找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

HYS64T128020EML

型号:

HYS64T128020EML

描述:

214针无缓冲DDR2 SDRAM MicroDIMM模块的低功耗[ 214-Pin Unbuffered DDR2 SDRAM MicroDIMM Modules Low Power ]

品牌:

QIMONDA[ QIMONDA AG ]

页数:

39 页

PDF大小:

2002 K

May 2007  
HYS64T128020EML-3S-B  
HYS64T128020EML-3.7-B  
HYS64T128020EML-5-B  
214-Pin Unbuffered DDR2 SDRAM MicroDIMM Modules  
Low Power  
Preliminary  
Internet Data Sheet  
Rev. 0.5  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
HYS64T128020EML-3S-B HYS64T128020EML-3.7-B  
Revision History: 2007-05, Rev. 0.5  
Page  
Subjects (major changes since last revision)  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc@qimonda.com  
qag_techdoc_rev400 / 3.2 QAG / 2006-08-07  
05212007-7F24-MITO  
2
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
1
Overview  
This chapter gives an overview of the 214-Pin Unbuffered DDR2 SDRAM MicroDIMM Modules product family and describes  
its main characteristics.  
1.1  
Features  
List of Micro-DIMM features  
214-Pin PC-5300,PC2-4200 and PC2-3200 DDR2  
SDRAM memory modules for use as main memory when  
installed in systems such as mobile personal computers.  
128M × 64 module organisation and 64M ×16 chip  
organisation  
JEDEC standard Double-Data-Rate-Two Synchronous  
DRAMs (DDR2 SDRAM) with a single + 1.8 V (± 0.1 V)  
power supply  
1 GB modules built with 1 Gb DDR2 SDRMs in chipsize  
packages PG-TFBGA-84.  
Programmable CAS Latencies (3, 4 and 5), Burst Length  
(8 & 4)  
Burst Refresh, Distributed Refresh and Self Refresh  
All inputs and outputs SSTL_18 compatible  
OCD (Off-Chip Driver Impedance Adjustment) and ODT  
(On-Die Termination)  
Serial Presence Detect with E2PROM  
Micro-DIMM Dimensions (nominal): 30 mm high, 54.0 mm  
wide  
Based on JEDEC standard reference layouts Raw Card  
“A”  
RoHS compliant product1)  
TABLE 1  
Performance Table  
Product Type Speed Code  
Speed Grade  
-3S  
–3.7  
–5  
Units  
PC2-5300  
5-5-5  
PC2–4200  
4-4-4  
PC2–3200  
3-3-3  
CAS-RCD-RP latencies  
tck  
Max. Clock Frequency  
@CL5 fCK5 333  
266  
266  
200  
15  
15  
45  
200  
200  
200  
15  
15  
40  
MHz  
MHz  
MHz  
ns  
ns  
ns  
@CL4 fCK4 266  
@CL3 fCK3 200  
tRCD 15  
Min. RAS-CAS-Delay  
Min. Row Precharge Time  
Min. Row Active Time  
Min. Row Cycle Time  
tRP 15  
tRAS 45  
tRC 60  
60  
55  
ns  
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined  
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,  
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.  
Rev. 0.5, 2007-05  
3
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
1.2  
Description  
The QIMONDA HYS64T128020EML–[3S/3.7/5]–B module  
family are low power Unbuffered Micro-DIMM modules  
“MDIMMs” with 30 mm height based on DDR2 technology.  
DIMMs are available as 128M × 64 organisation and density,  
intended for mounting into 214-pin mezzanine connector  
sockets.The memory array is designed with 1 Gb Double-  
Data-Rate-Two (DDR2) Synchronous DRAMs. Decoupling  
capacitors are mounted on the PCB board. The DIMMs  
feature serial presence detect based on a serial E2PROM  
device using the 2-pin I2C protocol. The first 128 bytes are  
programmed with configuration data and are write protected;  
the second 128 bytes are available to the customer.  
TABLE 2  
Ordering Information  
Product Type1)  
Compliance Code2)  
Description  
SDRAM  
Technology  
HYS64T128020EML-3S-B  
HYS64T128020EML–3.7–B  
HYS64T128020EML–5–B  
1GB 2R×16 PC2–5300M–555–12–A0  
1GB 2R×16 PC2–4200M–444–12–A0  
1GB 2R×16 PC2–3200M–333–12–A0  
two ranks, Non-ECC  
two ranks, Non-ECC  
two ranks, Non-ECC  
1 Gbit  
1 Gbit  
1 Gbit  
1) All part numbers end with a place code, designating the silicon die revision. Example: HYS64T128020EM–3.7–B, indicating Rev. “B” dies  
are used for DDR2 SDRAM components. For all QIMONDA DDR2 module and component nomenclature see Chapter 6 of this data sheet.  
2) The Compliance Code is printed on the module label and describes the speed grade, e.g. “PC2–4200M–444–11–A0, where 4200M means  
Micro-DIMM modules with 4.26 GB/sec Module Bandwidth and “444-11” means Column Address Strobe (CAS) latency = 4, Row Column  
Delay (RCD) latency = 4 and Row Precharge (RP) latency = 4 using the latest JEDEC SPD Revision 1.1 and produced on the Raw Card  
“A”.  
TABLE 3  
Module-Component Mapping Table  
QAG DDR2 Memory Module  
QAG DDR2 SDRAM Component  
Part Number1)  
Density  
Ranks SDRAM  
Raw Part Number Density  
Address Bits  
Organization  
Type  
Organizatio Card  
Organization Row/Bank/Col  
umn  
n Nos.  
HYS64T128020EML 1 GB  
128Mx64  
Non-ECC  
2
x16  
8
A
HYB18T1G160BFL 1 Gbit,  
64Mx16  
13/3/10  
1) Green Product  
Rev. 0.5, 2007-05  
4
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
2
Pin Configuration and Block Diagrams  
This chapter contains the pin configuration and block diagrams.  
2.1  
Pin Configuration  
The pin configuration of the DDR2 SDRAM Micro-DIMM is listed by function in Table 4 (214 pins). The abbreviations used in  
columns Pin and Buffer Type are explained in Table 5 and Table 6 respectively. The pin numbering is depicted in Figure 1.  
TABLE 4  
Pin Configuration of MDIMM  
Ball No.  
Name  
Pin  
Buffer  
Type  
Function  
Type  
Clock Signals  
122  
194  
123  
195  
CK0  
CK1  
CK0  
CK1  
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
Clock Signal CK 1:0, Complementary Clock Signal CK 1:0  
Note: The system clock inputs. All address and command lines are  
sampled on the cross point of the rising edge of CK and the falling  
edge of CK. A Delay Locked Loop (DLL) circuit is driven from the  
clock inputs and output timing for read operations is synchronized  
to the input clock.  
43  
147  
CKE0  
CKE1  
I
I
SSTL  
SSTL  
Clock Enables 1:0  
Note: Activates the DDR2 SDRAM CK signal when HIGH and  
deactivates the CK signal when LOW. By deactivating the clocks,  
CKE0 initiates the Power Down Mode or the Self Refresh Mode.  
1. 2-rank module  
Not Connected  
NC  
NC  
Note: 1-rank module  
Control Signals  
165  
62  
S0  
S1  
NC  
I
I
SSTL  
SSTL  
Chip Select Rank 1:01)2)  
NC  
Not Connected  
Note: 1-rank module  
163  
60  
56  
RAS  
CAS  
WE  
I
I
I
Row Address Strobe (RAS), Column Address Strobe (CAS), Write  
Enable (WE)  
SSTL  
SSTL  
Note: When sampled at the cross point of the rising edge of CK,and  
falling edge of CK, RAS, CAS and WE define the operation to be  
executed by the SDRAM.  
Address Signals  
55  
162  
BA0  
BA1  
I
I
SSTL  
SSTL  
Bank Address Bus 1:0  
Note: Select internal SDRAM memory bank  
Rev. 0.5, 2007-05  
5
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Ball No.  
Name  
BA2  
NC  
Pin  
Buffer  
Type  
Function  
Type  
46  
I
SSTL  
Bank Address Bus 2  
Note: Greater than 512Mb DDR2 SDRAMS  
Not Connected  
NC  
Note: Less than 1Gb DDR2 SDRAMS  
Address Inputs 12:0, Address Input 10/Autoprecharge  
161  
159  
52  
158  
51  
50  
157  
48  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Note: During a Bank Activate command cycle, defines the row address  
when sampled at the crosspoint of the rising edge of CK and falling  
edge of CK. During a Read or Write command cycle, defines the  
column address when sampled at the cross point of the rising edge  
of CK and falling edge of CK. In addition to the column address, AP  
is used to invoke autoprecharge operation at the end of the burst  
read or write cycle. If AP is HIGH, autoprecharge is selected and  
BA[2:0] defines the bank to be precharged. If AP is LOW,  
autoprecharge is disabled. During a Precharge command cycle, AP  
is used in conjunction with BA[2:0] to control which bank(s) to  
precharge. If AP is HIGH, all banks will be precharged regardless  
of the state of BA[2:0] inputs. If AP is LOW, then BA[2:0] are used  
to define which bank to precharge.  
155  
154  
54  
A8  
A9  
A10  
AP  
A11  
A12  
A13  
47  
153  
167  
Address Input 13  
Note: Modules based on ×4/×8 component  
NC  
NC  
Not Connected  
Note: Modules based on ×16 component  
Data Signals  
3
4
9
10  
109  
110  
114  
115  
12  
13  
21  
22  
117  
118  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Bus 0:38  
Note: Data Input/Output pins  
Rev. 0.5, 2007-05  
6
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Ball No.  
Name  
Pin  
Buffer  
Type  
Function  
Type  
125  
126  
24  
25  
30  
DQ14  
DQ15  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Bus 0:38  
Note: Data Input/Output pins  
31  
128  
129  
133  
134  
33  
34  
38  
39  
136  
137  
142  
143  
67  
68  
73  
74  
174  
175  
179  
180  
76  
77  
81  
82  
182  
183  
188  
189  
84  
85  
92  
93  
191  
192  
Data Bus 39:57  
Rev. 0.5, 2007-05  
7
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Ball No.  
Name  
Pin  
Buffer  
Type  
Function  
Type  
200  
201  
95  
DQ54  
DQ55  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
DQS0  
DQS0  
DQS1  
DQS1  
DQS2  
DQS2  
DQS3  
DQS3  
DQS4  
DQS4  
DQS5  
DQS5  
DQS6  
DQS6  
DQS7  
DQS7  
DM0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Bus 39:57  
96  
101  
102  
203  
204  
208  
209  
7
6
19  
18  
28  
Data Strobes 7:0  
Note: The data strobes, associated with one data byte, sourced with data  
transfers. In Write mode, the data strobe is sourced by the  
controller and is centered in the data window. In Read mode the  
data strobe is sourced by the DDR2 SDRAM and is sent at the  
leading edge of the data window. DQS signals are complements,  
and timing is relative to the crosspoint of respective DQS and DQS.  
If the module is to be operated in single ended strobe mode, all  
DQS signals must be tied on the system board to VSS and DDR2  
SDRAM mode registers programmed appropriately.  
27  
140  
139  
71  
2. See block diagram for corresponding DQ signals  
70  
186  
185  
198  
197  
99  
98  
112  
120  
131  
36  
177  
79  
Data Masks 7:0  
Note: The data write masks, associated with one data byte. In Write  
mode, DM operates as a byte mask by allowing input data to be  
written if it is LOW but blocks the write operation if it is HIGH. In  
Read mode, DM lines have no effect.  
DM1  
DM2  
DM3  
DM4  
DM5  
DM6  
DM7  
I
I
I
I
I
I
I
3. ×8 based module  
90  
206  
EEPROM  
105  
SCL  
SDA  
I
CMOS  
OD  
Serial Bus Clock  
Note: This signal is used to clock data into and out of the SPD EEPROM.  
Serial Bus Data  
104  
I/O  
Note: This is a bidirectional pin used to transfer data into or out of the  
SPD EEPROM. A resistor must be connected from SDA to VDDSPD  
on the motherboard to act as a pull-up.  
Rev. 0.5, 2007-05  
8
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Ball No.  
Name  
Pin  
Buffer  
Type  
Function  
Type  
211  
213  
SA0  
SA1  
I
I
CMOS  
CMOS  
Serial Address Select Bus 1:0  
Note: Address pins used to select the Serial Presence Detect base  
address.  
Power Supplies  
1
VREF  
AI  
I/O Reference Voltage  
Note: Reference voltage for the SSTL-18 inputs.  
Power Supply  
Note: Power and ground for the DDR SDRAM  
42, 45, 49, 53, VDD  
57, 61, 64, 146,  
149, 152, 156,  
160, 164, 168,  
171  
PWR  
107  
VDDSPD  
PWR  
GND  
EEPROM Power Supply  
Note: Serial EEPROM positive power supply, wired to a separate power  
pin at the connector which supports from 1.7 Volt to 3.6 Volt.  
2, 5, 8, 11, 14, VSS  
17, 20, 23, 26,  
29, 32, 35, 37,  
40, 66, 69, 72,  
75, 78, 80, 83,  
86, 89, 91, 94,  
97, 100, 103,  
108, 111, 113,  
116, 119, 121,  
124, 127, 130,  
132, 135, 138,  
141, 144, 173,  
176, 178, 181,  
184, 187, 190,  
193, 196, 205,  
199, 202, 207,  
210  
Ground Plane  
Note: Power and ground for the DDR SDRAM  
Other Pins  
166  
63  
ODT0  
ODT1  
I
I
SSTL  
SSTL  
On-Die Termination Control 1:0  
Note: Asserts on-die termination for DQ, DM, DQS, and DQS signals if  
enabled via the DDR2 SDRAM mode register.  
4. 2-rank module  
NC  
Not Connected  
Note: 1-rank module  
15, 16, 41, 44, NC  
58, 59, 65, 87,  
88, 106, 145,  
NC  
Not connected  
Note: Pins not connected on Qimonda MDIMMs  
148, 150, 151,  
167, 169, 170,  
172, 212, 214  
Rev. 0.5, 2007-05  
9
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
1) Enables the associated DDR2 SDRAM command decoder when LOW and disables the command decoder when HIGH. When the  
command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is selected  
by S1. The input signals also disable all outputs (except CKE and ODT) of the register(d) on the DIMM when both inputs are high. When  
S is HIGH, all register outputs (except CK, ODT and Chip select) remain in the previous state.  
2) 2-rank module  
TABLE 5  
Abbreviations for Pin Type  
Abbreviation  
Description  
I
O
Standard input-only pin. Digital levels.  
Output. Digital levels.  
I/O is a bidirectional input/output signal.  
Input. Analog levels.  
Power  
I/O  
AI  
PWR  
GND  
NC  
Ground  
Not Connected  
TABLE 6  
Abbreviations for Buffer Type  
Abbreviation  
Description  
SSTL  
CMOS  
OD  
Serial Stub Terminated Logic (SSTL_18)  
CMOS Levels  
Open Drain. The corresponding pin has 2 operational states, active low and tristate, and  
allows multiple devices to share as a wire-OR.  
Rev. 0.5, 2007-05  
10  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
FIGURE 1  
Pin Configuration for Two-Piece Mezzanine Socket on MDIMM (214 pins)  
62%&  
$1ꢀ  
633  
633  
0IN ꢀꢀꢃ  
0IN ꢀꢀꢄ  
0IN ꢀꢀꢂ  
0IN ꢀꢀꢉ  
0IN ꢀꢀꢇ  
0IN ꢀꢃꢃ  
0IN ꢀꢃꢄ  
0IN ꢀꢃꢂ  
0IN ꢀꢃꢉ  
0IN ꢀꢃꢇ  
0IN ꢀꢅꢃ  
0IN ꢀꢅꢄ  
0IN ꢀꢅꢂ  
0IN ꢀꢅꢉ  
0IN ꢀꢅꢇ  
0IN ꢀꢄꢃ  
0IN ꢀꢄꢄ  
0IN ꢀꢄꢂ  
0IN ꢀꢄꢉ  
0IN ꢀꢄꢇ  
0IN ꢀꢈꢃ  
0IN ꢀꢈꢄ  
0IN ꢀꢈꢂ  
0IN ꢀꢈꢉ  
0IN ꢀꢈꢇ  
0IN ꢀꢂꢃ  
0IN ꢀꢂꢄ  
0IN ꢀꢂꢂ  
0IN ꢀꢂꢉ  
0IN ꢀꢂꢇ  
0IN ꢀꢁꢃ  
0IN ꢃꢀꢆ  
0IN ꢃꢃꢀ  
0IN ꢃꢃꢅ  
0IN ꢃꢃꢈ  
0IN ꢃꢃꢁ  
0IN ꢃꢃꢆ  
0IN ꢃꢅꢀ  
0IN ꢃꢅꢅ  
0IN ꢃꢅꢈ  
0IN ꢃꢅꢁ  
0IN ꢃꢅꢆ  
0IN ꢃꢄꢀ  
0IN ꢃꢄꢅ  
0IN ꢃꢄꢈ  
0IN ꢃꢄꢁ  
0IN ꢃꢄꢆ  
0IN ꢃꢈꢀ  
0IN ꢃꢈꢅ  
0IN ꢃꢈꢈ  
0IN ꢃꢈꢁ  
0IN ꢃꢈꢆ  
0IN ꢃꢂꢀ  
0IN ꢃꢂꢅ  
0IN ꢃꢂꢈ  
0IN ꢃꢂꢁ  
0IN ꢃꢂꢆ  
0IN ꢃꢁꢀ  
0IN ꢃꢁꢅ  
0IN ꢃꢁꢈ  
0IN ꢃꢁꢁ  
0IN ꢃꢁꢆ  
6
33 ꢋ 0IN ꢀꢀꢅ  
0IN ꢃꢀꢇ ꢋ  
$1ꢈ  
$1ꢂ  
$-ꢀ  
$1ꢁ  
633  
$1ꢃ ꢋ 0IN ꢀꢀꢈ  
0IN ꢃꢃꢃ ꢋ 6 33  
0IN ꢃꢃꢄ ꢋ 6 33  
0IN ꢃꢃꢂ ꢋ $1ꢉ  
0IN ꢃꢃꢉ ꢋ $1ꢃꢅ  
0IN ꢃꢃꢇ ꢋ 6 33  
0IN ꢃꢅꢃ ꢋ 6 33  
0IN ꢃꢅꢄ ꢋ #+ꢀ  
0IN ꢃꢅꢂ ꢋ $1ꢃꢈ  
0IN ꢃꢅꢉ ꢋ 6 33  
$13ꢀ  
6 33  
0IN ꢀꢀꢁ  
0IN ꢀꢀꢆ  
$13ꢀ  
$1ꢅ  
633  
$1ꢄ ꢋ 0IN ꢀꢃꢀ  
$1ꢆ ꢋ 0IN ꢀꢃꢅ  
$1ꢃꢄ  
$-ꢃ  
#+ꢀ  
633  
$1ꢇ  
.#  
6
33 ꢋ 0IN ꢀꢃꢈ  
.# ꢋ 0IN ꢀꢃꢁ  
633  
$13ꢃ  
6 33  
0IN ꢀꢃꢆ  
0IN ꢀꢅꢀ  
$13ꢃ  
$1ꢃꢀ  
633  
$1ꢃꢂ  
$1ꢅꢀ  
633  
$1ꢃꢃ 0IN ꢀꢅꢅ  
0IN ꢃꢅꢇ  
0IN ꢃꢄꢃ  
0IN ꢃꢄꢄ  
0IN ꢃꢄꢂ  
0IN ꢃꢄꢉ  
0IN ꢃꢄꢇ  
0IN ꢃꢈꢃ  
0IN ꢃꢈꢄ  
0IN ꢃꢈꢂ  
0IN ꢃꢈꢉ  
0IN ꢃꢈꢇ  
0IN ꢃꢂꢃ  
0IN ꢃꢂꢄ  
0IN ꢃꢂꢂ  
$1ꢅꢃ  
$-ꢅ  
$1ꢅꢅ  
6 33  
$1ꢃꢁ 0IN ꢀꢅꢈ  
$1ꢃꢉ  
$13ꢅ  
633  
633  
6
0IN ꢀꢅꢁ  
33 ꢋ  
$1ꢅꢄ  
$1ꢅꢆ  
633  
$13ꢅ 0IN ꢀꢅꢆ  
$1ꢃꢆ 0IN ꢀꢄꢀ  
$1ꢅꢇ  
$13ꢄ  
6 33  
$1ꢃꢇ  
$1ꢅꢈ  
633  
6
0IN ꢀꢄꢅ  
33 ꢋ  
$13ꢄ  
$1ꢄꢀ  
633  
$1ꢅꢂ 0IN ꢀꢄꢈ  
$-ꢄ 0IN ꢀꢄꢁ  
$1ꢄꢃ  
.#  
633  
$1ꢅꢁ 0IN ꢀꢄꢆ  
$1ꢅꢉ  
.#  
6$$  
6
0IN ꢀꢈꢀ  
#+%ꢃꢊ.#  
6 $$  
33 ꢋ  
.#  
6$$ 0IN ꢀꢈꢅ  
#+%ꢀ  
6$$  
.#  
.# 0IN ꢀꢈꢈ  
.#  
6$$  
.#ꢊ"!ꢅ  
0IN ꢀꢈꢁ  
!ꢃꢅ  
!ꢃꢃ  
!ꢇ  
!ꢉ 0IN ꢀꢈꢆ  
!ꢆ  
6$$  
6$$  
!ꢂ 0IN ꢀꢂꢀ  
0IN ꢃꢂꢉ  
0IN ꢃꢂꢇ  
0IN ꢃꢁꢃ  
0IN ꢃꢁꢄ  
!ꢁ  
!ꢈ  
!ꢄ  
!ꢅ 0IN ꢀꢂꢅ  
!ꢃ  
6$$  
6$$  
!ꢃꢀꢊ!0  
0IN ꢀꢂꢈ  
!ꢀ  
"!ꢀ  
6$$  
"!ꢃ  
6$$  
7% 0IN ꢀꢂꢁ  
2!3  
.# 0IN ꢀꢂꢆ  
0IN ꢃꢁꢂ  
0IN ꢃꢁꢉ  
0IN ꢃꢁꢇ  
0IN ꢃꢉꢃ  
3ꢀ  
.#  
/$4ꢀ  
#!3 0IN ꢀꢁꢀ  
.#  
.#  
6 $$  
6$$  
/$4ꢃꢊ.#  
.#  
6$$  
.#  
3ꢃꢊ.# 0IN ꢀꢁꢅ  
0IN ꢀꢁꢄ  
0IN ꢀꢁꢂ  
0IN ꢀꢁꢉ  
0IN ꢃꢉꢀ  
0IN ꢃꢉꢅ  
0IN ꢃꢉꢈ  
6$$ 0IN ꢀꢁꢈ  
.#  
6
0IN ꢀꢁꢁ  
0IN ꢃꢉꢄ  
0IN ꢃꢉꢂ  
0IN ꢃꢉꢉ  
0IN ꢃꢉꢇ  
0IN ꢃꢆꢃ  
0IN ꢃꢆꢄ  
0IN ꢃꢆꢂ  
0IN ꢃꢆꢉ  
0IN ꢃꢆꢇ  
0IN ꢃꢇꢃ  
0IN ꢃꢇꢄ  
0IN ꢃꢇꢂ  
0IN ꢃꢇꢉ  
0IN ꢃꢇꢇ  
0IN ꢅꢀꢃ  
0IN ꢅꢀꢄ  
0IN ꢅꢀꢂ  
0IN ꢅꢀꢉ  
0IN ꢅꢀꢇ  
0IN ꢅꢃꢃ  
0IN ꢅꢃꢄ  
6 33  
33 ꢋ  
$1ꢄꢅ  
$1ꢄꢁ  
$1ꢄꢄ 0IN ꢀꢁꢆ  
$1ꢄꢉ  
$-ꢈ  
$1ꢄꢆ  
6 33  
633  
$13ꢈ  
$1ꢄꢈ  
633  
633  
0IN ꢀꢁꢇ  
0IN ꢀꢉꢃ  
0IN ꢀꢉꢄ  
0IN ꢀꢉꢂ  
0IN ꢀꢉꢉ  
0IN ꢀꢉꢇ  
0IN ꢀꢆꢃ  
0IN ꢀꢆꢄ  
0IN ꢀꢆꢂ  
0IN ꢀꢆꢉ  
0IN ꢀꢆꢇ  
0IN ꢀꢇꢃ  
0IN ꢀꢇꢄ  
0IN ꢀꢇꢂ  
0IN ꢀꢇꢉ  
0IN ꢀꢇꢇ  
0IN ꢃꢀꢃ  
0IN ꢃꢀꢄ  
0IN ꢃꢀꢂ  
0IN ꢃꢀꢉ  
0IN ꢃꢉꢁ  
0IN ꢃꢉꢆ  
0IN ꢃꢆꢀ  
0IN ꢃꢆꢅ  
0IN ꢃꢆꢈ  
0IN ꢃꢆꢁ  
0IN ꢃꢆꢆ  
0IN ꢃꢇꢀ  
0IN ꢃꢇꢅ  
0IN ꢃꢇꢈ  
0IN ꢃꢇꢁ  
0IN ꢃꢇꢆ  
0IN ꢅꢀꢀ  
0IN ꢅꢀꢅ  
0IN ꢅꢀꢈ  
0IN ꢅꢀꢁ  
0IN ꢅꢀꢆ  
0IN ꢅꢃꢀ  
0IN ꢅꢃꢅ  
0IN ꢅꢃꢈ  
$13ꢈ 0IN ꢀꢉꢀ  
633  
6
0IN ꢀꢉꢅ  
33 ꢋ  
$1ꢄꢇ  
$1ꢈꢈ  
633  
$1ꢄꢂ 0IN ꢀꢉꢈ  
$1ꢈꢀ 0IN ꢀꢉꢁ  
$1ꢈꢂ  
$13ꢂ  
6 33  
$1ꢈꢃ  
$-ꢂ  
$1ꢈꢅ  
633  
6
6
0IN ꢀꢉꢆ  
0IN ꢀꢆꢀ  
33 ꢋ  
33 ꢋ  
$13ꢂ  
$1ꢈꢁ  
633  
$1ꢈꢄ 0IN ꢀꢆꢅ  
$1ꢈꢉ  
$1ꢂꢅ  
6 33  
$1ꢈꢆ 0IN ꢀꢆꢈ  
$1ꢈꢇ  
.#  
$1ꢂꢄ  
#+ꢃ  
633  
6
0IN ꢀꢆꢁ  
33 ꢋ  
.# 0IN ꢀꢆꢆ  
#+ꢃ  
633  
$-ꢁ 0IN ꢀꢇꢀ  
$13ꢁ  
6 33  
633  
$13ꢁ  
$1ꢂꢈ  
633  
$1ꢂꢀ 0IN ꢀꢇꢅ  
$1ꢂꢃ  
$1ꢂꢁ  
633  
6
0IN ꢀꢇꢈ  
$1ꢂꢂ  
$1ꢁꢀ  
6 33  
33 ꢋ  
$1ꢂꢉ 0IN ꢀꢇꢁ  
$1ꢁꢃ  
$-ꢉ  
$1ꢁꢅ  
633  
$13ꢉ 0IN ꢀꢇꢆ  
$13ꢉ  
$1ꢂꢆ  
633  
6
0IN ꢃꢀꢀ  
6 33  
33 ꢋ  
$1ꢂꢇ 0IN ꢃꢀꢅ  
$1ꢁꢄ  
3!ꢀ  
3$! 0IN ꢃꢀꢈ  
3#,  
.#  
.# 0IN ꢃꢀꢁ  
3!ꢃ  
6 $$30$  
.#  
-004ꢀꢀꢁꢀ  
Rev. 0.5, 2007-05  
05212007-7F24-MITO  
11  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
3
Electrical Characteristics  
This chapter lists the electrical characteristics.  
3.1  
Absolute Maximum Ratings  
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 7 at any time.  
TABLE 7  
Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
Min.  
Unit  
Note  
Max.  
1)  
VDD  
VDDQ  
VDDL  
VIN, VOUT  
TSTG  
Voltage on VDD pin relative to VSS  
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
–1.0  
–0.5  
–0.5  
–0.5  
–55  
+2.3  
+2.3  
+2.3  
+2.3  
+100  
V
V
V
V
1)2)  
1)2)  
1)  
1)2)  
°C  
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.  
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect reliability.  
TABLE 8  
DRAM Component Operating Temperature Range  
Symbol  
Parameter  
Rating  
Unit  
Note  
Min.  
Max.  
1)2)3)4)  
TCASE  
Operating Temperature  
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.  
0
95  
°C  
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case  
temperature must be maintained between 0 - 95 °C under all other specification parameters.  
3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs  
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by  
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%  
3.2  
DC Operating Conditions  
This chapter contains the DC operating conditions tables.  
Rev. 0.5, 2007-05  
12  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
TABLE 9  
Supply Voltage Levels and DC Operating Conditions  
Parameter  
Symbol  
Values  
Min.  
Unit  
Note  
Typ.  
Max.  
Device Supply Voltage  
Output Supply Voltage  
Input Reference Voltage  
SPD Supply Voltage  
DC Input Logic High  
DC Input Logic Low  
VDD  
VDDQ  
VREF  
VDDSPD  
VIH(DC)  
1.7  
1.7  
0.49 × VDDQ  
1.7  
1.8  
1.8  
0.5 × VDDQ  
1.9  
1.9  
0.51 × VDDQ  
3.6  
V
V
V
V
V
V
µA  
1)  
2)  
V
REF + 0.125  
V
V
5
DDQ + 0.3  
REF – 0.125  
VIL (DC  
IL  
)
– 0.30  
– 5  
3)  
In / Output Leakage Current  
1) Under all conditions, VDDQ must be less than or equal to VDD  
2) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC).VREF is also expected to track noise in VDDQ  
3) Input voltage for any connector pin under test of 0 V VIN VDDQ + 0.3 V; all other pins at 0 V. Current is per pin  
.
TABLE 10  
Operating Conditions  
Parameter  
Symbol  
Values  
Min.  
Unit  
Note  
Max.  
Operating temperature (ambient)  
DRAM Case Temperature  
Storage Temperature  
Barometric Pressure (operating & storage)  
Operating Humidity (relative)  
TOPR  
TCASE  
TSTG  
PBar  
HOPR  
0
0
– 50  
+69  
10  
+65  
+95  
+100  
+105  
90  
°C  
°C  
°C  
kPa  
%
1)2)3)4)  
5)  
1) DRAM Component Case Temperature is the surface temperature in the center on the top side of any of the DRAMs.  
2) Within the DRAM Component Case Temperature Range all DRAM specifications will be supported  
3) Above 85 °C DRAM Case Temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs  
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by  
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%.  
5) Up to 3000 m.  
Rev. 0.5, 2007-05  
13  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
3.3  
AC Characteristics  
This chapter describes the AC characteristics.  
3.3.1  
Speed Grade Definitions  
This chapter contains the Speed Grade Definition tables.  
TABLE 11  
Speed Grade Definition Speed Bins for DDR2–667D  
Speed Grade  
DDR2–667D  
Unit  
Notes  
QAG Sort Name  
CAS-RCD-RP latencies  
–3S  
5–5–5  
Min.  
tCK  
Parameter  
Symbol  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
tCK  
tCK  
tCK  
tRAS  
tRC  
tRCD  
tRP  
5
3.75  
3
45  
60  
15  
15  
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
70000  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal  
OCD drive strength (EMRS(1) A1 = 0)  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
4) The output timing reference voltage level is VTT  
.
5)  
tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.  
TABLE 12  
Speed Grade Definition Speed Bins for DDR2–533C  
Speed Grade  
DDR2–533C  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
–3.7  
4–4–4  
tCK  
Parameter  
Symbol  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
tCK  
tCK  
tCK  
tRAS  
tRC  
5
8
8
8
ns  
ns  
ns  
ns  
ns  
3.75  
3.75  
45  
Row Active Time  
Row Cycle Time  
70000  
60  
Rev. 0.5, 2007-05  
14  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Speed Grade  
DDR2–533C  
–3.7  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
Parameter  
4–4–4  
tCK  
Symbol  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
RAS-CAS-Delay  
Row Precharge Time  
tRCD  
tRP  
15  
15  
ns  
ns  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal  
OCD drive strength (EMRS(1) A1 = 0)  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode.  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
4) The output timing reference voltage level is VTT  
5)  
.
t
RAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.  
TABLE 13  
Speed Grade Definition Speed Bins for DDR2-400B  
Speed Grade  
DDR2–400B  
Unit  
Note  
QAG Sort Name  
CAS-RCD-RP latencies  
–5  
3–3–3  
tCK  
Parameter  
Symbol  
Min.  
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
tCK  
tCK  
tCK  
tRAS  
tRC  
tRCD  
tRP  
5
5
5
40  
55  
15  
15  
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
70000  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal  
OCD drive strength (EMRS(1) A1 = 0) .  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
4) The output timing reference voltage level is VTT  
.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI  
.
Rev. 0.5, 2007-05  
15  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
3.3.2  
AC Timing Parameters  
This chapter contains the AC Timing Parameters  
TABLE 14  
DRAM Component Timing Parameter by Speed Grade - DDR2–667  
Parameter  
Symbol  
DDR2–667  
Unit  
Notes1)2)3)4)5)6)  
7)8)  
Min.  
Max.  
9)  
DQ output access time from CK / CK  
CAS to CAS command delay  
Average clock high pulse width  
Average clock period  
tAC  
tCCD  
tCH.AVG  
tCK.AVG  
–450  
2
0.48  
3000  
3
+450  
0.52  
8000  
ps  
nCK  
tCK.AVG  
ps  
10)11)  
12)  
CKE minimum pulse width ( high and low pulse tCKE  
nCK  
width)  
10)11)  
13)14)  
Average clock low pulse width  
Auto-Precharge write recovery + precharge time tDAL  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tCL.AVG  
0.48  
WR + tnRP  
0.52  
––  
tCK.AVG  
nCK  
ns  
tDELAY  
tIS + tCK .AVG  
+
tIH  
19)20)15)  
9)  
DQ and DM input hold time  
tDH.BASE  
tDIPW  
tDQSCK  
tDQSH  
175  
––  
+400  
ps  
tCK.AVG  
ps  
tCK.AVG  
tCK.AVG  
ps  
DQ and DM input pulse width for each input  
DQS output access time from CK / CK  
DQS input high pulse width  
DQS input low pulse width  
DQS-DQ skew for DQS & associated DQ signals tDQSQ  
0.35  
–400  
0.35  
0.35  
tDQSL  
16)  
17)  
240  
+ 0.25  
DQS latching rising transition to associated clock tDQSS  
– 0.25  
tCK.AVG  
edges  
18)19)20)  
17)  
DQ and DM input setup time  
DQS falling edge hold time from CK  
DQS falling edge to CK setup time  
Four Activate Window for 1KB page size products tFAW  
Four Activate Window for 2KB page size products tFAW  
tDS.BASE  
tDSH  
tDSS  
100  
0.2  
0.2  
37.5  
50  
––  
__  
ps  
tCK.AVG  
tCK.AVG  
ns  
ns  
ps  
17)  
31)  
31)  
21)  
CK half pulse width  
tHP  
Min(tCH.ABS  
,
tCL.ABS  
)
9)22)  
Data-out high-impedance time from CK / CK  
Address and control input hold time  
Control & address input pulse width for each input tIPW  
Address and control input setup time  
DQ low impedance time from CK/CK  
DQS/DQS low-impedance time from CK / CK  
MRS command to ODT update delay  
Mode register set command cycle time  
OCD drive mode output delay  
tHZ  
tIH.BASE  
275  
0.6  
200  
2 x tAC.MIN  
tAC.MAX  
ps  
ps  
tCK.AVG  
ps  
ps  
ps  
ns  
nCK  
ns  
ps  
25)23)  
24)25)  
9)22)  
9)22)  
31)  
tIS.BASE  
tLZ.DQ  
tLZ.DQS  
tMOD  
tMRD  
tOIT  
tAC.MAX  
tAC.MAX  
12  
12  
tAC.MIN  
0
2
0
31)  
26)  
DQ/DQS output hold time from DQS  
tQH  
t
HP tQHS  
Rev. 0.5, 2007-05  
16  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Parameter  
Symbol  
DDR2–667  
Min.  
Unit  
Notes1)2)3)4)5)6)  
7)8)  
Max.  
27)  
DQ hold skew factor  
Read preamble  
Read postamble  
Active to active command period for 1KB page  
size products  
Active to active command period for 2KB page  
size products  
Internal Read to Precharge command delay  
Write preamble  
Write postamble  
Write recovery time  
Internal write to read command delay  
Exit power down to read command  
tQHS  
340  
1.1  
0.6  
ps  
28)29)  
28)30)  
31)  
tRPRE  
tRPST  
tRRD  
0.9  
0.4  
7.5  
tCK.AVG  
tCK.AVG  
ns  
31)  
31)  
tRRD  
10  
ns  
tRTP  
7.5  
0.35  
0.4  
15  
7.5  
2
0.6  
ns  
tWPRE  
tWPST  
tWR  
tWTR  
tXARD  
tCK.AVG  
tCK.AVG  
ns  
ns  
nCK  
nCK  
31)  
31)32)  
Exit active power-down mode to read command tXARDS  
7 – AL  
(slow exit, lower power)  
Exit precharge power-down to any valid  
command (other than NOP or Deselect)  
Exit self-refresh to a non-read command  
Exit self-refresh to read command  
tXP  
2
nCK  
31)  
tXSNR  
tXSRD  
t
RFC +10  
ns  
nCK  
nCK  
200  
RL–1  
Write command to DQS associated clock edges WL  
1) For details and notes see the relevant Qimonda component data sheet  
2)  
VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.  
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode.  
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
7) The output timing reference voltage level is VTT  
.
8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock  
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and  
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command  
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min)  
.
9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272  
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and  
t
DQSCK.MAX(DERATED) = tDQSCK.MAX tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)  
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)  
10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to  
DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.  
11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and  
the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ).  
12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during  
the time period of tIS + 2 x tCK + tIH.  
Rev. 0.5, 2007-05  
17  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result  
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For  
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.  
15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to  
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing  
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and  
VIH.DC.MIN. See Figure 3.  
16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output  
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.  
17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.  
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal  
crossing. That is, these parameters should be met whether clock jitter is present or not.  
18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level  
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe  
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See  
Figure 3.  
19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.  
20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal  
((L/U/R)DQS / DQS) crossing.  
21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.  
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the  
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the  
minimum of the actual instantaneous clock low time.  
22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level  
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .  
23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied  
to the device under test. See Figure 4.  
24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied  
to the device under test. See Figure 4.  
25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to  
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC  
,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should  
be met whether clock jitter is present or not.  
26) tQH = tHP tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under  
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}  
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system  
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.  
27) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is  
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next  
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation  
of the output drivers.  
28) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving  
(tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins  
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the  
calculation is consistent.  
29) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps  
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX  
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).  
30) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps  
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX  
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).  
31) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in  
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support  
t
nRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at  
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.  
Rev. 0.5, 2007-05  
18  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
32) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.  
FIGURE 2  
Method for calculating transitions and endpoint  
6/( ꢂ X M6  
644 ꢃ ꢁX M6  
644 ꢃ X M6  
6/( ꢂ ꢁX M6  
T,:  
T(:  
T202% BEGIN POINT  
T2034 END POINT  
6/, ꢃ ꢁX M6  
6/, ꢃ X M6  
644 ꢂ X M6  
644 ꢂ ꢁX M6  
4ꢀ 4ꢁ  
T,:ꢄT202% BEGIN POINT ꢅ ꢁꢆ4ꢀꢂ4ꢁ  
4ꢀ 4ꢁ  
T(:ꢄT2034 END POINT ꢅ ꢁꢆ4ꢀꢂ4ꢁ  
FIGURE 3  
Differential input waveform timing - tDS and tDS  
$13  
$13  
T$(  
T$(  
T$3  
T$3  
6$$1  
6)(ꢀACꢁ MIN  
6)(ꢀDCꢁ MIN  
6
2%&ꢀDCꢁ  
6),ꢀDCꢁ MAX  
6),ꢀACꢁ MAX  
633  
FIGURE 4  
Differential input waveform timing - tlS and tlH  
#+  
#+  
T)(  
T)(  
T)3  
T)3  
6$$1  
6)(ꢀACꢁ MIN  
6)(ꢀDCꢁ MIN  
62%&ꢀDCꢁ  
6),ꢀDCꢁ MAX  
6),ꢀACꢁ MAX  
6
33  
Rev. 0.5, 2007-05  
05212007-7F24-MITO  
19  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
TABLE 15  
DRAM Component Timing Parameter by Speed Grade - DDR2–533  
Parameter  
Symbol  
DDR2–533  
Unit  
Notes1)2)3)4)5)  
6)7)  
Min.  
Max.  
DQ output access time from CK / CK  
CAS A to CAS B command period  
CK, CK high-level width  
CKE minimum high and low pulse width  
CK, CK low-level width  
tAC  
–500  
2
0.45  
3
0.45  
WR + tRP  
+500  
0.55  
0.55  
ps  
tCCD  
tCH  
tCKE  
tCL  
tCK  
tCK  
tCK  
tCK  
tCK  
8)18)  
9)  
Auto-Precharge write recovery + precharge  
time  
tDAL  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
DQ and DM input hold time (differential data  
strobe)  
DQ and DM input hold time (single ended data  
strobe)  
tDELAY  
tIS + tCK + tIH  
225  
––  
––  
ns  
ps  
ps  
10)  
11)  
t
t
DH(base)  
DH1(base)  
–25  
DQ and DM input pulse width (each input)  
DQS output access time from CK / CK  
DQS input low (high) pulse width (write cycle) tDQSL,H  
DQS-DQ skew (for DQS & associated DQ  
signals)  
tDIPW  
tDQSCK  
0.35  
–450  
0.35  
+450  
tCK  
ps  
tCK  
ps  
11)  
tDQSQ  
300  
Write command to 1st DQS latching transition tDQSS  
– 0.25  
100  
+ 0.25  
tCK  
ps  
11)  
11)  
DQ and DM input setup time (differential data  
strobe)  
t
DS(base)  
DQ and DM input setup time (single ended data tDS1(base)  
–25  
0.2  
ps  
strobe)  
DQS falling edge hold time from CK (write  
cycle)  
tDSH  
tCK  
DQS falling edge to CK setup time (write cycle) tDSS  
0.2  
37.5  
50  
tCK  
ns  
ns  
Four Activate Window period  
Four Activate Window period  
Clock half period  
tFAW  
tFAW  
tHP  
13)  
12)  
13)  
11)  
MIN. (tCL, tCH  
)
Data-out high-impedance time from CK / CK  
Address and control input hold time  
Address and control input pulse width  
(each input)  
Address and control input setup time  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
Mode register set command cycle time  
OCD drive mode output delay  
tHZ  
tIH(base)  
tIPW  
375  
0.6  
tAC.MAX  
ps  
ps  
tCK  
11)  
14)  
14)  
tIS(base)  
tLZ(DQ)  
tLZ(DQS)  
tMRD  
250  
2 × tAC.MIN  
tAC.MIN  
2
ps  
ps  
ps  
tCK  
ns  
tAC.MAX  
tAC.MAX  
tOIT  
0
12  
Data output hold time from DQS  
tQH  
t
HP tQHS  
Rev. 0.5, 2007-05  
20  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Parameter  
Symbol  
DDR2–533  
Min.  
Unit  
Notes1)2)3)4)5)  
6)7)  
Max.  
Data hold skew factor  
Average periodic refresh Interval  
Average periodic refresh Interval  
Auto-Refresh to Active/Auto-Refresh  
command period  
tQHS  
tREFI  
tREFI  
tRFC  
127.5  
400  
7.8  
3.9  
ps  
µs  
µs  
ns  
14)15)  
16)18)  
17)  
Precharge-All (4 banks) command period  
Precharge-All (8 banks) command period  
Read preamble  
Read postamble  
Active bank A to Active bank B command  
period  
tRP  
tRP  
tRPRE  
tRPST  
tRRD  
t
RP + 1tCK  
1.1  
0.60  
ns  
ns  
tCK  
tCK  
ns  
15 + 1tCK  
0.9  
0.40  
7.5  
14)  
14)  
14)18)  
16)22)  
19)  
Active bank A to Active bank B command  
period  
Internal Read to Precharge command delay  
Write preamble  
Write postamble  
Write recovery time for write without Auto-  
Precharge  
Internal Write to Read command delay  
Exit power down to any valid command  
(other than NOP or Deselect)  
Exit active power-down mode to Read  
command (slow exit, lower power)  
Exit precharge power-down to any valid  
command (other than NOP or Deselect)  
tRRD  
10  
ns  
tRTP  
7.5  
0.60  
ns  
tCK  
tCK  
ns  
tWPRE  
tWPST  
tWR  
0.25  
0.40  
15  
20)  
21)  
tWTR  
tXARD  
7.5  
2
ns  
tCK  
21)  
tXARDS  
tXP  
6 – AL  
2
tCK  
tCK  
Exit Self-Refresh to non-Read command  
Exit Self-Refresh to Read command  
Write recovery time for write with Auto-  
Precharge  
tXSNR  
tXSRD  
WR  
t
RFC +10  
200  
WR/tCK  
ns  
tCK  
tCK  
22)  
t
1) For details and notes see the relevant Qimonda component data sheet  
2) DDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.  
V
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode.  
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
7) The output timing reference voltage level is VTT  
.
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to  
the WR parameter stored in the MR.  
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.  
10) For timing definition, refer to the Component data sheet.  
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate  
mis-match between DQS / DQS and associated DQ in any given cycle.  
Rev. 0.5, 2007-05  
21  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can  
be greater than the minimum specification limits for tCL and tCH).  
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving  
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These  
parameters are verified by design and characterization, but not subject to production test.  
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C  
and 95 °C.  
15) 0 °CTCASE 85 °C  
16) 85 °C < TCASE 95 °C  
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Information” on  
Page 4.  
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system  
performance (bus turnaround) degrades accordingly.  
20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.  
21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-  
down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow  
power-down exit timing tXARDS has to be satisfied.  
22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded  
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK  
refers to the application clock period. WR refers to the WR parameter stored in the MRS.  
TABLE 16  
DRAM Component Timing Parameter by Speed Grade - DDR2-400  
Parameter  
Symbol  
DDR2–400  
Unit  
Notes1)2)3)4)5)  
6)7)  
Min.  
Max.  
DQ output access time from CK / CK  
CAS A to CAS B command period  
CK, CK high-level width  
CKE minimum high and low pulse width  
CK, CK low-level width  
tAC  
–600  
2
0.45  
3
0.45  
WR + tRP  
+600  
0.55  
0.55  
ps  
tCCD  
tCH  
tCKE  
tCL  
tCK  
tCK  
tCK  
tCK  
tCK  
8)21)  
9)  
Auto-Precharge write recovery + precharge  
time  
tDAL  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
DQ and DM input hold time (differential data  
strobe)  
DQ and DM input hold time (single ended data  
strobe)  
tDELAY  
tIS + tCK + tIH  
275  
––  
––  
ns  
ps  
ps  
10)  
11)  
t
t
DH(base)  
DH1(base)  
–25  
DQ and DM input pulse width (each input)  
DQS output access time from CK / CK  
DQS input low (high) pulse width (write cycle) tDQSL,H  
DQS-DQ skew (for DQS & associated DQ  
signals)  
tDIPW  
tDQSCK  
0.35  
–500  
0.35  
+500  
tCK  
ps  
tCK  
ps  
11)  
11)  
tDQSQ  
350  
Write command to 1st DQS latching transition tDQSS  
– 0.25  
150  
+ 0.25  
tCK  
ps  
DQ and DM input setup time (differential data  
t
DS(base)  
strobe)  
Rev. 0.5, 2007-05  
22  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Parameter  
Symbol  
DDR2–400  
Unit  
Notes1)2)3)4)5)  
6)7)  
Min.  
Max.  
11)  
DQ and DM input setup time (single ended  
data strobe)  
t
DS1(base)  
–25  
ps  
DQS falling edge hold time from CK (write  
cycle)  
tDSH  
0.2  
tCK  
DQS falling edge to CK setup time (write cycle) tDSS  
0.2  
37.5  
50  
tCK  
ns  
ns  
Four Activate Window period  
Four Activate Window period  
Clock half period  
tFAW  
tFAW  
tHP  
13)  
12)  
13)  
11)  
MIN. (tCL, tCH  
)
Data-out high-impedance time from CK / CK  
Address and control input hold time  
Address and control input pulse width  
(each input)  
Address and control input setup time  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
Mode register set command cycle time  
OCD drive mode output delay  
tHZ  
tIH(base)  
tIPW  
475  
0.6  
tAC.MAX  
ps  
ps  
tCK  
11)  
14)  
14)  
tIS(base)  
tLZ(DQ)  
tLZ(DQS)  
tMRD  
350  
2 × tAC.MIN  
tAC.MIN  
2
ps  
ps  
ps  
tCK  
ns  
tAC.MAX  
tAC.MAX  
tOIT  
0
12  
Data output hold time from DQS  
Data hold skew factor  
Average periodic refresh Interval  
Average periodic refresh Interval  
Auto-Refresh to Active/Auto-Refresh  
command period  
tQH  
tQHS  
tREFI  
tREFI  
t
HP tQHS  
450  
7.8  
3.9  
ps  
µs  
µs  
ns  
14)15)  
16)18)  
17)  
127.5  
Precharge-All (4 banks) command period  
Precharge-All (8 banks) command period  
Read preamble  
Read postamble  
Active bank A to Active bank B command  
period  
tRP  
tRP  
tRPRE  
tRPST  
tRRD  
t
RP + 1tCK  
1.1  
0.60  
ns  
ns  
tCK  
tCK  
ns  
15 + 1tCK  
0.9  
0.40  
14)  
14)  
14)18)  
7.5  
16)22)  
19)  
Active bank A to Active bank B command  
period  
Internal Read to Precharge command delay  
Write preamble  
Write postamble  
Write recovery time for write without Auto-  
Precharge  
Internal Write to Read command delay  
Exit power down to any valid command  
(other than NOP or Deselect)  
Exit active power-down mode to Read  
command (slow exit, lower power)  
tRRD  
10  
ns  
tRTP  
7.5  
0.60  
ns  
tCK  
tCK  
ns  
tWPRE  
tWPST  
tWR  
0.25  
0.40  
15  
20)  
21)  
tWTR  
tXARD  
10  
2
ns  
tCK  
21)  
tXARDS  
6 – AL  
tCK  
Rev. 0.5, 2007-05  
23  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Parameter  
Symbol  
DDR2–400  
Unit  
Notes1)2)3)4)5)  
6)7)  
Min.  
Max.  
Exit precharge power-down to any valid  
command (other than NOP or Deselect)  
tXP  
2
tCK  
Exit Self-Refresh to non-Read command  
Exit Self-Refresh to Read command  
Write recovery time for write with Auto-  
Precharge  
tXSNR  
tXSRD  
WR  
t
RFC +10  
200  
WR/tCK  
ns  
tCK  
tCK  
22)  
t
1) For details and notes see the relevant Qimonda component data sheet  
2) DDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.  
V
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode.  
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
7) The output timing reference voltage level is VTT  
.
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to  
the WR parameter stored in the MR.  
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.  
10) For timing definition, refer to the Component data sheet.  
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate  
mis-match between DQS / DQS and associated DQ in any given cycle.  
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can  
be greater than the minimum specification limits for tCL and tCH).  
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving  
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These  
parameters are verified by design and characterization, but not subject to production test.  
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C  
and 95 °C.  
15) 0 °CTCASE 85 °C  
16) 85 °C < TCASE 95 °C  
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Information” on  
Page 4.  
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system  
performance (bus turnaround) degrades accordingly.  
20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.  
21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-  
down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow  
power-down exit timing tXARDS has to be satisfied.  
22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded  
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK  
refers to the application clock period. WR refers to the WR parameter stored in the MRS.  
Rev. 0.5, 2007-05  
24  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
3.3.3  
ODT AC Electrical Characteristics  
This chapter describes the ODT AC electrical characteristics.  
TABLE 17  
ODT AC Characteristics and Operating Conditions for DDR2-667& DDR2-800  
Symbol  
Parameter / Condition  
Values  
Unit  
Note  
Min.  
Max.  
1)  
tAOND  
tAON  
ODT turn-on delay  
ODT turn-on  
2
2
nCK  
ns  
ns  
nCK  
ns  
ns  
1)2)  
1)  
tAC.MIN  
tAC.MAX + 0.7 ns  
2 tCK +  
2.5  
tAC.MAX + 0.6 ns  
2.5 tCK +  
tAONPD  
tAOFD  
tAOF  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
ODT turn-off  
t
AC.MIN + 2 ns  
t
AC.MAX + 1 ns  
1)  
2.5  
tAC.MIN  
1)3)  
1)  
tAOFPD  
tANPD  
tAXPD  
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency  
ODT Power Down Exit Latency  
t
AC.MIN + 2 ns  
tAC.MAX + 1 ns  
1)  
3
8
nCK  
nCK  
1)  
1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock  
under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and  
DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may  
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min)  
.
2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the  
ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock  
cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.  
3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.  
Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5  
ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the  
actual input clock edges.  
Rev. 0.5, 2007-05  
25  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
TABLE 18  
ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400  
Symbol  
Parameter / Condition  
Values  
Unit  
Note  
Min.  
Max.  
tAOND  
tAON  
tAONPD  
tAOFD  
tAOF  
tAOFPD  
tANPD  
tAXPD  
ODT turn-on delay  
ODT turn-on  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
ODT turn-off  
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency  
ODT Power Down Exit Latency  
2
2
tCK  
ns  
ns  
tCK  
ns  
ns  
tCK  
tCK  
1)  
2)  
tAC.MIN  
tAC.MAX + 1 ns  
2 tCK + tAC.MAX + 1 ns  
2.5  
tAC.MAX + 0.6 ns  
2.5 tCK + tAC.MAX + 1 ns  
t
AC.MIN + 2 ns  
2.5  
tAC.MIN  
t
AC.MIN + 2 ns  
3
8
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when  
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is  
10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.  
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.  
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is  
12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.  
Rev. 0.5, 2007-05  
26  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
3.4  
IDD Specifications and Conditions  
This chapter describes the IDD Specifications and Conditions.  
TABLE 19  
I
DD Measurement Conditions  
Parameter  
Symbol Note  
1)2)3)4)5)  
Operating Current 0  
IDD0  
One bank Active - Precharge; tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, CKE is HIGH, CS is HIGH between  
valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING.  
6)  
Operating Current 1  
IDD1  
One bank Active - Read - Precharge; IOUT = 0 mA, BL = 4, tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN  
,
t
RCD = tRCD.MIN, AL = 0, CL = CLMIN; CKE is HIGH, CS is HIGH between valid commands. Address and  
control inputs are SWITCHING, Databus inputs are SWITCHING.  
Precharge Standby Current  
IDD2N  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are SWITCHING,  
Databus inputs are SWITCHING.  
Precharge Power-Down Current  
IDD2P  
IDD2Q  
Other control and address inputs are STABLE, Data bus inputs are FLOATING.  
Precharge Quiet Standby Current  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are STABLE,  
Data bus inputs are FLOATING.  
Active Standby Current  
IDD3N  
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN  
;
t
RAS = tRAS.MAX, tRP = tRP.MIN; CKE is HIGH, CS is HIGH between valid commands. Address inputs are  
SWITCHING; Data Bus inputs are SWITCHING; IOUT = 0 mA.  
Active Power-Down Current  
IDD3P(0)  
IDD3P(1)  
IDD4R  
All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs  
are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit);  
Active Power-Down Current  
All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs  
are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit);  
6)  
Operating Current - Burst Read  
All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCKMIN; tRAS = tRASMAX  
;
t
RP = tRPMIN; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data  
bus inputs are SWITCHING; IOUT = 0mA.  
Operating Current - Burst Write  
IDD4W  
All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN  
;
t
RAS = tRAS.MAX., tRP = tRP.MAX; CKE is HIGH, CS is HIGH between valid commands. Address inputs are  
SWITCHING; Data Bus inputs are SWITCHING;  
Burst Refresh Current  
IDD5B  
t
CK = tCK.MIN., Refresh command every tRFC = tRFC.MIN interval, CKE is HIGH, CS is HIGH between valid  
commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.  
Distributed Refresh Current  
IDD5D  
t
CK = tCK.MIN., Refresh command every tRFC = tREFI interval, CKE is LOW and CS is HIGH between valid  
commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.  
Rev. 0.5, 2007-05  
27  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Parameter  
Symbol Note  
1)2)3)4)5)  
Self-Refresh Current  
IDD6  
CKE 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are FLOATING, Data  
bus inputs are FLOATING. IDD6 current values are guaranteed up to TCASE of 85 °C max.  
6)  
All Bank Interleave Read Current  
IDD7  
All banks are being interleaved at minimum tRC without violating tRRD using a burst length of 4. Control  
and address bus inputs are STABLE during DESELECTS. Iout = 0 mA.  
1)  
2)  
VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V  
I
DD specifications are tested after the device is properly initialized and IDD parameter are specified with ODT disabled.  
3) Definitions for IDD see Table 20  
4) For two rank modules: for all active current measurements the other rank is in Precharge Power-Down Mode IDD2P  
5) For details and notes see the relevant Qimonda component data sheet  
6)  
I
DD1, IDD4R and IDD7 current measurements are defined with the outputs disabled (IOUT = 0 mA). To achieve this on module level the output  
buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH.  
TABLE 20  
Definitions for IDD  
Parameter  
LOW  
Description  
IN VIL(ac).MAX, HIGH is defined as VIN VIH(ac).MIN  
V
STABLE  
Inputs are stable at a HIGH or LOW level  
FLOATING  
SWITCHING  
Inputs are VREF = VDDQ /2  
Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control  
signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ  
signals not including mask or strobes  
Rev. 0.5, 2007-05  
28  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
TABLE 21  
I
DD Specification for HYS64T128020EML–[3S/3.7/5]–B  
Product Type  
Organization  
HYS64T128020EML-3S-B HYS64T128020EML-3.7-B HYS64T128020EML-5-B  
Unit Note1)  
1GB  
1GB  
1 GB  
2 Ranks  
×64  
2 Ranks  
x64  
2 Ranks  
x64  
-3S  
-3.7  
–5  
Symbol  
Max.  
2)  
IDD0  
IDD1  
IDD2P  
IDD2N  
588  
628  
96  
548  
568  
96  
528  
548  
96  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
2)  
3)  
3)  
520  
480  
360  
120  
560  
868  
868  
888  
104  
32  
440  
400  
304  
120  
480  
748  
748  
848  
104  
32  
400  
360  
280  
120  
440  
648  
648  
808  
104  
32  
3)  
IDD2Q  
3)  
IDD3P( MRS = 0)  
IDD3P( MRS = 1)  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD5D  
IDD6  
IDD7  
3)  
3)  
2)  
2)  
2)  
3)  
3)  
2)  
1248  
1168  
1108  
1) Calculated values from component data. ODT disabled. IDD1,  
2) The other rank is in IDD2P Precharge Power-Down Standby Current mode  
3) Both ranks are in the same IDDcurrent mode  
I
DD4R, and IDD7, are defined with the outputs disabled.  
Rev. 0.5, 2007-05  
29  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
4
SPD Codes  
This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands  
for serial presence detect. All values with XX in the table are module specific bytes which are defined during production.  
List of SPD Code Tables  
Table 22 “SPD Codes for HYS64T128020EML-[3S/3.7/5]-B” on Page 30  
TABLE 22  
SPD Codes for HYS64T128020EML-[3S/3.7/5]-B  
Product Type  
Organization  
1 GByte  
×64  
1 GByte  
×64  
1 GByte  
×64  
2 Ranks (×16)  
2 Ranks (×16)  
2 Ranks (×16)  
Label Code  
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333  
JEDEC SPD Revision  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Byte#  
Description  
0
1
2
3
4
5
6
7
Programmed SPD Bytes in EEPROM  
Total number of Bytes in EEPROM  
Memory Type (DDR2)  
Number of Row Addresses  
Number of Column Addresses  
DIMM Rank and Stacking Information  
Data Width  
80  
08  
08  
0D  
0A  
61  
40  
00  
05  
30  
45  
00  
82  
10  
00  
80  
08  
08  
0D  
0A  
61  
40  
00  
05  
3D  
50  
00  
82  
10  
00  
80  
08  
08  
0D  
0A  
61  
40  
00  
05  
50  
60  
00  
82  
10  
00  
Not used  
Interface Voltage Level  
8
9
t
t
CK @ CLMAX (Byte 18) [ns]  
AC SDRAM @ CLMAX (Byte 18) [ns]  
10  
11  
12  
13  
14  
Error Correction Support (non-ECC, ECC)  
Refresh Rate and Type  
Primary SDRAM Width  
Error Checking SDRAM Width  
Rev. 0.5, 2007-05  
30  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Product Type  
Organization  
1 GByte  
×64  
1 GByte  
×64  
1 GByte  
×64  
2 Ranks (×16)  
2 Ranks (×16)  
2 Ranks (×16)  
Label Code  
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333  
JEDEC SPD Revision  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Byte#  
Description  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Not used  
00  
0C  
08  
38  
01  
08  
00  
07  
3D  
50  
50  
60  
3C  
28  
3C  
2D  
80  
20  
27  
10  
17  
3C  
1E  
1E  
00  
06  
00  
0C  
08  
38  
01  
08  
00  
07  
3D  
50  
50  
60  
3C  
28  
3C  
2D  
80  
25  
37  
10  
22  
3C  
1E  
1E  
00  
06  
00  
0C  
08  
38  
01  
08  
00  
07  
50  
60  
50  
60  
3C  
28  
3C  
28  
80  
35  
47  
15  
27  
3C  
28  
1E  
00  
06  
Burst Length Supported  
Number of Banks on SDRAM Device  
Supported CAS Latencies  
DIMM Mechanical Characteristics  
DIMM Type Information  
DIMM Attributes  
Component Attributes  
t
t
t
t
t
t
t
t
CK @ CLMAX -1 (Byte 18) [ns]  
AC SDRAM @ CLMAX -1 [ns]  
CK @ CLMAX -2 (Byte 18) [ns]  
AC SDRAM @ CLMAX -2 [ns]  
RP.MIN [ns]  
RRD.MIN [ns]  
RCD.MIN [ns]  
RAS.MIN [ns]  
Module Density per Rank  
t
t
t
t
t
t
t
AS.MIN and tCS.MIN [ns]  
AH.MIN and tCH.MIN [ns]  
DS.MIN [ns]  
DH.MIN [ns]  
WR.MIN [ns]  
WTR.MIN [ns]  
RTP.MIN [ns]  
Analysis Characteristics  
t
RC and tRFC Extension  
Rev. 0.5, 2007-05  
31  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Product Type  
Organization  
1 GByte  
×64  
1 GByte  
×64  
1 GByte  
×64  
2 Ranks (×16)  
2 Ranks (×16)  
2 Ranks (×16)  
Label Code  
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333  
JEDEC SPD Revision  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Byte#  
Description  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
t
t
t
t
t
RC.MIN [ns]  
3C  
7F  
80  
18  
22  
00  
5D  
58  
43  
32  
27  
24  
39  
1E  
48  
21  
34  
00  
00  
00  
00  
12  
16  
7F  
7F  
7F  
3C  
7F  
80  
1E  
28  
00  
59  
60  
3F  
2A  
2B  
20  
35  
21  
40  
22  
31  
00  
00  
00  
00  
12  
47  
7F  
7F  
7F  
37  
7F  
80  
23  
2D  
00  
55  
58  
33  
1D  
27  
1A  
28  
1E  
30  
1E  
2B  
00  
00  
00  
00  
12  
68  
7F  
7F  
7F  
RFC.MIN [ns]  
CK.MAX [ns]  
DQSQ.MAX [ns]  
QHS.MAX [ns]  
PLL Relock Time  
T
Psi(T-A) DRAM  
T0 (DT0)  
T2N (DT2N, UDIMM) or T2Q (DT2Q, RDIMM)  
T2P (DT2P)  
T3N (DT3N)  
T3P.fast (DT3P fast)  
T3P.slow (DT3P slow)  
T4R (DT4R) / T4R4W Sign (DT4R4W)  
T5B (DT5B)  
T7 (DT7)  
Psi(ca) PLL  
Psi(ca) REG  
TPLL (DTPLL)  
CASE.MAX Delta / T4R4W Delta  
TREG (DTREG) / Toggle Rate  
SPD Revision  
Checksum of Bytes 0-62  
Manufacturer’s JEDEC ID Code (1)  
Manufacturer’s JEDEC ID Code (2)  
Manufacturer’s JEDEC ID Code (3)  
Rev. 0.5, 2007-05  
32  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Product Type  
Organization  
1 GByte  
×64  
1 GByte  
×64  
1 GByte  
×64  
2 Ranks (×16)  
2 Ranks (×16)  
2 Ranks (×16)  
Label Code  
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333  
JEDEC SPD Revision  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Byte#  
Description  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
Manufacturer’s JEDEC ID Code (4)  
Manufacturer’s JEDEC ID Code (5)  
Manufacturer’s JEDEC ID Code (6)  
Manufacturer’s JEDEC ID Code (7)  
Manufacturer’s JEDEC ID Code (8)  
Module Manufacturer Location  
Product Type, Char 1  
Product Type, Char 2  
Product Type, Char 3  
Product Type, Char 4  
Product Type, Char 5  
Product Type, Char 6  
Product Type, Char 7  
Product Type, Char 8  
Product Type, Char 9  
Product Type, Char 10  
Product Type, Char 11  
Product Type, Char 12  
Product Type, Char 13  
7F  
7F  
51  
00  
00  
xx  
7F  
7F  
51  
00  
00  
xx  
7F  
7F  
51  
00  
00  
xx  
36  
34  
54  
31  
32  
38  
30  
32  
30  
45  
4D  
4C  
33  
53  
42  
20  
20  
20  
0x  
xx  
36  
34  
54  
31  
32  
38  
30  
32  
30  
45  
4D  
4C  
33  
2E  
37  
42  
20  
20  
0x  
xx  
36  
34  
54  
31  
32  
38  
30  
32  
30  
45  
4D  
4C  
35  
42  
20  
20  
20  
20  
0x  
xx  
Product Type, Char 14  
Product Type, Char 15  
Product Type, Char 16  
Product Type, Char 17  
Product Type, Char 18  
Module Revision Code  
Test Program Revision Code  
Rev. 0.5, 2007-05  
33  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Product Type  
Organization  
1 GByte  
×64  
1 GByte  
×64  
1 GByte  
×64  
2 Ranks (×16)  
2 Ranks (×16)  
2 Ranks (×16)  
Label Code  
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333  
JEDEC SPD Revision  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Rev. 1.2  
HEX  
Byte#  
Description  
93  
94  
Module Manufacturing Date Year  
Module Manufacturing Date Week  
xx  
xx  
xx  
00  
FF  
xx  
xx  
xx  
00  
FF  
xx  
xx  
xx  
00  
FF  
95 - 98 Module Serial Number  
99 - 127 Not used  
128 -  
255  
Blank for customer use  
Rev. 0.5, 2007-05  
34  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
5
Package Outlines  
This chaper contains the package outlines of the products.  
FIGURE 5  
Package Outline Raw Card A L-DIM-214-1  
ꢀꢃꢊ -!8ꢃ  
ꢂꢃꢀ -!8ꢃ  
ꢅꢃꢄꢏꢁꢃꢂꢆ  
›ꢁꢃꢅꢆ  
ꢆꢇ  
"
ꢁꢃꢅ #  
›ꢁꢃꢁꢀ  
ꢁꢃꢄꢂ  
ꢆꢃꢆꢂ›ꢁꢃꢁꢂꢆ  
ꢇꢃꢈꢂ›ꢁꢃꢁꢂꢆ  
#
!
›ꢁꢃꢁꢊ  
ꢁꢃꢊ  
ꢌꢇꢇꢃꢈꢂꢍ  
›ꢁꢃꢁꢂ  
ꢇꢀꢃꢀꢊ  
ꢅꢁꢄ X ꢁꢃꢇ ꢋ ꢇꢂꢃꢇ  
- -  
# "  
$
ꢁꢃꢅ  
"
ꢁꢃꢇ  
!
!
ꢅꢁꢈ  
ꢂꢅꢇ  
"
ꢅꢁꢊ  
ꢅꢃꢅꢆ  
ꢂꢃꢀ  
$ETAIL OF CONTACTS  
!ꢀ!  
"ꢀ"  
›ꢁꢃꢁꢂ  
ꢅꢃꢀ  
- -  
ꢁꢃꢅ ! "  
%
#ONTACT !REA  
ꢁꢃꢇ  
›ꢁꢃꢁꢂ  
ꢁꢃꢂꢄ  
ꢁꢃꢁꢄ # $ % ꢅꢁꢈX  
"URNISHEDꢎ NO BURR ALLOWED  
',$ꢁꢉꢄꢀꢊ  
Notes  
1. General tolerances +/- 0.15  
2. Drawing according to ISO 8015  
Rev. 0.5, 2007-05  
35  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
6
Product Type Nomenclature  
Qimonda’s nomenclature uses simple coding combined with some proprietary coding. Table 23 provides examples for module  
and component product type number as well as the field number. The detailed field description together with possible values  
and coding explanation is listed for modules in Table 24 and for components in Table 25.  
TABLE 23  
Nomenclature Fields and Examples  
Example for  
Field Number  
1
2
3
4
5
6
7
8
9
10  
11  
Micro-DIMM  
DDR2 DRAM  
HYS  
HYB  
64  
18  
T
T
64/128  
512/1G 16  
0
2
0
0
K
A
M
C
–5  
–5  
–A  
TABLE 24  
DDR2 DIMM Nomenclature  
Field  
Description  
Values  
Coding  
1
2
Qimonda Module Prefix  
Module Data Width [bit]  
HYS  
64  
72  
Constant  
Non-ECC  
ECC  
3
4
DRAM Technology  
T
32  
64  
DDR2  
Memory Density per I/O [Mbit];  
256 MByte  
512 MByte  
1 GByte  
2 GByte  
4 GByte  
Look up table  
1, 2, 4  
Look up table  
Look up table  
SO-DIMM  
Module Density1)  
128  
256  
512  
0 .. 9  
0, 2, 4  
0 .. 9  
A .. Z  
D
5
6
7
8
9
Raw Card Generation  
Number of Module Ranks  
Product Variations  
Package, Lead-Free Status  
Module Type  
M
R
U
F
Micro-DIMM  
Registered  
Unbuffered  
Fully Buffered  
Rev. 0.5, 2007-05  
36  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Field  
Description  
Values  
Coding  
10  
Speed Grade  
–2.5F  
–2.5  
–3  
–3S  
–3.7  
–5  
PC2–6400 5–5–5  
PC2–6400 6–6–6  
PC2–5300 4–4–4  
PC2–5300 5–5–5  
PC2–4200 4–4–4  
PC2–3200 3–3–3  
First  
11  
Die Revision  
–A  
–B  
Second  
1) Multiplying “Memory Density per I/O” with “Module Data Width” and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall  
module memory density in MBytes as listed in column “Coding”.  
TABLE 25  
DDR2 DRAM Nomenclature  
Field  
Description  
Values  
Coding  
1
2
3
4
Qimonda Component Prefix  
Interface Voltage [V]  
DRAM Technology  
HYB  
18  
T
256  
512  
1G  
2G  
40  
Constant  
SSTL_18  
DDR2  
256 Mbit  
512 Mbit  
1 Gbit  
2 Gbit  
×4  
Component Density [Mbit]  
5+6  
Number of I/Os  
80  
×8  
16  
×16  
7
8
Product Variations  
Die Revision  
0 .. 9  
A
Look up table  
First  
B
Second  
9
Package, Lead-Free Status  
Speed Grade  
C
F
FBGA, lead-containing  
FBGA, lead-free  
DDR2-800 5-5-5  
DDR2-800 6-6-6  
DDR2-667 4-4-4  
DDR2-667 5-5-5  
DDR2-533 4-4-4  
DDR2-400 3-3-3  
10  
–25F  
–2.5  
–3  
–3S  
–3.7  
–5  
Rev. 0.5, 2007-05  
37  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
HYS64T128020EML-[3S/3.7/5]-B  
Unbuffered DDR2 SDRAM MicroDIMM Modules  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.1  
1.2  
2
Pin Configuration and Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
IDODDSTpeAcCificEaleticotnriscaalnCdhCaorancdtietiroisntsic.s. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2275  
SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.1  
3.2  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.4  
4
5
6
Rev. 0.5, 2007-05  
38  
05212007-7F24-MITO  
Preliminary Internet Data Sheet  
Edition 2007-05  
Published by Qimonda AG  
Gustav-Heinemann-Ring 212  
D-81739 München, Germany  
© Qimonda AG 2007.  
All Rights Reserved.  
Legal Disclaimer  
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,  
including without limitation warranties of non-infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in question please  
contact your nearest Qimonda Office.  
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a  
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect  
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human  
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health  
of the user or other persons may be endangered.  
www.qimonda.com  
厂商 型号 描述 页数 下载

INFINEON

HYS64-72V2200GU-8 3.3V 2M ×64 /72- 1位BANK SDRAM模块3.3V 4M ×64 /72- 2位BANK SDRAM模块[ 3.3V 2M x 64/72-Bit 1 BANK SDRAM Module 3.3V 4M x 64/72-Bit 2 BANK SDRAM Module ] 17 页

INFINEON

HYS64-74V8200GU 3.3 V 8M ×64 /72- 1位银行SDRAM模块3.3 V 16M ×64 /72- 2位银行SDRAM模块[ 3.3 V 8M x 64/72-Bit 1 Bank SDRAM Module 3.3 V 16M x 64/72-Bit 2 Bank SDRAM Module ] 17 页

INFINEON

HYS6472V16200GU 3.3 V 16M ×64 /72-位SDRAM模块3.3 V 32M ×64 /72-位SDRAM模块3.3 V 64M ×64 /72-位SDRAM模块[ 3.3 V 16M x 64/72-Bit SDRAM Modules 3.3 V 32M x 64/72-Bit SDRAM Modules 3.3 V 64M x 64/72-Bit SDRAM Modules ] 17 页

INFINEON

HYS6472V4200GU 3.3V 4M ×64 /72- 1位BANK SDRAM模块3.3V 8M ×64 /72- 2位BANK SDRAM模块[ 3.3V 4M x 64/72-Bit 1 BANK SDRAM Module 3.3V 8M x 64/72-Bit 2 BANK SDRAM Module ] 15 页

INFINEON

HYS64D128020GBDL-6-A [ DDR DRAM Module, 128MX64, 0.7ns, CMOS, SO-DIMM-200 ] 11 页

ETC

HYS64D128020GBDL-7-A ? 1GB ( 1024Mx64 ) PC2100 2银行?\n[ ?1GB (1024Mx64) PC2100 2-bank? ] 11 页

INFINEON

HYS64D128020GU-7-A 2.5 V 184针无缓冲DDR- SDRAM我模块[ 2.5 V 184-pin Unbuffered DDR-I SDRAM Modules ] 18 页

INFINEON

HYS64D128020GU-8-A 2.5 V 184针无缓冲DDR- SDRAM我模块[ 2.5 V 184-pin Unbuffered DDR-I SDRAM Modules ] 18 页

QIMONDA

HYS64D128020GU-8-A [ DDR DRAM Module, 128MX64, 0.8ns, CMOS, PDMA184 ] 18 页

INFINEON

HYS64D128021 200针的小型双列直插式内存模块[ 200-Pin Small Outline Dual-In-Line Memory Modules ] 23 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.186406s