj  
Byte  
Name HGF EDCBA  
abcdei fghj  
Name HGF EDCBA  
abcdei fghj  
D0.0  
D1.0  
000 00000  
000 00001  
000 00010  
000 00011  
000 00100  
000 00101  
000 00110  
000 00111  
000 01000  
000 01001  
000 01010  
000 01011  
000 01100  
000 01101  
000 01110  
000 01111  
000 10000  
000 10001  
000 10010  
000 10011  
000 10100  
000 10101  
000 10110  
000 10111  
000 11000  
000 11001  
000 11010  
000 11011  
000 11100  
000 11101  
000 11110  
000 11111  
100111 0100 011000 1011  
011101 0100 100010 1011  
101101 0100 010010 1011  
110001 1011 110001 0100  
110101 0100 001010 1011  
101001 1011 101001 0100  
011001 1011 011001 0100  
111000 1011 000111 0100  
111001 0100 000110 1011  
100101 1011 100101 0100  
010101 1011 010101 0100  
110100 1011 110100 0100  
001101 1011 001101 0100  
101100 1011 101100 0100  
011100 1011 011100 0100  
010111 0100 101000 1011  
011011 0100 100100 1011  
100011 1011 100011 0100  
010011 1011 010011 0100  
110010 1011 110010 0100  
001011 1011 001011 0100  
101010 1011 101010 0100  
011010 1011 011010 0100  
111010 0100 000101 1011  
110011 0100 001100 1011  
100110 1011 100110 0100  
010110 1011 010110 0100  
110110 0100 001001 1011  
001110 1011 001110 0100  
101110 0100 010001 1011  
011110 0100 100001 1011  
101011 0100 010100 1011  
D0.1  
D1.1  
001 00000  
001 00001  
001 00010  
001 00011  
001 00100  
001 00101  
001 00110  
001 00111  
001 01000  
001 01001  
001 01010  
001 01011  
001 01100  
001 01101  
001 01110  
001 01111  
001 10000  
001 10001  
001 10010  
001 10011  
001 10100  
001 10101  
001 10110  
001 10111  
001 11000  
001 11001  
001 11010  
001 11011  
001 11100  
001 11101  
001 11110  
001 11111  
100111 1001 011000 1001  
011101 1001 100010 1001  
101101 1001 010010 1001  
110001 1001 110001 1001  
110101 1001 001010 1001  
101001 1001 101001 1001  
011001 1001 011001 1001  
111000 1001 000111 1001  
111001 1001 000110 1001  
100101 1001 100101 1001  
010101 1001 010101 1001  
110100 1001 110100 1001  
001101 1001 001101 1001  
101100 1001 101100 1001  
011100 1001 011100 1001  
010111 1001 101000 1001  
011011 1001 100100 1001  
100011 1001 100011 1001  
010011 1001 010011 1001  
110010 1001 110010 1001  
001011 1001 001011 1001  
101010 1001 101010 1001  
011010 1001 011010 1001  
111010 1001 000101 1001  
110011 1001 001100 1001  
100110 1001 100110 1001  
010110 1001 010110 1001  
110110 1001 001001 1001  
001110 1001 001110 1001  
101110 1001 010001 1001  
011110 1001 100001 1001  
101011 1001 010100 1001  
D2.0  
D2.1  
D3.0  
D3.1  
D4.0  
D4.1  
D5.0  
D5.1  
D6.0  
D6.1  
D7.0  
D7.1  
D8.0  
D8.1  
D9.0  
D9.1  
D10.0  
D11.0  
D12.0  
D13.0  
D14.0  
D15.0  
D16.0  
D17.0  
D18.0  
D19.0  
D20.0  
D21.0  
D22.0  
D23.0  
D24.0  
D25.0  
D26.0  
D27.0  
D28.0  
D29.0  
D30.0  
D31.0  
D10.1  
D11.1  
D12.1  
D13.1  
D14.1  
D15.1  
D16.1  
D17.1  
D18.1  
D19.1  
D20.1  
D21.1  
D22.1  
D23.1  
D24.1  
D25.1  
D26.1  
D27.1  
D28.1  
D29.1  
D30.1  
D31.1  
Document #: 38-02065 Rev. *F  
Page 39 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 15.Valid Data Characters (TXCTx[0] = 0, RXSTx[2:0] = 000) (continued)  
Data  
Byte  
Data  
Byte  
Bits  
Current RD−  
Current RD+  
abcdei fghj  
Bits  
Current RD−  
Current RD+  
abcdei fghj  
Name HGF EDCBA  
abcdei fghj  
Name HGF EDCBA  
abcdei fghj  
D0.2  
D1.2  
010 00000  
010 00001  
010 00010  
010 00011  
010 00100  
010 00101  
010 00110  
010 00111  
010 01000  
010 01001  
010 01010  
010 01011  
010 01100  
010 01101  
010 01110  
010 01111  
010 10000  
010 10001  
010 10010  
010 10011  
010 10100  
010 10101  
010 10110  
010 10111  
010 11000  
010 11001  
010 11010  
010 11011  
010 11100  
010 11101  
010 11110  
010 11111  
100111 0101 011000 0101  
011101 0101 100010 0101  
101101 0101 010010 0101  
110001 0101 110001 0101  
110101 0101 001010 0101  
101001 0101 101001 0101  
011001 0101 011001 0101  
111000 0101 000111 0101  
111001 0101 000110 0101  
100101 0101 100101 0101  
010101 0101 010101 0101  
110100 0101 110100 0101  
001101 0101 001101 0101  
101100 0101 101100 0101  
011100 0101 011100 0101  
010111 0101 101000 0101  
011011 0101 100100 0101  
100011 0101 100011 0101  
010011 0101 010011 0101  
110010 0101 110010 0101  
001011 0101 001011 0101  
101010 0101 101010 0101  
011010 0101 011010 0101  
111010 0101 000101 0101  
110011 0101 001100 0101  
100110 0101 100110 0101  
010110 0101 010110 0101  
110110 0101 001001 0101  
001110 0101 001110 0101  
101110 0101 010001 0101  
011110 0101 100001 0101  
101011 0101 010100 0101  
D0.3  
D1.3  
011 00000  
011 00001  
011 00010  
011 00011  
011 00100  
011 00101  
011 00110  
011 00111  
011 01000  
011 01001  
011 01010  
011 01011  
011 01100  
011 01101  
011 01110  
011 01111  
011 10000  
011 10001  
011 10010  
011 10011  
011 10100  
011 10101  
011 10110  
011 10111  
011 11000  
011 11001  
011 11010  
011 11011  
011 11100  
011 11101  
011 11110  
011 11111  
100111 0011 011000 1100  
011101 0011 100010 1100  
101101 0011 010010 1100  
110001 1100 110001 0011  
110101 0011 001010 1100  
101001 1100 101001 0011  
011001 1100 011001 0011  
111000 1100 000111 0011  
111001 0011 000110 1100  
100101 1100 100101 0011  
010101 1100 010101 0011  
110100 1100 110100 0011  
001101 1100 001101 0011  
101100 1100 101100 0011  
011100 1100 011100 0011  
010111 0011 101000 1100  
011011 0011 100100 1100  
100011 1100 100011 0011  
010011 1100 010011 0011  
110010 1100 110010 0011  
001011 1100 001011 0011  
101010 1100 101010 0011  
011010 1100 011010 0011  
111010 0011 000101 1100  
110011 0011 001100 1100  
100110 1100 100110 0011  
010110 1100 010110 0011  
110110 0011 001001 1100  
001110 1100 001110 0011  
101110 0011 010001 1100  
011110 0011 100001 1100  
101011 0011 010100 1100  
D2.2  
D2.3  
D3.2  
D3.3  
D4.2  
D4.3  
D5.2  
D5.3  
D6.2  
D6.3  
D7.2  
D7.3  
D8.2  
D8.3  
D9.2  
D9.3  
D10.2  
D11.2  
D12.2  
D13.2  
D14.2  
D15.2  
D16.2  
D17.2  
D18.2  
D19.2  
D20.2  
D21.2  
D22.2  
D23.2  
D24.2  
D25.2  
D26.2  
D27.2  
D28.2  
D29.2  
D30.2  
D31.2  
D10.3  
D11.3  
D12.3  
D13.3  
D14.3  
D15.3  
D16.3  
D17.3  
D18.3  
D19.3  
D20.3  
D21.3  
D22.3  
D23.3  
D24.3  
D25.3  
D26.3  
D27.3  
D28.3  
D29.3  
D30.3  
D31.3  
Document #: 38-02065 Rev. *F  
Page 40 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 15.Valid Data Characters (TXCTx[0] = 0, RXSTx[2:0] = 000) (continued)  
Data  
Byte  
Data  
Byte  
Bits  
Current RD−  
Current RD+  
abcdei fghj  
Bits  
Current RD−  
Current RD+  
abcdei fghj  
Name HGF EDCBA  
abcdei fghj  
Name HGF EDCBA  
abcdei fghj  
D0.4  
D1.4  
100 00000  
100 00001  
100 00010  
100 00011  
100 00100  
100 00101  
100 00110  
100 00111  
100 01000  
100 01001  
100 01010  
100 01011  
100 01100  
100 01101  
100 01110  
100 01111  
100 10000  
100 10001  
100 10010  
100 10011  
100 10100  
100 10101  
100 10110  
100 10111  
100 11000  
100 11001  
100 11010  
100 11011  
100 11100  
100 11101  
100 11110  
100 11111  
100111 0010 011000 1101  
011101 0010 100010 1101  
101101 0010 010010 1101  
110001 1101 110001 0010  
110101 0010 001010 1101  
101001 1101 101001 0010  
011001 1101 011001 0010  
111000 1101 000111 0010  
111001 0010 000110 1101  
100101 1101 100101 0010  
010101 1101 010101 0010  
110100 1101 110100 0010  
001101 1101 001101 0010  
101100 1101 101100 0010  
011100 1101 011100 0010  
010111 0010 101000 1101  
011011 0010 100100 1101  
100011 1101 100011 0010  
010011 1101 010011 0010  
110010 1101 110010 0010  
001011 1101 001011 0010  
101010 1101 101010 0010  
011010 1101 011010 0010  
111010 0010 000101 1101  
110011 0010 001100 1101  
100110 1101 100110 0010  
010110 1101 010110 0010  
110110 0010 001001 1101  
001110 1101 001110 0010  
101110 0010 010001 1101  
011110 0010 100001 1101  
101011 0010 010100 1101  
D0.5  
D1.5  
101 00000  
101 00001  
101 00010  
101 00011  
101 00100  
101 00101  
101 00110  
101 00111  
101 01000  
101 01001  
101 01010  
101 01011  
101 01100  
101 01101  
101 01110  
101 01111  
101 10000  
101 10001  
101 10010  
101 10011  
101 10100  
101 10101  
101 10110  
101 10111  
101 11000  
101 11001  
101 11010  
101 11011  
101 11100  
101 11101  
101 11110  
101 11111  
100111 1010 011000 1010  
011101 1010 100010 1010  
101101 1010 010010 1010  
110001 1010 110001 1010  
110101 1010 001010 1010  
101001 1010 101001 1010  
011001 1010 011001 1010  
111000 1010 000111 1010  
111001 1010 000110 1010  
100101 1010 100101 1010  
010101 1010 010101 1010  
110100 1010 110100 1010  
001101 1010 001101 1010  
101100 1010 101100 1010  
011100 1010 011100 1010  
010111 1010 101000 1010  
011011 1010 100100 1010  
100011 1010 100011 1010  
010011 1010 010011 1010  
110010 1010 110010 1010  
001011 1010 001011 1010  
101010 1010 101010 1010  
011010 1010 011010 1010  
111010 1010 000101 1010  
110011 1010 001100 1010  
100110 1010 100110 1010  
010110 1010 010110 1010  
110110 1010 001001 1010  
001110 1010 001110 1010  
101110 1010 010001 1010  
011110 1010 100001 1010  
101011 1010 010100 1010  
D2.4  
D2.5  
D3.4  
D3.5  
D4.4  
D4.5  
D5.4  
D5.5  
D6.4  
D6.5  
D7.4  
D7.5  
D8.4  
D8.5  
D9.4  
D9.5  
D10.4  
D11.4  
D12.4  
D13.4  
D14.4  
D15.4  
D16.4  
D17.4  
D18.4  
D19.4  
D20.4  
D21.4  
D22.4  
D23.4  
D24.4  
D25.4  
D26.4  
D27.4  
D28.4  
D29.4  
D30.4  
D31.4  
D10.5  
D11.5  
D12.5  
D13.5  
D14.5  
D15.5  
D16.5  
D17.5  
D18.5  
D19.5  
D20.5  
D21.5  
D22.5  
D23.5  
D24.5  
D25.5  
D26.5  
D27.5  
D28.5  
D29.5  
D30.5  
D31.5  
Document #: 38-02065 Rev. *F  
Page 41 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 15.Valid Data Characters (TXCTx[0] = 0, RXSTx[2:0] = 000) (continued)  
Data  
Byte  
Data  
Byte  
Bits  
Current RD−  
Current RD+  
abcdei fghj  
Bits  
Current RD−  
Current RD+  
abcdei fghj  
Name HGF EDCBA  
abcdei fghj  
Name HGF EDCBA  
abcdei fghj  
D0.6  
D1.6  
110 00000  
110 00001  
110 00010  
110 00011  
110 00100  
110 00101  
110 00110  
110 00111  
110 01000  
110 01001  
110 01010  
110 01011  
110 01100  
110 01101  
110 01110  
110 01111  
110 10000  
110 10001  
110 10010  
110 10011  
110 10100  
110 10101  
110 10110  
110 10111  
110 11000  
110 11001  
110 11010  
110 11011  
110 11100  
110 11101  
110 11110  
110 11111  
100111 0110 011000 0110  
011101 0110 100010 0110  
101101 0110 010010 0110  
110001 0110 110001 0110  
110101 0110 001010 0110  
101001 0110 101001 0110  
011001 0110 011001 0110  
111000 0110 000111 0110  
111001 0110 000110 0110  
100101 0110 100101 0110  
010101 0110 010101 0110  
110100 0110 110100 0110  
001101 0110 001101 0110  
101100 0110 101100 0110  
011100 0110 011100 0110  
010111 0110 101000 0110  
011011 0110 100100 0110  
100011 0110 100011 0110  
010011 0110 010011 0110  
110010 0110 110010 0110  
001011 0110 001011 0110  
101010 0110 101010 0110  
011010 0110 011010 0110  
111010 0110 000101 0110  
110011 0110 001100 0110  
100110 0110 100110 0110  
010110 0110 010110 0110  
110110 0110 001001 0110  
001110 0110 001110 0110  
101110 0110 010001 0110  
011110 0110 100001 0110  
101011 0110 010100 0110  
D0.7  
D1.7  
111 00000  
111 00001  
111 00010  
111 00011  
111 00100  
111 00101  
111 00110  
111 00111  
111 01000  
111 01001  
111 01010  
111 01011  
111 01100  
111 01101  
111 01110  
111 01111  
111 10000  
111 10001  
111 10010  
111 10011  
111 10100  
111 10101  
111 10110  
111 10111  
111 11000  
111 11001  
111 11010  
111 11011  
111 11100  
111 11101  
111 11110  
111 11111  
100111 0001 011000 1110  
011101 0001 100010 1110  
101101 0001 010010 1110  
110001 1110 110001 0001  
110101 0001 001010 1110  
101001 1110 101001 0001  
011001 1110 011001 0001  
111000 1110 000111 0001  
111001 0001 000110 1110  
100101 1110 100101 0001  
010101 1110 010101 0001  
110100 1110 110100 1000  
001101 1110 001101 0001  
101100 1110 101100 1000  
011100 1110 011100 1000  
010111 0001 101000 1110  
011011 0001 100100 1110  
100011 0111 100011 0001  
010011 0111 010011 0001  
110010 1110 110010 0001  
001011 0111 001011 0001  
101010 1110 101010 0001  
011010 1110 011010 0001  
111010 0001 000101 1110  
110011 0001 001100 1110  
100110 1110 100110 0001  
010110 1110 010110 0001  
110110 0001 001001 1110  
001110 1110 001110 0001  
101110 0001 010001 1110  
011110 0001 100001 1110  
101011 0001 010100 1110  
D2.6  
D2.7  
D3.6  
D3.7  
D4.6  
D4.7  
D5.6  
D5.7  
D6.6  
D6.7  
D7.6  
D7.7  
D8.6  
D8.7  
D9.6  
D9.7  
D10.6  
D11.6  
D12.6  
D13.6  
D14.6  
D15.6  
D16.6  
D17.6  
D18.6  
D19.6  
D20.6  
D21.6  
D22.6  
D23.6  
D24.6  
D25.6  
D26.6  
D27.6  
D28.6  
D29.6  
D30.6  
D31.6  
D10.7  
D11.7  
D12.7  
D13.7  
D14.7  
D15.7  
D16.7  
D17.7  
D18.7  
D19.7  
D20.7  
D21.7  
D22.7  
D23.7  
D24.7  
D25.7  
D26.7  
D27.7  
D28.7  
D29.7  
D30.7  
D31.7  
Document #: 38-02065 Rev. *F  
Page 42 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Table 16.Valid Special Character Codes and Sequences (TXCTx = special character code or RXSTx[2:0] = 001)[40, 41]  
S.C. Byte Name  
Cypress  
Alternate  
Current RD−  
abcdei fghj  
Current RD+  
abcdei fghj  
S.C. Code Name  
S.C. Byte Name  
Bits  
S.C. Byte Name  
Bits  
[42]  
[42]  
HGF EDCBA  
HGF EDCBA  
K28.0  
C0.0  
C1.0  
C2.0  
C3.0  
C4.0  
C5.0  
C6.0  
C7.0  
C8.0  
C9.0  
(C00)  
(C01)  
(C02)  
(C03)  
(C04)  
(C05)  
(C06)  
(C07)  
(C08)  
(C09)  
000 00000  
000 00001  
000 00010  
000 00011  
000 00100  
000 00101  
000 00110  
000 00111  
000 01000  
000 01001  
000 01010  
000 01011  
C28.0 (C1C)  
C28.1 (C3C)  
C28.2 (C5C)  
C28.3 (C7C)  
C28.4 (C9C)  
C28.5 (CBC)  
C28.6 (CDC)  
C28.7 (CFC)  
C23.7 (CF7)  
C27.7 (CFB)  
C29.7 (CFD)  
C30.7 (CFE)  
000 11100  
001 11100  
010 11100  
011 11100  
100 11100  
101 11100  
110 11100  
111 11100  
111 10111  
111 11011  
111 11101  
111 11110  
001111 0100  
001111 1001  
001111 0101  
001111 0011  
001111 0010  
001111 1010  
001111 0110  
001111 1000  
111010 1000  
110110 1000  
101110 1000  
011110 1000  
110000 1011  
110000 0110  
110000 1010  
110000 1100  
110000 1101  
110000 0101  
110000 1001  
110000 0111  
000101 0111  
001001 0111  
010001 0111  
100001 0111  
K28.1[43]  
K28.2[43]  
K28.3  
K28.4[43]  
K28.5[43, 44]  
K28.6[43]  
K28.7[43, 45]  
K23.7  
K27.7  
K29.7  
C10.0 (C0A)  
C11.0 (C0B)  
K30.7  
End of Frame Sequence  
EOFxx C2.1  
(C22)  
001 00010  
C2.1  
(C22)  
001 00010  
K28.5,Dn.xxx0[46] +K28.5,Dn.xxx1[46]  
Code Rule Violation and SVS Tx Pattern  
Exception[45, 47]  
K28.5[48]  
+K28.5[49]  
C0.7  
C1.7  
C2.7  
(CE0)  
(CE1)  
(CE2)  
111 00000  
111 00001  
111 00010  
C0.7  
C1.7  
C2.7  
(CE0)  
(CE1)  
(CE2)  
111 00000  
111 00001  
111 00010  
100111 1000  
001111 1010  
110000 0101  
011000 0111  
001111 1010  
110000 0101  
Running Disparity Violation Pattern  
Exception[50]  
C4.7  
(CE4)  
111 00100  
C4.7  
(CE4)  
111 00100  
110111 0101  
001000 1010  
Notes  
40. All codes not shown are reserved.  
41. Notation for Special Character Code Name is consistent with Fibre Channel and ESCON naming conventions. Special Character Code Name is intended to  
describe binary information present on I/O pins. Common usage for the name can either be in the form used for describing Data patterns (i.e., C0.0 through  
C31.7), or in hex notation (i.e., Cnn where nn = the specified value between 00 and FF).  
42. Both the Cypress and alternate encodings may be used for data transmission to generate specific Special Character Codes. The decoding process for received  
characters generates Cypress codes or Alternate codes as selected by the BOE[7:0] configuration inputs.  
43. These characters are used for control of ESCON interfaces. They can be sent as embedded commands or other markers when not operating using ESCON  
protocols.  
44. The K28.5 character is used for framing operations by the receiver. It is also the pad or fill character transmitted to maintain the serial link when no user data is  
available.  
45. Care must be taken when using this Special Character code. When a C7.0 or a C0.7 is followed by a D11.x or D20.x, an alias K28.5 sync character is created.  
These sequences can cause erroneous framing and should be avoided while RFENx = 1.  
46. C2.1 = Transmit either –K28.5+ or +K28.5– as determined by Current RD and modify the Transmission Character that follows, by setting its least significant bit  
to 1 or 0. If Current RD at the start of the following character is plus (+) the LSB is set to 0, and if Current RD is minus (–) the LSB becomes 1. This modification  
allows construction of X3.230 “EOF” frame delimiters wherein the second data byte is determined by the Current RD.  
For example, to send “EOFdt” the controller could issue the sequence C2.1–D21.4– D21.4–D21.4, and the HOTLink Transmitter sends either  
K28.5–D21.4–D21.4–D21.4 or K28.5–D21.5– D21.4–D21.4 based on Current RD. Likewise to send “EOFdti” the controller could issue the sequence  
C2.1–D10.4–D21.4–D21.4, and the HOTLink Transmitter sends either K28.5–D10.4–D21.4– D21.4 or K28.5–D10.5–D21.4–D21.4 based on Current RD.  
The receiver never outputs this Special Character, since K28.5 is decoded as C5.0, C1.7, or C2.7, and the subsequent bytes are decoded as data.  
47. C0.7 = Transmit a deliberate code rule violation. The code chosen for this function follows the normal Running Disparity rules. Transmission of this Special  
Character has the same effect as asserting TXSVS = HIGH. The receiver only outputs this Special Character if the Transmission Character being decoded is  
not found in the tables.  
48. C1.7 = Transmit Negative K28.5 (K28.5+) disregarding Current RD. The receiver only outputs this Special Character if K28.5 is received with the wrong running  
disparity. The receiver outputs C1.7 if K28.5 is received with RD+, otherwise K28.5 is decoded as C5.0 or C2.7.  
49. C2.7 = Transmit Positive K28.5 (+K28.5) disregarding Current RD. The receiver only outputs this Special Character if K28.5 is received with the wrong running  
disparity. The receiver outputs C2.7 if +K28.5 is received with RD, otherwise K28.5 is decoded as C5.0 or C1.7.  
50. C4.7 = Transmit a deliberate code rule violation to indicate a Running Disparity violation. The receiver only outputs this Special Character if the Transmission  
Character being decoded is found in the tables, but Running Disparity does not match. This might indicate that an error occurred in a prior byte.  
Document #: 38-02065 Rev. *F  
Page 43 of 45  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Ordering Information  
Package  
Name  
Operating  
Range  
Speed  
Ordering Code  
Package Type  
Standard  
Standard  
Standard  
Standard  
OBSAI  
CYP15G0403DXB-BGC  
CYP15G0403DXB-BGI  
CYV15G0403DXB-BGC  
CYV15G0403DXB-BGI  
CYW15G0403DXB-BGC  
CYW15G0403DXB-BGI  
CYP15G0403DXB-BGXC  
CYP15G0403DXB-BGXI  
CYV15G0403DXB-BGXC  
CYV15G0403DXB-BGXI  
CYW15G0403DXB-BGXC  
CYW15G0403DXB-BGXI  
BL256 256-Ball Thermally Enhanced Ball Grid Array  
BL256 256-Ball Thermally Enhanced Ball Grid Array  
BL256 256-Ball Thermally Enhanced Ball Grid Array  
BL256 256-Ball Thermally Enhanced Ball Grid Array  
BL256 256-Ball Thermally Enhanced Ball Grid Array  
BL256 256-Ball Thermally Enhanced Ball Grid Array  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
OBSAI  
Standard  
Standard  
Standard  
Standard  
OBSAI  
BL256 Pb-Free 256-Ball Thermally Enhanced Ball Grid Array Commercial  
BL256 Pb-Free 256-Ball Thermally Enhanced Ball Grid Array Industrial  
BL256 Pb-Free 256-Ball Thermally Enhanced Ball Grid Array Commercial  
BL256 Pb-Free 256-Ball Thermally Enhanced Ball Grid Array Industrial  
BL256 Pb-Free 256-Ball Thermally Enhanced Ball Grid Array Commercial  
BL256 Pb-Free 256-Ball Thermally Enhanced Ball Grid Array Industrial  
OBSAI  
Package Diagram  
Figure 3. 256-Lead L2 Ball Grid Array (27 x 27 x 1.57 mm) BL256  
TOP VIEW  
0.20ꢀ4ꢁX  
BOTTOM VIEW ꢀBALL SIDEX  
A
27.00 0.13  
Ø0.15 M C  
Ø0.30 M C  
A
B
A1 CORNER I.D.  
A1 CORNER I.D.  
24.13  
Ø0.75 0.15ꢀ256ꢁX  
20 18  
19  
16  
14  
12  
10  
8
6
4
2
17  
15  
13  
11  
9
7
5
3
1
A
B
C
D
E
F
G
H
J
R 2.5 Max ꢀ4ꢁX  
K
L
M
N
P
R
T
A
U
V
W
Y
A
0.50 MIN.  
B
1.57 0.175  
0.97 REF.  
0.15  
C
26°  
0.15  
C
0.60 0.10  
C
0.20 MIN  
TOP OF MOLD COMPOUND  
TO TOP OF BALLS  
TYP.  
SEATING PLANE  
SIDE VIEW  
SECTION A-A  
51-85123-*E  
HOTLink is a registered trademark and HOTLink II and MultiFrame are trademarks of Cypress Semiconductor. CPRI is a trademark  
of Siemens AG. IBM and ESCON are registered trademarks, and FICON is a trademark, of International Business Machines. All  
product and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-02065 Rev. *F  
Page 44 of 45  
© Cypress Semiconductor Corporation, 2002-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the  
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to  
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CYP15G0403DXB  
CYV15G0403DXB  
CYW15G0403DXB  
Document History Page  
Document Title: CYP(V)(W)15G0403DXB Independent Clock Quad HOTLink II™ Transceiver  
Document Number: 38-02065  
ISSUE  
DATE  
ORIG. OF  
CHANGE  
REV.  
ECN NO.  
DESCRIPTION OF CHANGE  
**  
118422  
125289  
09/24/02  
04/04/03  
LNM  
CGX  
New Data Sheet  
*A  
Revised entire data sheet  
Redefined device  
*B  
128692  
08/14/03  
PDS  
Provided AC timing information for TXERRx  
Added additional information regarding the availability of half-rate  
RXCLKx± when REFCLKx is a full-rate clock with RXCKSELx = 1  
Added influence of ULCx input on LFIx status  
Added influence of DECMODEx on decoder bypass  
Revised the text for “Device Configuration and Control Interface” for  
better clarity  
Removed the timing parameter tRREFDV and added the timing  
parameter tRREFDW instead. This change was done to provide a more  
meaningful timing parameter  
Revised tRREFDA from 9.5 ns to 9.7 ns  
Added additional information to “Device Configuration Strategy”  
*C  
*D  
234390  
338721  
See ECN  
See ECN  
PDS  
SUA  
Removed dependence of DECMODEx on decoder bypass.  
Revised AC timing parameters (AC Electrical Characteristics) to  
match final device characterization.  
Expanded the CDR Range Controller’s permissible frequency offset  
between incoming serial signalling rate and Reference clock from  
±200-PPM to ±1500-PPM (changed parameter tREFRX).  
Added CYW15G0403DXB part number for OBSAI RP3 compliance  
to support operating data rate up to 1540 MBaud. Made changes to  
reflect OBSAI RP3 and CPR compliance. Added Pb-Free Package  
option for all parts listed in the data sheet.  
Modified Timing Parameters  
Changed MBd to MBaud in SPDSEL pin description  
*E  
*F  
384307  
See ECN  
See ECN  
AGT  
UKK  
Revised setup and hold time parameters (tTXDH, tTREFDS, tTREFDH  
,
tRXDv–, tRXDv+, tRXDV+, tREFxDV–, tREFxDV+  
)
1034001  
Added clarification for the necessity of JTAG controller reset and the  
methods to implement it.  
Document #: 38-02065 Rev. *F  
Page 45 of 45  
[+] Feedback  
厂商 型号 描述 页数 下载

NIDEC

CYP [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0200MB [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0200MC [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0200TB [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0200TC [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0201MB [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0201MC [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0201TB [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0201TC [ PIANO SWITCHES (FULL PITCH) ] 5 页

NIDEC

CYP-0202MB [ PIANO SWITCHES (FULL PITCH) ] 5 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.235968s