找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYNCP80192

型号:

CYNCP80192

描述:

网络数据库协处理器[ Network Database Coprocessor ]

品牌:

CYPRESS[ CYPRESS ]

页数:

42 页

PDF大小:

637 K

CYNCP80192  
CYNCP80192 Network Database  
Coprocessor  
Cypress Semiconductor Corporation  
Document #: 38-02043 Rev. *B  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised August 27, 2003  
CYNCP80192  
CONTENTS  
1.0 OVERVIEW ......................................................................................................................................5  
2.0 FEATURES ......................................................................................................................................6  
3.0 FUNCTIONAL DESCRIPTION .........................................................................................................7  
3.1 Configuration Registers ..............................................................................................................7  
3.2 Operating Registers ....................................................................................................................7  
3.3 Pipeline and Table Management and Bus Protocol Conversion Logic .......................................7  
3.4 NSE Interface ..............................................................................................................................7  
3.5 Associative SSRAM Interface .....................................................................................................7  
4.0 SIGNAL DESCRIPTION ...................................................................................................................8  
5.0 CLOCKS .........................................................................................................................................11  
6.0 REGISTERS ...................................................................................................................................12  
6.1 Coprocessor Interface Register ................................................................................................12  
6.2 Configuration and Status Registers ..........................................................................................12  
7.0 OPERATING REGISTERS .............................................................................................................15  
7.1 Address Mapping ......................................................................................................................15  
7.2 Context Descriptor Organization ...............................................................................................16  
7.3 Context Descriptor Commands .................................................................................................16  
8.0 NDC SUBSYSTEM POWER-UP INITIALIZATION PROCEDURE ................................................23  
9.0 ZBT PIPELINED SSRAM INTERFACE MODE .............................................................................24  
10.0 ZBT FLOWTHROUGH SSRAM INTERFACE MODE ..................................................................25  
11.0 SYNCBURST PIPELINED SSRAM INTERFACE (EARLY WRITE) ............................................26  
12.0 SYNCBURST PIPELINED SSRAM INTERFACE MODE (LATE WRITE) ...................................27  
13.0 APPLICATION INFORMATION ...................................................................................................28  
14.0 INFORMATION ON EXTERNAL TRANSCEIVERS ....................................................................29  
15.0 JTAG (1149.1) TESTING .............................................................................................................30  
16.0 ELECTRICAL CHARACTERISTICS ............................................................................................31  
17.0 ORDERING INFORMATION ........................................................................................................39  
18.0 PACKAGE DRAWINGS ...............................................................................................................40  
Document #: 38-02043 Rev. *B  
Page 2 of 42  
CYNCP80192  
LIST OF FIGURES  
Figure 2-1. CYNCP80192 Block Diagram ............................................................................................... 6  
Figure 5-1. NDC Clocks......................................................................................................................... 11  
Figure 9-1. ZBT Pipelined SRAM Interface (Mode 000)........................................................................ 24  
Figure 10-1. ZBT Flowthrough SSRAM Interface (Mode 001)...............................................................25  
Figure 11-1. SyncBurst Pipelined SSRAM Interface (Early Write) ........................................................ 26  
Figure 12-1. SyncBurst Pipelined SSRAM Interface (Late Write).......................................................... 27  
Figure 13-1. Configuration 1—Associative SSRAM Mode .................................................................... 28  
Figure 13-2. Configuration 2—Index Mode............................................................................................ 28  
Figure 13-3. Switching Systems Block Diagram.................................................................................... 28  
Figure 14-1. Use of Transceiver Enables .............................................................................................. 29  
Figure 14-2. Transceiver Connected Between CYNPC80192 and CYNSE70XXX Devices ................. 29  
Figure 16-1. Pinout Diagram.................................................................................................................. 33  
Figure 18-1. Package Bottom View ....................................................................................................... 40  
Figure 18-2. Package Side View ...........................................................................................................40  
Figure 18-3. Package Top View ............................................................................................................ 41  
Document #: 38-02043 Rev. *B  
Page 3 of 42  
CYNCP80192  
LIST OF TABLES  
Table 4-1. Search Coprocessor Pin Description .....................................................................................8  
Table 6-1. Register Partitions for Coprocessor Access ........................................................................12  
Table 6-2. Configuration and Status Registers Area ............................................................................12  
Table 6-3. Configuration Register .........................................................................................................12  
Table 6-4. Error and Status Register ....................................................................................................13  
Table 6-5. Error Codes .........................................................................................................................13  
Table 6-6. Information Register Description .........................................................................................14  
Table 7-1. Operating Registers Addressing Mapping (ADR[9] = 1) ......................................................15  
Table 7-2. Context Descriptor Organization .........................................................................................16  
Table 7-3. Descriptor Command ...........................................................................................................16  
Table 7-4. Read Command ..................................................................................................................18  
Table 7-5. Write Command ...................................................................................................................18  
Table 7-6. Search Data .........................................................................................................................18  
Table 7-7. Move Command Parameters ...............................................................................................19  
Table 7-8. Swap Command Parameters ..............................................................................................19  
Table 7-9. SSRAM Data .......................................................................................................................19  
Table 7-10. NSE Data, Mask, and Register Locations .........................................................................19  
Table 7-11. Read Response at Result Register 0 ................................................................................19  
Table 7-12. Data Read from NSE .........................................................................................................20  
Table 7-13. Data Read from SSRAM ...................................................................................................20  
Table 7-14. Write/Move/Swap/Learn Results Register 0 ......................................................................20  
Table 7-15. Result Register 0 for Search Operation .............................................................................21  
Table 7-16. Result Register 1 (Search Result Bit in Data Field = 0) .....................................................21  
Table 7-17. Result Register 1 (Search Result Bit in Data Field = 1) .....................................................21  
Table 7-18. Search Response in Result Register 0 (type I) .................................................................21  
Table 7-19. Index Bits for NSEs ...........................................................................................................22  
Table 15-1. Test Access Port Controller Instructions ...........................................................................30  
Table 15-2. Test Access Port Device ID Register ................................................................................30  
Table 16-1. Electrical Characteristics ...................................................................................................31  
Table 16-2. Capacitance .......................................................................................................................31  
Table 16-3. Operating Conditions .........................................................................................................31  
Table 16-4. AC Timing Parameters for Pipelined ZBT SSRAM and SyncBurst SSRAM .....................31  
Table 16-5. AC Timing Parameters for ZBT and Flow-Through SSRAM .............................................32  
Table 16-6. CYNPC80192 Pinout Description ......................................................................................34  
Table 17-1. Ordering Information ..........................................................................................................39  
Document #: 38-02043 Rev. *B  
Page 4 of 42  
CYNCP80192  
1.0  
Overview  
Cypress Semiconductor Corporation’s (Cypress’s) network database coprocessor (NDC) performs the following three primary  
functions.  
Interconnection bridge function. The CYNCP80192 device acts as a bridge between network processor(s) and a search  
subsystem of Cypress’s CYNSE70XXX network search engines (NSEs) plus optional associated SSRAMs that contain  
a search database and the associated data for a variety of network protocol layers. The CYNCP80192 device interfaces to  
the network processor with an SSRAM interface and offloads the search function to provide support for fast packet processing  
in routers and switches.  
Pipeline management function. Cypress’s NSEs have a pipelined architecture to optimize search performance and through-  
put. The CYNCP80192 device manages the pipeline for optimal search performance and packs instructions back to back in  
order to avoid any bubbles in the pipeline.  
Table management function. The CYNCP80192 device builds on the simple instructions of the NSEs to provide advanced  
instructions for table management.  
There are two ways to build the NDC system.  
• InthefirstsystemtheassociativedataSRAMsareconnectedtotheCYNCP80192deviceandtheNSE(s)(seeNDCSubsystem  
Power-up Initialization Procedure” on page 23), and the CYNCP80192 device returns the associated data in response to a  
search operation. This type of implementation is suited to applications where the associative data size is up to eight bytes.  
• In the second system, the CYNCP80192 device returns the index of the successful search entry to the network processor.  
The network processor uses this index to access SSRAMs in order to get the required results. The SSRAMs containing the  
associative data are connected directly to the network processor’s SSRAM bus. This is suitable for applications where the  
associative data size is longer than eight bytes.  
The NDC runs up to 100 MHz. At that speed and running with a 64-bit bus interface, the NDC performs at a peak rate of 33 million  
searches on 68-bit entries, 25 million searches on 136-bit entries, and 16.67 million searches on 272-bit entries. At 100-MHz  
speed and running with a 32-bit bus interface, the NDC performs at a peak rate of 25 million searches on 68-bit entries,  
16.67 million searches on 136-bit entries, and 10 million searches on 272-bit entries.  
The NDC supports centralized, multiple layer, multiwidth tables in order to provide cost effective search solutions for Ethernet,  
asynchronous transfer mode (ATM), and Sonet-based switches and routing systems. It supports the following advanced capabil-  
ities: quality of service (QoS), class of service (CoS), virtual private network (VPN), packet and flow classification, and security.  
Document #: 38-02043 Rev. *B  
Page 5 of 42  
CYNCP80192  
2.0  
Features  
• The hardware interface to the NDC uses an SSRAM interface. The CYNCP80192 device supports ZBT pipelined,  
ZBT flowthrough, and SyncBurst pipelined (late and early write) types of SSRAMs.  
• All instructions and/or responses are mapped into the SSRAM address (ADR) space.  
• The CYNCP80192 device provides simultaneous multiple layer, variable-width tables (×68, ×136, ×272).  
• There is support for table sizes up to four million ×34 entries.  
• There are 33 million searches per second (Msps) in the ×68 configuration (CFG).  
• The CYNCP80192 device is compatible with 1-Mb, 2-Mb, and 4-Mb NSEs.  
• It has a glueless interface to industry standard synchronous SRAMs and NSEs.  
• The CYNCP80192 device uses up to 100 MHz master clock frequency.  
• It has an IEEE 1149.1 test access port.  
• There is a 2.5V/3.3V power supply and a 388-pin BGA package.  
The CYNPC80192 NDC contains the following function blocks, shown in Figure 2-1.  
Configuration  
Register  
Network  
Pipeline and Table  
Management, and  
Bus Protocol  
Processor  
Interface  
NSE  
Interface  
Data  
NSE  
(SSRAM bus)  
Conversion Controller  
Operating  
Register  
[1]  
SADR  
Return ID  
[1]  
SDATA  
Associative  
SSRAM Interface  
SSRAMs  
Figure 2-1. CYNCP80192 Block Diagram  
Note:  
1. 1. The device can be configured for returning SADR or SDATA.  
Document #: 38-02043 Rev. *B  
Page 6 of 42  
CYNCP80192  
3.0  
3.1  
Functional Description  
Configuration Registers  
The CFG registers contain information for configuring the CYNPC80192. These registers also include error, status, mask, and  
information registers.  
3.2  
Operating Registers  
This logic block contains the random access registers through which the network processor(s) perform most of the table  
programming, management functions, and search operations (via a request-response protocol). A network processor posts  
operation requests and Reads responses back from this access block.  
3.3  
Pipeline and Table Management and Bus Protocol Conversion Logic  
This unit uses pipeline management logic to optimize the search performance through the NSE pipeline. This unit posts the  
commands to the NSE and steers the results to the appropriate locations in the operating registers. It also converts the SSRAM  
interface information from a network processor into protocol cycles of the NSE transactions. This unit builds on the commands  
provided by the NSE to provide more advanced table management commands to the network processor.  
3.4  
NSE Interface  
This interface generates the appropriate hardware handshake with the NSE(s). This block is a slave to the pipeline control unit  
and drives the NSE(s) bus with the appropriate commands.  
3.5  
Associative SSRAM Interface  
The data transfer between the SSRAM and the pipeline unit takes place in this interface. The pipeline unit further transfers this  
information to the operating registers.  
Document #: 38-02043 Rev. *B  
Page 7 of 42  
CYNCP80192  
4.0  
Signal Description  
Table 4-1 provides information on pins and signal names for the CYNCP80192 device. Under the “Type” heading, I = Input,  
O = Output, and T = three-state.  
Table 4-1. Search Coprocessor Pin Description  
Parameter  
Type  
Description  
Network Processor Interface  
IRST_L  
CLK[2]  
I
I
I
Synchronous Reset Input. Active low. Initializes the device to a known state.  
Coprocessor Clock Input. CLK may be run up to 100 MHz.  
ADR[9:0]  
Coprocessor Location Address. This 10-bit address bus ADRs up to 1024 32-bit locations in the  
coprocessor. These 1024 locations are further divided into 512 32-bit locations of CFG area and  
512 32-bit locations of the operating register area. When the data bus is configured as 64 bits wide  
(using the IWIDTH pin described below), the ADR[0] is ignored by the device. When the data bus  
is configured as 32 bits wide (using the IWIDTH pin described below), all the ADR bits are used by  
the device.  
DATA[63:0]  
CE_L  
IO  
Coprocessor Data Bus. Only the [31:0] field of this bus is used when the coprocessor is configured  
for a 32-bit interface (using the IWIDTH pin described below).  
I
I
I
I
I
I
Coprocessor Chip Enable. This active low signal is used to enable the device. This is one of the  
three chip enables (CEs) to the coprocessor. All three CEs must be active to select the coprocessor.  
CE2_L  
CE2  
Coprocessor Chip Enable. This active low signal is used to enable the device. This is another one  
of the three CEs to coprocessor. All three CEs must be active to select the coprocessor.  
Coprocessor Chip Enable. This active high signal is used to enable the device. This is another  
one of the three CEs to the coprocessor. All three CEs must be active to select the coprocessor.  
R/W_L  
OE_L  
Read/Write. This input determines whether it is a Read or a Write cycle. A low on this pin means it  
is a Write operation, and a High means it is a Read operation.  
Coprocessor Output Enable. This active low asynchronous signal enables the output drivers of  
the data bus.  
BW_L[7:0]  
Synchronous Byte Write Enables. These active low signals allow individual bytes to be written  
when a Write cycle is active. When the data bus is configured as 32 bits wide, only BW_L[3:0] is  
used and the BW_L[7:4] should be tied to VDD externally.  
BWE_L  
STRB  
I
Byte Write Enable. This active low signal allows the byte Write signals (BW_L[7:0]) to control the  
Write operation.  
O
O
When the done bit is set in result register 0, STRB qualifies the CPID[7:0]. The network processor  
can use STRB signal to latch the CPID signals.  
CPID[7:0]  
Context ID and Processor ID. When the result is Ready in the descriptor, the NDC outputs the  
processor and context IDs are concatenated as follows: {processor ID, context ID}. The bit length  
of the processor and context IDs can be programmed using the CFG register 0 (see CPCFG). See  
the STRB signal description also.  
INTR/INTR_L  
O
This interrupt pin is asserted when the SE_FULL, DESC_AFULL, or error bits filed is set in the error  
status register. Interrupt can be active high or low, depending upon the polarity selected in the CFG  
register.  
SE_FULL  
O
O
NSE table full indicator to the network processor.  
DESC_AFUL  
This bit indicates that the descriptor array is almost full. When this flag is set, the processor can  
send only two more commands to the descriptor. The DESC_AF flag will be cleared if more that two  
descriptors are available.  
NSE Command and DQ Bus  
CLK2X  
O
NSE Master Clock. CYNPC80192 drives this CLK to the NSE. The frequency of this CLK is twice  
the frequency of the NSE. This CLK runs up to 100 MHz and is derived by buffering the input CLK  
at the coprocessor interface.  
PHS_L  
O
Phase Signal to the NSE. This signal runs at half the frequency of CLK2X and synchronizes the  
alignment of the instruction to the NSE.  
Note:  
2. “CLK” is an internal clock signal.  
Document #: 38-02043 Rev. *B  
Page 8 of 42  
CYNCP80192  
Table 4-1. Search Coprocessor Pin Description (continued)  
Parameter  
ORST_L  
Type  
O
Description  
Reset Output to the NSE. Driving ORST_L low initializes the NSE.  
CMD[8:0]  
O
Command Bus to the NSE. Bits [1:0] specify the command and [8:2] contain the command param-  
eters. The descriptions of individual commands explain the details of the parameters. The encoding  
of commands based on the [1:0] field are: 00: Read; 01: Write; 10: Search; 11: Learn.  
CMDV  
DQ[67:0]  
DQ_72  
ACK  
O
IO  
IO  
I
Command Valid to the NSE. Qualifies the CMD bus.  
0: No command.  
1: Command valid.  
NSE Address/Data Bus. This signal carries the Read and Write address and data during register,  
data, andmask array operations. It carriesthecomparedata during search operations. Italso carries  
the SSRAM address during SSRAM accesses to the SSRAMs containing the associative data.  
When the CYNSE70128 NSE is used, the four additional DQ bits DQ[68:71] on the  
CYNSE70128 should be connected to the DQ_72 output from the CYNPC80192. The DQ_72  
signal is driven low from the CYNPC80192.  
Read Acknowledge. This signal indicates that valid data is available on the DQ bus during register,  
data, and mask array Read operations to the NSE, or that the data is available on the SRAM data  
bus during Read operations of the SRAM containing associative data.  
EOT  
I
End of Transfer. This signal indicates the end of a burst transfer during Read or Write burst opera-  
tions to the NSE.  
SSF  
I
Search Successful Flag. This signal indicates that the search was successful in the NSE bank.  
Search Successful Flag Valid. When asserted, this signal qualifies the SSF signal.  
NSE entries full indicator.  
SSV  
I
FULL  
I
[3]  
Transceiver enable for driving signals to the NSE. Active high.  
XVER_0  
XVER_0_L  
XVER_1  
XVER_1_L  
XVER_2  
XVER_2_L  
O
O
O
O
O
O
Transceiver enable for driving signals from the NSE. Active low.[3]  
Transceiver enable for driving signals to the NSE. Active high.[3]  
Transceiver enable for driving signals from the NSE. Active low.[3]  
Transceiver enable for driving signals to the NSE. Active high.[3]  
Transceiver enable for driving signals from the NSE. Active low.[3]  
Associated SRAM Interface  
SDATA[63:0]/  
SADR[23:0]  
I/O  
I/O  
SRAM Data/Address. This bus contains either the data from the associative SSRAM or the ADR  
(Index) from an NSE, depending on the value of the SRAM present bit in CFG register 0.  
{SDATA[63:0]} from SSRAMs should be connected to the 64-bit bus if the associative SSRAM is  
present, or else {SADR[23:0]} from the NSEs should be connected to the 64-bit bus.  
SOE_L  
SCLK  
I
SSRAM Output Enable. This signal is the output enable control for the off-chip SSRAM bank that  
contains associative data and is driven by the NSE.  
O
SSRAM Clock. This is the same in phase and frequency as the one created internally by the NSE.  
It is generated by dividing CLK by two, and is used to drive the SSRAM CLK input.  
Configuration  
IWIDTH  
I
I
This signal selects coprocessor data bus width. 1: 64 bits; 0: 32 bits.  
BIG/LTL_L  
This selects how data from the network processor is interpreted.  
1: Big Endian; 0: Little Endian.  
IFC_CFG[2:0]  
I
This signal selects coprocessor interface type:  
000: ZBT pipelined mode  
001: ZBT flowthrough mode  
010: SyncBurst pipelined mode (early Write)  
011: SyncBurst pipelined mode (late Write)  
100-111: Reserved.  
Note:  
3. Detailed information on the external transceiver is given in ”Information on External Transceivers” on page 29.  
Document #: 38-02043 Rev. *B  
Page 9 of 42  
CYNCP80192  
Table 4-1. Search Coprocessor Pin Description (continued)  
Parameter  
Test Access Port  
TDI  
Type  
Description  
I
I
IEEE 1149 JTAG test data in.  
IEEE 1149 JTAG test clock.  
IEEE 1149 JTAG test data out.  
IEEE 1149 JTAG test mode select.  
IEEE 1149 JTAG reset.  
TCK  
TDO  
T
I
TMS  
TRST_L  
I
Document #: 38-02043 Rev. *B  
Page 10 of 42  
CYNCP80192  
5.0  
Clocks  
The CYNPC80192 receives up to a 100-MHz master CLK at the coprocessor interface. The CYNPC80192 then generates the  
CLK2X and a phase signal PHS_L for the NSEs, and the SCLK for the associative data SSRAMs, as shown in Figure 5-1.  
Input CLK to  
CLK  
CYNPC80192  
Input signals CLK2X  
for NSEs  
PHS_L  
CLK for SSRAMs SCLK  
Figure 5-1. NDC Clocks  
Document #: 38-02043 Rev. *B  
Page 11 of 42  
CYNCP80192  
6.0  
6.1  
Registers  
Coprocessor Interface Register  
The network processor(s) access the NDC using the coprocessor (SSRAM) interface. The NDC has a CFG and status registers  
area and an operating registers area, as shown in Table 6-1.  
Table 6-1. Register Partitions for Coprocessor Access  
Address  
Abbreviation  
Type  
Description  
0–511  
CFG and Status  
Registers  
R/W These registers are for configuring the NDC (Read/Write), reporting the  
error code in the status register (Read-only), setting up the mask register  
for asserting INTR (Read/Write), and obtaining information on the device  
(Read-only).  
512–1023  
ADR[9] = 1  
Operating Registers  
R/W Dynamic access for searches and table management happens through this  
area of the coprocessor address space.[4]  
The CFG area shown in Table 6-2 is used for programming the NDC via a 64-bit CFG register.[5]  
Table 6-2. Configuration and Status Registers Area  
Address  
0–1  
Configuration and Status Registers Area  
CFG Register  
2–3  
Error, Status Registers (Read-only)  
Mask Registers  
4–5  
6–7  
Reserved  
8–9  
Information Registers (Read-only)  
Reserved  
10–511  
6.2  
Configuration and Status Registers  
6.2.1  
Configuration Register  
The 64-bit CFG register contains the following fields, as shown in Table 6-3.  
Table 6-3. Configuration Register  
Configuration Register [63:0]  
ADR  
0–1  
63–12  
11  
10  
9
8
7–6  
5–3  
2–1  
0
Reserved  
External  
Transceiver  
Present  
SearchResult  
Bit in Data  
Field  
INTR_Polarity  
SSRAM  
Present  
CPCFG  
HLAT  
TLSZ SRST  
SRST. This active high bit resets the state of the device. The reset bit will be active for 32 CLK cycles and will be automatically  
cleared after the reset has taken effect.  
Table Size (TLSZ). This determines the NSE CFG for the specific table size.[6]  
Latency of Hit Signals (HLAT). This determines the data access latency of associated data SSRAM.[7]  
CPCFG. This field sets the width of the processor and context IDs that will be driven on the CPID bus after the completion of the  
operation. The contents of the CPID bus are generated by concatenating LSBs of the processor ID and the LSBs of the context ID.  
00: CPID[7:0] = {processor ID[2:0], context ID[4:0]}.  
01: CPID[7:0] = {processor ID[3:0], context ID[3:0]}.  
10: CPID[7:0] = {processor ID[4:0], context ID[2:0]}.  
11: Reserved.  
Notes:  
4. The resulting registers of the context descriptors are Read-only.  
5. Once the NDC is configured, the network processors will use the operating registers area to configure the NSEs, initialize and manage the protocol layer tables,  
and perform searches through such tables.  
6. Though the NDC does not program the NSE with this information, the coprocessor uses it to determine the duration of operations such as Search and Learn.  
(More details on this field can be found in the data sheets for CYNSE70XXX NSEs.)  
7. Though the NDC does not program the NSE with this information, the coprocessor uses it to determine the duration of operations such as Search and Read  
from the SSRAMs. (More details on this field can be found in the data sheet on CYNSE70XXX NSEs.)  
Document #: 38-02043 Rev. *B  
Page 12 of 42  
CYNCP80192  
SSRAM Present. This field informs the coprocessor whether the associative data SSRAM is connected to the NSE (bit is set to  
1; see Figure 13-1) or connected to the network processor SRAM interface (bit is set to 0; see Figure 13-2).  
INTR_Polarity. This bit controls the polarity of the INTR/INTR_L signal. When this signal is high, the INTR/INTR_L signal is active  
high. When this signal is low, the INTR/INTR_L signal is active low.  
Search Result Bit in Data Field. If this bit is set to 1, the Hit or Miss information will be attached to the associative data field in  
bit 63. This bit has significance only when associative SSRAM is present (see Result Register 1 for the Search command). This  
bit does not replace the hit bit located in Result Register 0.  
External Transceiver Present. If an external transceiver is used to drive several NSE devices, this bit should be set to 1.  
6.2.2  
Error and Status Register  
The error and status register is 64 bits wide. Table 6-4 shows the bit positions of the error status register. The errors shown in  
Table 6-5 will be detected by the NDC and the corresponding error bit will be set in the error and status register. Once it is Read,  
the error and status register will be cleared.  
Error Bits. The error bits field holds the type of error. In the case of multiple errors, multiple error bits may be set. The context  
descriptor index will contain the index where the last error occurred. When an error occurs, the error bit is set along with the done  
bit in Result Register 0. The class and type of error (soft error [SE] or hard error [HE]) are indicated in the error and status register.  
When an error occurs, the INTR signal is asserted and a corresponding error bit is set along with the context descriptor index to  
identify the erroneous command. The interrupt signal is programmable as active low or active high depending upon the system  
requirement. See the description of the CFG register for further detail.  
Table 6-4. Error and Status Register  
63–32  
31  
30  
29  
28  
27  
26–13  
12–8  
7–0  
Reserved  
HE  
SE  
SE_FULL  
DESC_FULL DESC_AFULL Reserved Context Desc Index  
Error Bits  
Table 6-5. Error Codes  
Error Bit  
Error Description  
0
1
2
3
4
5
6
7
Invalid Command (SE)  
Reserved  
Reserved  
Search or Learn size invalid (i.e., 11 in search size field is not allowed) (SE)  
NSE access time out (HE)  
Reserved  
Reserved  
Reserved  
Context Descriptor Index. This field identifies the context descriptor that caused the last error condition. In the case of multiple  
errors, this field will be overwritten.  
DESC_AFULL. This bit indicates that the descriptor array is almost full. When this flag is set, the processor(s) can send only two  
more commands to the descriptors. The DESC_AF flag will be cleared if more that two descriptors are available.  
DESC_FULL. This bit indicates that the descriptor array is full. When this flag is set, the processor can send no commands to  
the descriptor. The DESC_FULL flag is cleared upon Reading the status register.  
SE_FULL.[8] This bit indicates that the table in the NSE is full.  
SE. The SE bit indicates that the error is recoverable and that the command has to be reissued.  
HE. The HE bit indicates that the error is not recoverable, and that the coprocessor has to be reset and reinitialized by the software  
before further operations are attempted.  
6.2.3  
Mask Register  
The mask register is 64 bits wide. The bits in this field can be used to mask the INTR generated by any of the bits set in the error  
and status register. Setting the bits in this register causes the interrupt to be masked. The default value in the mask register is  
FFFFFFFF (lower 32 bits only).  
Note:  
8. SE_FULL may be altered as a result of executing a Learn or Write command by the NSE. This flag will be cleared upon reading the status register.  
Document #: 38-02043 Rev. *B  
Page 13 of 42  
CYNCP80192  
6.2.4  
Information Register  
The information register is 64 bits wide. Table 6-6 describes the lower-order 32 bits in the information register. It uses ADRs 8 and  
9 of the CFG register area.  
Table 6-6. Information Register Description  
ADR  
Field  
Range Initial Value  
Description  
8
Revision  
[3:0]  
0001  
Revision Number. This is the current device revision number. Numbers  
start at one and increment by one for each revision of the device.  
Implementation  
[6:4]  
7
001  
0
This is the CYNPC80192 implementation number.  
Reserved.  
Device ID  
MFID  
[15:8]  
00000011  
Product code for CYNPC80192.  
[31:16] 1101_1100_ Manufacturer ID. This field is the same as the manufacturer ID used in  
0111_1111 the TAP controller.  
9
[63:32]  
Reserved.  
Document #: 38-02043 Rev. *B  
Page 14 of 42  
CYNCP80192  
7.0  
Operating Registers  
There are 512 uniquely addressable 32-bit-wide registers (see Table 7-1). These 512 registers are divided into 32 descriptors  
and are called context descriptors (or “context”). Each context comprises 16 registers (i.e., 32 × 16 = 512). Each of these contexts  
is used for storing commands, data, and responses (returned results from NSEs). These 32 contexts provide a 32-deep pipeline  
for the network processor(s) system. The allocation of contexts between the multiple processors (or one processor running  
multiple processors) can be done by the network processor system. For example, a network processor system having four  
processing elements can assign eight contexts for each processor.  
7.1  
Address Mapping  
Table 7-1. Operating Registers Addressing Mapping (ADR[9] = 1)  
ADR[8:0]  
0–15  
Contents  
Context 0  
Context 1  
Context 2  
Context 3  
Context 4  
Context 5  
Context 6  
Context 7  
Context 8  
Context 9  
Context 10  
Context 11  
Context 12  
Context 13  
Context 14  
Context 15  
Context 16  
Context 17  
Context 18  
Context 19  
Context 20  
Context 21  
Context 22  
Context 23  
Context 24  
Context 25  
Context 26  
Context 27  
Context 28  
Context 29  
Context 30  
Context 31  
16–31  
32–47  
48–63  
64–79  
80–95  
96–111  
112–127  
128–143  
144–159  
160–175  
176–191  
192–207  
208–223  
223–239  
240–255  
256–271  
272–287  
288–303  
304–319  
320–335  
336–351  
352–367  
368–383  
384–399  
400–415  
416–431  
432–447  
448–463  
464–479  
480–495  
496–511  
Document #: 38-02043 Rev. *B  
Page 15 of 42  
CYNCP80192  
7.2  
Context Descriptor Organization  
Table 7-2 shows the organization of the context descriptor. During normal operation, the network processor Writes in the context  
descriptor block (addresses 0–9 within the block) with the command and the appropriate data and Reads the results from the  
context descriptor block (addresses 12–15 within the block). Note. In 64-bit bus mode, the even and the next odd location are  
accessed in the same cycle, and ADR[0] is ignored.  
Table 7-2. Context Descriptor Organization  
ADR  
0–1  
Context Descriptor Organization  
Command Descriptor  
Data 0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
2–3  
4–5  
Data 1  
6–7  
Data 2  
8–9  
Data 3  
10–11  
12–13  
14–15  
Reserved  
Result Register 0  
Result Register 1  
R
R
Depending on the type of command, the network processor may only need to Write to selected locations of Data 0–3, and may  
only need to Read from selected locations of Result Register 0 or 1. Note. Addresses 0–9 are Read/Write and addresses 12–15  
are Read-only locations.  
7.3  
Context Descriptor Commands  
This 64-bit word (eight bytes) describes the command to the coprocessor. The contents of each of these eight bytes and a  
description of each of these fields are described below in Table 7-3.  
Table 7-3. Descriptor Command  
Bit Positions  
Field Description  
7
6
5
4
3
2
1
0
63–56  
55–48  
47–40  
39–32  
31–24  
23–16  
15–8  
Reserved  
Reserved  
Context ID  
Processor ID  
Reserved  
Reserved  
Search Successful Register Index  
SSRAM Address Prefix  
Reserved  
Global Mask Index  
Comparand Register Index  
Search Size  
Reserved  
Direct/Indirect  
Access Location  
Start  
Layer Attribute/Valid Bit for Data 3  
Layer Attribute/Valid Bit for Data 1  
Layer Attribute/Valid Bit for Data 2  
Layer Attribute/Valid Bit for Data 0  
7–0  
Command  
Context ID. This field contains the context ID that a network processor has assigned to this specific context.  
Processor ID. This field contains the ID number of the network processor that wrote the descriptor.  
Global Mask Index. This field is used only for Search, Write, Move, and Swap commands to the NSE(s). This field selects one  
of the eight global mask register (GMR) pairs from the NSE bank for Search, Write, Move and Swap commands. In the case of  
a 272-bit search, two pairs of GMRs are used. These two pairs include one that is specified in the command and other is  
a subsequent pair. For example, if the GMR pair 7 is specified, the GMR pair 0 will be used as the subsequent pair for 272-bit-  
wide searches.  
Search Successful Register Index. The search successful register (SSR) index field is used only for Search and Write opera-  
tions to the NSEs. Up to eight search successful indexes are stored in each of the NSEs. This field selects one of those eight  
registers for the Search and indirect Write operations to the NSEs. (Refer to the data sheet specifications of the CYNSE70XXX  
devices for further information.)  
Comparand Register Index. This field is used only for Search and Learn operations. This field specifies the comparand register  
in each of the NSEs that will store the comparands (as they are searched). A subsequent Learn instruction can insert the stored  
comparands in a table residing in the NSE(s). (Refer to the data sheet specifications of CYNSE70XXX devices for further  
information.)  
Document #: 38-02043 Rev. *B  
Page 16 of 42  
CYNCP80192  
SSRAM Address Prefix. In the implementation with a SSRAM connected to the NSE (see Figure 13-1), these three bits are used  
as an SSRAM address prefix (SAP) to generate the address of the associative SSRAM. (Refer to the data sheet specifications  
of the CYNSE70XXX devices for further information.)  
Start. When the command and associated parameters have been written to the command descriptor, a process running on the  
network processor can set this bit to initiate the operation by the CYNPC80192.  
Search Size. This two-bit field is used only by Search and Learn instructions and describes the word size for these operations.  
Note. Learn command is not supported in the 272-bit wide table. The following describes the data that will be presented to the  
NSE for various search sizes.  
000: ×68 ({Data 0, layer attribute/valid bit for Data 0})  
001: ×136 ({Data 1, layer attribute/valid bit for Data 1; Data 0, layer attribute/valid bit for Data 0})  
010: ×272 ({Data 3, layer attribute/valid bit for Data 3; Data 2, layer attribute/valid bit for Data 2;  
Data 1, layer attribute/valid bit for Data 1; Data 0, layer attribute/valid bit for Data 0}.  
Note. The two-bit search size must contain 00 for non-Search/Learn instructions.  
Access Location. This two-bit field is used by Read, Write, Move, and Swap instructions, and indicates the region accessed in  
the NSEs or the associative data SSRAMs.  
000: NSE data array.  
001: NSE mask array.  
010: SRAM connected to the NSE.  
011: NSE internal registers.  
Direct/Indirect. This one-bit field is used by Read and Write instructions and controls the address generation to the NSEs and  
the associated data SSRAMs. When this bit is set, it specifies indirect addressing using SSRs in the NSEs. (Refer to the  
specifications of CYNSE70XXX for further information.)  
Layer Attribute and Valid Bit for Data 0. This field contains the three-bit layer attribute as well as a valid bit to accompany data  
in the Data 0, in the context descriptor. The layer attributes bits may be used for maintaining multiple search tables (of different  
widths) in the NSE(s). However, if multiple search tables are not used, these bits can be used for any purpose.  
Layer Attribute and Valid Bit for Data 1. This field contains a three-bit layer attribute as well as a valid bit to accompany data  
in the Data 1, in the context descriptor. The layer attributes bits may be used for maintaining multiple search tables (of different  
widths) in the NSE(s). However, if multiple search tables are not used, these bits can be used for any purpose.  
Layer Attribute and Valid Bit for Data 2. This field contains the three-bit layer attribute as well as a valid bit to accompany data  
in the Data 2, in the context descriptor. The layer attributes bits may be used for maintaining multiple search tables (of different  
widths) in the NSE(s). However, if multiple search tables are not used, these bits can be used for any purpose.  
Layer Attribute and Valid Bit for Data 3. This field contains the three-bit layer attribute as well as valid bit to accompany data  
in the Data 3, in the context descriptor. The layer attributes bits may be used for maintaining multiple search tables (of different  
widths) in the NSE(s). However, if multiple search tables are not used, these bits can be used for any purpose.  
Commands. NDC currently supports six basic commands. Command bits 7 through 3 are reserved and must be programmed  
as 0s for the following commands:  
000: Read  
001: Write  
010: Search  
011: Learn  
100: Move  
101: Swap.  
7.3.1  
Command Description and Parameters  
Read Command (00 H). Table 7-4 shows the format for the Read command. The Read command’s structure is rd(ADR). The  
Read command uses two 64-bit words in the context descriptor, command descriptor word, and Data 0 word. The Read command  
is issued through the command descriptor. The Read access location, either data array, mask array, NSE register, or external  
SSRAM is encoded in the command descriptor word. Bits 15–0 of the Data 0 word contain the Read address. Bits 23–19 of the  
Data 0 word supply the NSE ID (SEID).  
Document #: 38-02043 Rev. *B  
Page 17 of 42  
CYNCP80192  
Result Registers 0 and 1 return the result of the Read operation in two 64-bit words.  
Table 7-4. Read Command  
Address  
63–24  
23–19  
18–16  
15–0  
Data 0  
Reserved  
SEID  
Reserved  
Address Pointer  
Write Command (01 H). Table 7-5 shows the format for the Write command. The Write command’s structure is wr(ADR, dt). The  
Write command uses three 64-bit words in the context descriptor: command word, Data 0 word and Data 1 word. The Write  
command is issued through the command descriptor. The Write access location could be either the data array, mask array, NSE  
register or associative SSRAM connected to the NSE. Bits 15–0 of the Data 0 word contain the Write address. Bits 23–19 of the  
Data 0 supply the SEID. The Data 1 word contains the data bits [67:4], while the data bits [3:0] (called layer bits for Data 1) are  
passed in the command descriptor word.  
Table 7-5. Write Command  
Address  
Data 0  
63–24  
23–19  
18–16  
15–0  
Reserved  
SEID  
Reserved  
Address Pointer  
Data 1  
Data [67: 4]  
Search Command (02H). The Search command’s structure is se(dt0) for 68-bit word, se(dt0,dt1) for 136-bit word and  
se(dt0,dt1,dt2,dt3) for 272-bit word. The Search command uses two, three, or five 64-bit words in the context descriptor depending  
upon the size of the search entry (68-bit, 136-bit, or 272-bit). The search size is encoded in the command word, bits [26:25]. Data  
bits [3:0] for each 68-bit NSE word are stored in the command word in layer attribute bits for Data 0 through Data 3. The number  
of layer attribute bits used in the command word depends upon the search size. Thus, for a 68-bit search the descriptor command  
bits [11:8] will be used; for a 136-bit search, bits [15:8] will be used and for a 272-bit search, bits [23:8] will be used. The indices  
for SSR, GMR, and comparand register are stored in the command word also. (For further explanation of these indices, refer to  
data sheets for the CYNSE70XXX NSEs.)  
Successive search operations are pipelined. For a 64-bit network processor interface running at 100 MHz, the NDC can sustain  
33 Msps for tables configured as ×68 bit in the NSEs. For ×136-bit CFG, the performance will be 25 Msps, and for ×272-bit CFG,  
the peak performance will be 16.67 Msps. For a 32-bit network processor Interface, the peak performance will drop by a factor  
of one half compared to the performance of the 64-bit interface.  
7.3.2  
Context Descriptor Data 0–Data 3  
For the Search command these words contain the search key that will be presented to the NSEs. Table 7-6 shows the meaningful  
fields for each search size that are driven on the NSE bus DQ from the descriptors.The data driven on the DQ[3:0] for various  
searches is picked from the command word as follows.  
68-bit search: layer attribute and valid bits for Data 0.  
136-bit search: layer attribute and valid bits for Data 0 and Data 1.  
272-bit search: layer attribute and valid bits for Data 0, Data 1, Data 2, and Data 3.  
Table 7-6. Search Data  
Search Size  
Meaningful Data (64 bits each)  
Data 0 —> DQ[67:4] (Cycle A and B)  
00  
01  
10  
Data 0 —> DQ[67:4] (Cycle A), Data 1 —> DQ[67:4] (Cycle B)  
Data 0 —> DQ[67:4] (Cycle A), Data 1 —> DQ[67:4] (Cycle B)  
Data 2 —> DQ[67:4] (Cycle C), Data 3 —> DQ[67:4] (Cycle D)  
11  
Reserved  
Result Registers 0 and 1 return the result of the search operation.  
Learn Command (03H). The Learn command’s structure is le(indx). The Learn command will use two 64-bit words (command  
descriptor word and Data 0) in the context descriptor. The command includes an index for a Comparand register of the NSE,  
where the data to be Learnt was stored by a prior search instruction. Data 0 contains the data to be written in associative SRAM.  
Learn will result in error if the Learn is performed when the NSE SE_FULL is high. The error bit in the result register will indicate  
the error. The Learn error will be set in the error and status register.  
Move Command (04 H). The Move command’s structure is mv(addr1, addr2, len). The Move command utilizes two 64-bit words  
in the context descriptor: command descriptor word, and Data 0 word. Bits 15–0 of the Data 0 word will contain the source address;  
bits 23–19 will contain the SEID; bits 39–24 will contain the destination address, bits 47–43 will contain the destination SEID; and  
bits 56–48 will contain the move block length (see Table 7-7). Current implementation restricts the maximum move block length  
to 256 words (of 68-bit each) in between/within the NSE(s). The minimum length for the Move command is four locations.  
Document #: 38-02043 Rev. *B  
Page 18 of 42  
CYNCP80192  
Table 7-7. Move Command Parameters  
ADR 63–57 56–48 47–43  
42–40  
39–24  
23–19  
18–16  
15–0  
Data 0 Reserved Move Length Destination Reserved  
SEID  
Destination  
Address Pointer  
Source SEID Reserved Source Address  
Pointer  
For Move instruction, Data 0 is used to pass the source address pointer and SEID, destination address pointer and the SEID,  
and the number of ×68 entries to be moved move/swap length.  
The NDC implements the Move instruction as Burst Read and then a Burst Write into the NSEs.  
Swap Command (05H). The Swap command’s structure is sw(addr1, addr2, len). The Swap command will use two 64-bit words  
in the context descriptor: command word, and Data 0 word. Bits 15–0 of the Data 0 word will contain the first address; bits 23–19  
will contain the first SEID; bits 39–24 will contain the second address, bits 47–43 will contain the second SEID; and bits 56–48  
will contain the Swap block length (see Table 7-8). The maximum Swap block length is 128 words (of 68-bit each) in the NSE.  
The minimum length for Swap is four locations.  
Table 7-8. Swap Command Parameters  
ADR  
63–7  
56–48  
47–43  
42–40  
39–24  
23–19  
18–16  
15–0  
Data 0  
Reserved Swap Length Second Reserved  
SEID  
Second Address  
Pointer  
First SEID Reserved First Address  
Pointer  
For Swap instruction, Data 0 is used to pass the first address pointer and SEID, the second address pointer and SEID, and the  
number of ×68 entries to be swapped. The NDC implements the Swap instruction as two burst Reads and then two burst Writes  
into the NSEs. Note. The Move and Swap commands will not work across the NSE boundaries if several NSEs are cascaded.  
7.3.3  
SSRAM Read/Write  
For SSRAM (connected to the NSE) Read or Write operations, Data 0 is used to pass the SSRAM address and SEID. Data 1 is  
used for passing the data for a Write operation. Table 7-9 shows the format for Data 0 and Data 1 for accessing the SSRAM.  
Table 7-9. SSRAM Data  
ADR  
Data 0  
Data 1  
63–24  
23–19  
18–16  
15–0  
Reserved  
SEID  
Reserved  
Address[15:0]  
Data[63:0]  
For NSE Read and Write operations, the Data 0 is used to pass address and SEID. Data 1 is used for passing data for Write  
operations. This 64-bit Data 1 field holds data[67:4] for the NSE, while data[3:0] is held in the layer attribute and valid bits field of  
the command descriptor word. The NSE operation can be on the array, mask array, or the command registers. Table 7-10 shows  
the format for Data 0 and Data 1 for accessing the NSE data, mask, and register locations.  
Table 7-10. NSE Data, Mask, and Register Locations  
ADR  
Data 0  
Data 1  
63–24  
23–19  
SEID  
18–16  
15–0  
Reserved  
Reserved  
Address[15:0]  
Data[67:4]  
7.3.4  
Result Register 0 and 1 for Read Operation  
These two registers return the result of the Read operation in two 64-bit words. Result Register 0 contains the four least significant  
bits of data (layer attribute/valid bits) and the status of Read operation along with the processor and context ID. This is shown in  
Table 7-11.  
Table 7-11. Read Response at Result Register 0  
Bit Positions  
Associative Data SSRAM Connected to Coprocessor Bus  
7
6
5
4
3
2
1
0
63–56  
55–48  
47–40  
39–32  
31–24  
Reserved  
Reserved  
Reserved  
Reserved  
Processor ID[4:0]  
Context ID [4:0]  
Done  
Reserved  
Document #: 38-02043 Rev. *B  
Page 19 of 42  
CYNCP80192  
Table 7-11. Read Response at Result Register 0 (continued)  
Bit Positions  
23–16  
Associative Data SSRAM Connected to Coprocessor Bus  
Reserved  
Reserved  
15–8  
7–0  
Reserved  
SE Data[3:0]  
Processor ID[4:0]. The processor ID from the command descriptor is identified here.  
Context ID[4:0]. The context ID from the command descriptor is identified here.  
Done. This field indicates that the Read operation is complete. When the done bit is set, the next command can be written in the  
descriptor. The done bit is cleared when the Result Register 0 is Read by the network processor.  
SE Data[3:0]. This field contains the least four significant bits (layer attribute/valid bits) Read from the NSE 68-bit word. (This  
field is valid only when Reads are done from the NSE.)  
Result Register 1 contains the SE Data[67:4] Read from the NSE (Table 7-12) or Data[63:0] Read from the SSRAM connected  
to the NSE (Table 7-13).  
Table 7-12. Data Read from NSE  
ADR  
63–0  
Result 1  
SE Data[67:4]  
Table 7-13. Data Read from SSRAM  
ADR  
63–0  
Result 1  
SSRAM Data[63:0]  
7.3.5  
Result Register 0 and 1 for Write/Move/Swap/Learn Operations  
Only Result Register 0 carries meaningful data, as is shown in Table 7-14 below.  
Table 7-14. Write/Move/Swap/Learn Results Register 0  
Bit Positions  
Associative Data SSRAM Connected to Coprocessor Bus  
7
6
5
4
3
2
1
0
63–56  
55–48  
47–40  
39–32  
31–24  
23–16  
15–8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Done  
Reserved  
Reserved  
Reserved  
Reserved  
7–0  
Done. This field indicates that the command has been processed. When the done bit is set, the next command can be written in  
the descriptor. The done bit is cleared when the Result Register 0 is Read by the network processor.  
Result Register 1 is not used for Write/Move/Swap/Learn commands.  
7.3.6  
Result Register 0 and 1 for Search Operation (Case 1)  
For the search operation where an SSRAM is connected to the NSE (Figure 7), the Result Register 0 carries search status,  
processor ID and context ID and is shown in Table 7-15. The associative data is returned in Result Register 1 if the search  
succeeded, as shown in Table 7-16. In addition, if the search result in data field bit in the CFG register is set, then bit[63] of Result  
Register 1 indicates a search success (bit[63] = 1) or search failure (bit[63] = 0). In this case bits 62–0 contain the 63-bitassociative  
data from the SSRAM, as is shown in Table 7-17.  
Document #: 38-02043 Rev. *B  
Page 20 of 42  
CYNCP80192  
Table 7-15. Result Register 0 for Search Operation  
Bit Positions  
SE Data/Mask Array access Results  
7
6
5
4
3
2
1
0
63–56  
55–48  
47–40  
39–32  
31–24  
23–16  
15–8  
Reserved  
Reserved  
Reserved  
Reserved  
Hit  
Processor ID [4:0]  
Context ID [4:0]  
Done  
Reserved  
Reserved  
Reserved  
Reserved  
7–0  
Processor ID[4:0]. The processor ID from the command descriptor is identified here.  
Context ID[4:0]. The context ID from the command descriptor is identified here.  
Hit. The hit flag indicates whether the search was successful.  
Done. This field indicates that the command has been processed. The done bit is cleared when the Result Register 0 is Read  
by the network processor. A new command can be initiated by the network processor through this descriptor after the done bit  
has cleared.  
Table 7-16. Result Register 1 (Search Result Bit in Data Field = 0)  
ADR  
63–0  
Result 1  
Associative Data[63:0]  
Table 7-17. Result Register 1 (Search Result Bit in Data Field = 1)  
ADR  
63–0  
Result 1  
Hit  
Associative Data[62:0]  
7.3.7  
Result Register 0 and 1 for Search Operation (Case 2)  
For the search operation where the SSRAM is connected to the network processor (see Figure 13-1), the Result Register 0 carries  
the search response (see Table 7-18) and result register 1 is unused.  
Table 7-18. Search Response in Result Register 0 (type I)  
Bit Positions  
Associative Data SSRAM connected to Coprocessor Bus  
7
6
5
4
3
2
1
0
63–56  
55–48  
47–40  
39–32  
31–24  
23–16  
15–8  
Reserved  
Reserved  
Reserved  
Reserved  
Done  
Reserved  
Reserved  
Processor ID[4:0]  
Context ID [4:0]  
Hit  
Index [23:16]  
Index [15:8]  
Index [7:0]  
7–0  
Processor ID[4:0]. The processor ID set in the command descriptor is set here.  
Context ID[4:0]. The context ID set in the command descriptor is set here.  
Hit. The hit flag indicates whether the search was successful.  
Done. This field indicates that the command has been processed. The done bit is cleared when the Result Register 0 is Read  
by the network processor. A new command can be initiated by the network processor through this descriptor after the done bit  
has cleared.  
Document #: 38-02043 Rev. *B  
Page 21 of 42  
CYNCP80192  
Index. This field contains index returned by the NSEs where a successful hit was found. This field is valid only if the hit bit in the  
Result Register 0 is a 1. Table 7-19 below shows the number of index bits for various NSEs. Note. CYNSE70032 and  
CYNSE70064 bits 23–22 of the index will always be 00. (Refer to the specifications of the CYNSE70XXX for the description of  
the index returned by the NSEs.)  
Table 7-19. Index Bits for NSEs  
Device  
SAP  
21:19  
21:20  
23:21  
SEID  
18:14  
19:15  
20:16  
Index  
13:0  
14:0  
15:0  
CYNSE70032  
CYNSE70064  
CYNSE70128  
Note. SAP is the SSRAM Address (SADR) Prefix. These bits are passed along with the command descriptor word in the SAP field.  
7.3.8 Functional Overview of Context Descriptor  
The network processor(s) can Write up to 32 contexts. There can be up to 32 operations in flight through the database copro-  
cessing subsystem. If 30 descriptor entries are in use, the NDC will issue the DESC_AFUL signal to inform that command  
descriptor ring is almost full. The database coprocessor continually executes the commands posted in the descriptors. The  
commands are executed and the results written in the Result Registers 0 and 1 of the corresponding descriptor entries. The  
network processor(s) will Read the results and free the descriptor entry for another command.  
The handshake for the command handoff from the network processor uses the start bit in the command descriptor. The network  
processor will load the command and the associative parameter along with the start bit in the descriptors. As the start bit in  
a descriptor is set, the NDC will take the command and insert it in the pipeline queue for execution. The commands in the pipeline  
queue are strictly handled in a first-in, first-out manner. Note. The network processor must make sure that the start bit is set in  
the last access to the descriptor to complete the command.  
The commands from the pipeline queue are continually executed by the NDC and the results are loaded back to the command  
initiating descriptor’s Result Registers 0 and 1. The handshake for the results from the NDC back to network processor is done  
through any of the following mechanisms:  
• Done bit  
• CPID bus, STRB signal.  
In the first method, after the network processor has issued a command to the NDC, the network processor will continually poll  
that command descriptor entry for the done bit. Once done bit is set, it signals to the network processor that the results are Ready  
in Results Registers 0 and 1 for Readout. Reading of these registers by the network processor will clear the done bit. This  
descriptor entry is free and may now be used for another command.  
In the second method, the network processor uses the interrupt mechanism for Reading the command results. After the results  
are Ready in Result Registers 0 and 1 and the done bit is set, the NDC will assert pins CPID[7:0] (with the concatenated processor  
and context ID information) and activate the STRB signal for one CLK cycle. This STRB signal interrupts and the CPID identifies  
the context and/or processor for which the result are Ready. The context within that processor can wake up and Read the results  
(Result Register 0 and 1) from the appropriate descriptor. Reading of these registers by the network processor will reset the done  
bit. This descriptor entry is free and may now be used for another command.  
Document #: 38-02043 Rev. *B  
Page 22 of 42  
CYNCP80192  
8.0  
NDC Subsystem Power-up Initialization Procedure  
On power-up (boot), the network processor will apply the following sequence of operations.  
1. Write SRST and CFG information to 1 in the CFG register.  
2. Wait at least 32 cycles, then poll on SRST.  
3. Write the CFG registers to each of the NSEs, starting with the one residing at the least significant address.  
4. Write the CFG registers of the last NSE in the depth-cascaded system, setting the LDEV and LRAM bits to a 1.  
5. The descriptor block is now Ready for use by the network processor(s) for building, managing, and/or searching the database.  
Hardware Interface Timing Protocols—NDC Interface. The network processor interface of the NDC supports a variety of  
SSRAM interfaces. It supports both SyncBurst as well as ZBT SSRAMs. IFC_CFG[2:0] pins select the interface type for the device  
as follows. (Refer to SSRAM specifications and application notes from such vendors as IDT and Micron.)  
000: ZBT pipelined mode  
001: ZBT flowthrough mode  
010: SyncBurst pipelined mode (early Write)  
011: SyncBurst pipelined mode (late Write)  
100–111: Reserved.  
Document #: 38-02043 Rev. *B  
Page 23 of 42  
CYNCP80192  
9.0  
ZBT Pipelined SSRAM Interface Mode  
The ADR and control signals (R/W_L, BW_L[7:0], CE_L, CE2, CE2_L) are sampled on a CLK edge. For Write cycles, the data  
is sampled two cycles later; for Read cycles, the data is available to the processor two cycles later. Both Write- and Read-cycle  
latency is two cycles and there is no gap required between Read and Write operations. Every cycle is available for the network  
processor(s) for full utilization of the bus bandwidth. See Figure 9-1. Note. BWE_L is not used in this mode and should be tied  
inactive.  
1
2
3
4
5
6
7
CLK  
ADR[9:0]  
BW_L[7:0]  
A1  
A2  
A3  
D1  
A4  
Q2  
A5  
D3  
A6  
D4  
DATA[63:0]  
CE_L  
Q5  
CE_2  
R/W_L  
STRB  
CPID[7:0]  
CPID  
Write  
Read  
Write  
Write  
Read  
Read  
Figure 9-1. ZBT Pipelined SRAM Interface (Mode 000)  
Document #: 38-02043 Rev. *B  
Page 24 of 42  
CYNCP80192  
10.0  
ZBT Flowthrough SSRAM Interface Mode  
The ADR and control signals (R/W_L, BW_L[7:0], CE_L, CE2, CE2_L) are sampled on a CLK edge. For Write cycles, the data  
is sampled one cycle later; for Read cycles, the data is available to the processor one cycle later. Both Write- and Read-cycle  
latency is one cycle, and there is no gap required between Read and Write operation. Every cycle is available for the network  
processor(s) for full utilization of the bus bandwidth. See Figure 10-1. Note. BWE_L is not used in this mode and should be tied  
inactive.  
1
2
3
4
5
6
7
CLK  
ADR[9:0]  
A1  
A2  
D1  
A3  
Q2  
A4  
D3  
A5  
Q4  
BW_L[7:0]  
DATA[63:0]  
CE_L  
Q5  
CE_2  
CE2_L  
R/W_L  
STRB  
CPID[7:0]  
CPID  
Write  
Read  
Write  
Write  
Read  
Figure 10-1. ZBT Flowthrough SSRAM Interface (Mode 001)  
Document #: 38-02043 Rev. *B  
Page 25 of 42  
CYNCP80192  
11.0  
SyncBurst Pipelined SSRAM Interface (Early Write)  
The ADR and control signals (R/W_L, BW_L[7:0], CE_L, CE2, CE2_L) are sampled on a CLK edge. For Write cycles, the data  
is sampled one cycle later; for Read cycles, the data is available to the processor one cycle later. Both Write- and Read-cycle  
latency is one cycle, and there is no gap required between Read and Write operation. Every cycle is available for the network  
processor(s) for full utilization of the bus bandwidth. See Figure 11-1. Note. BWE_L is not used in this mode and should be tied  
inactive.  
1
2
3
4
5
6
7
8
CLK  
ADR[9:0]  
A1  
A2  
A3  
A4  
A5  
BW_L[7:0]  
DATA[63:0]  
CE_L  
D1  
Q2  
D3  
Q4  
CE_2  
R/W_L  
STRB  
CPID[7:0]  
CPID  
Write  
Read  
NOP  
Write  
Read  
Figure 11-1. SyncBurst Pipelined SSRAM Interface (Early Write)  
Document #: 38-02043 Rev. *B  
Page 26 of 42  
CYNCP80192  
12.0  
SyncBurst Pipelined SSRAM Interface Mode (Late Write)  
The ADR and control signals (R/W_L, BW_L[7:0], CE_L, CE2, CE2_L) are sampled on a CLK edge. For Write cycles, the data  
is sampled one cycle later; for Read cycles, the data is available to the processor one cycle later. Both Write- and Read-cycle  
latency is one cycle, and there is no gap required between Read and Write operation. Every cycle is available for the network  
processor(s) for full utilization of the bus bandwidth. See Figure 12-1. Note. BWE_L is not used in this mode and should be tied  
inactive.  
1
2
3
4
5
6
7
8
CLK  
ADR[9:0]  
A1  
A2  
D1  
A3  
A4  
A5  
BW_L[7:0]  
DATA[63:0]  
CE_L  
Q2  
D3  
Q4  
Q5  
CE_2  
R/W_L  
STRB  
CPID[7:0]  
CPID  
Write  
Read  
NOP  
Write  
Read  
Figure 12-1. SyncBurst Pipelined SSRAM Interface (Late Write)  
Document #: 38-02043 Rev. *B  
Page 27 of 42  
CYNCP80192  
13.0  
Application Information  
There are two ways to build a database coprocessing subsystem using CYNPC80192, CYNSE70XXX, and SSRAMs. In the first  
system the associative data SSRAMs are connected to the coprocessor and the NSE (Figure 13-1) and the coprocessor returns  
the associated data in response to a search operation. This type of implementation is suited to applications where the associative  
data size is up to eight bytes.  
Coprocessor  
NSE  
Bank  
SSRAM  
Bank  
Figure 13-1. Configuration 1—Associative SSRAM Mode  
In the second system, the coprocessor returns the index of the successful search entry. The network processor uses the index  
as the page offset to access the associative data from SSRAM directly (see Figure 13-2). This implementation is suited to  
applications where the associative data size is longer than eight bytes.  
Coprocessor  
NSE  
Bank  
SSRAM  
Bank  
Figure 13-2. Configuration 2—Index Mode  
Single or multiple network processors with the arbitration to the SRAM interface can access the database coprocessing  
subsystem to implement a parallel packet processing system, as shown in Figure 13-3.  
Network  
Coprocessors  
SSRAMs  
Processors  
Network  
Processors  
Figure 13-3. Switching Systems Block Diagram  
Document #: 38-02043 Rev. *B  
Page 28 of 42  
CYNCP80192  
14.0  
Information on External Transceivers  
As more NSEs are added to the DQ bus, the capacitive load on the bus increases, reducing the bus speed. CYNSE80192 gets  
around this by using external transceivers, and provides a glueless support to add the transceivers (Phillips 74ALVT16652)  
between a bank of NSEs and the CYNPC80192 (see Figure 14-1).  
Transceivers  
CLK (System Clock)  
XVER_0  
XVER_0_L  
Transceivers  
XVER_1  
XVER_1_L  
XVER_2  
Transceivers  
XVER_2_L  
Figure 14-1. Use of Transceiver Enables  
The XVER_0, XVER_1, and XVER_2 are electrically buffered versions of the same logical signal in the CYNPC80192 device.  
The XVER_0_L, XVER_1_L, and XVER_2_L are also electrically buffered versions of the same logical signal in the CYNPC80192  
device. Multiple copies of these signals are provided in order to increase the ability of the signal to drive many transceiver devices  
of eight-bit width. Figure 14-2 shows one example of the distribution of signals driving the transceivers.  
Transceivers  
NSEs  
CYNCP80192  
SSRAM  
Figure 14-2. Transceiver Connected Between CYNPC80192 and CYNSE70XXX Devic-  
Document #: 38-02043 Rev. *B  
Page 29 of 42  
CYNCP80192  
15.0  
JTAG (1149.1) Testing  
The CYNPC80192 supports the Test Access Port and Boundary Scan Architecture as specified in the IEEE JTAG Standard  
1149.1. The pin interface to the chip consists of five signals with the standard definitions: TCK, TMS, TDI, TDO, and TRST_L.  
Table 15-1 and Table 15-2 describe the operations that the test access port controller supports and the test access port device  
ID register.  
Table 15-1. Test Access Port Controller Instructions  
Instruction  
Type  
Description  
SAMPLE/PRELOAD Mandatory Sample/Preload. Loads the values of signals going to and from I/O pins into the boundary  
scan shift register to provide a snapshot of the normal functional operation.  
EXTEST  
INTEST  
Mandatory External Test. Uses boundary scan values shifted in from TAP to test connectivity external to  
the device.  
Optional Internal Test. Allows slow-speed functional testing of the device using the boundary scan  
register to provide the I/O values.  
Table 15-2. Test Access Port Device ID Register  
Field  
Range  
Initial Value  
Description  
Revision  
[31:28]  
0001  
Revision Number. This is the current device revision number. Numbers start  
from one and increment by one for each revision of the device.  
Part Number [27:12] 0000 0000 0000 0011 This is the part number for this device.  
MFID  
[11:1]  
000_1101_1100  
Manufacturer ID. This field is the same as the manufacturer ID used in the TAP  
controller.  
LSB  
0
1
Least Significant Bit.  
Document #: 38-02043 Rev. *B  
Page 30 of 42  
CYNCP80192  
16.0  
Electrical Characteristics  
This section describes the electrical specifications, capacitance, operating conditions, DC characteristics, and AC timing param-  
eters for the NDC (see Table 16-1, Table 16-2, Table 16-3, Table 16-4, and Table 16-5).  
Table 16-1. Electrical Characteristics  
Parameter  
Description  
Input Leakage Current  
Output Leakage Current[9]  
Output Low Voltage  
Test Conditions  
0 < VIN < VDDQ  
Min.  
–10  
–10  
Max.  
10  
Unit  
uA  
uA  
V
ILI  
ILO  
0 < VOUT < VDDQ  
8 mA, VDDQ = 3.3V  
4 mA, VDDQ = 3.3V  
10  
VOL  
VOH  
0.4  
Output High Voltage  
2.4  
V
I
CC_core  
2.5 V Supply Current[10]  
TBD  
TBD  
mA  
mA  
ICC_IO  
3.3 V Supply Current  
Table 16-2. Capacitance  
Parameter  
Description  
Max.  
Unit  
CIN  
Input Capacitance  
Output Capacitance  
TBD  
TBD  
pF[11]  
pF[12]  
COUT  
Table 16-3. Operating Conditions  
Parameter  
Description  
Min.  
3.14  
2.37  
2.0  
Max.  
3.45  
2.63  
Unit  
VDDQ  
VDD  
VIH  
Operating Voltage for IO  
Operating Supply Voltage  
Input High Voltage[13]  
V
V
VDD+0.3  
0.8  
V
VIL  
Input Low Voltage[14]  
–0.3  
0
V
TA  
Ambient Operating Temperature  
Supply Voltage Tolerance  
70  
ºC  
–5%  
+5%  
Table 16-4. AC Timing Parameters for Pipelined ZBT SSRAM and SyncBurst SSRAM  
CYNPC80192–100 CYNPC80192–83  
Test Conditions  
Load (pF)  
Parameter  
TCLK  
Description  
Min.  
Max.  
Min.  
Max. Unit  
CLK period: max frequency  
100  
83  
MHz  
ns  
TCKHI  
TCKLO  
TSA  
CLK high pulse; worst-case 40%–60% duty cycle[15]  
CLK low pulse; worst-case 40%–60% duty cycle[15]  
Set-up Time to CLK rising edge[16]  
Hold Time to CLK rising edge[17]  
4.0  
4.0  
2.5  
1.5  
4.8  
4.8  
3.0  
1.5  
ns  
ns  
THA  
ns  
TCKOV  
Clock to output valid (Network Processor  
Interface)  
30  
8.0  
9.0  
ns  
TCK2X  
Clock to CLK2X delay  
3.5  
6
4.0  
7
ns  
Ns  
ns  
ns  
ns  
ns  
ns  
TCLKPHSL Clock to PHS_L delay  
TCKSE Clock to output valid (NSE Interface)  
TSCK  
TCKSD  
TCKOLZ  
40  
20  
9
11  
6
Clock to SCLK delay  
5
Clock to output valid (SDATA)  
Clock to output in Low-Z  
Clock to output in High-Z  
10  
12  
3
3
TCKOHZ  
6
7
Notes:  
9. Applies only for outputs in three-state.  
10. Average operating current at maximum frequency. Transient peak currents may exceed these values.  
11. f = 1 MHz, VIN = 0V.  
12. f = 1 MHz, VOUT – 0V.  
13. Maximum allowable applies to overshoot only (VDDQ is 3.3V supply).  
14. Minimum allowable applies to undershoot only.  
15. 1. TCLKHI and TCLKO duty-cycle values are based on 20–80% signal levels.  
16. 2. Set-up time for ADR, CLK enable, data, Read/Write, CE, and byte Write enable.  
17. 3. Hold time for ADR, CLK enable, data, Read/Write, CE, and byte Write enable.  
Document #: 38-02043 Rev. *B  
Page 31 of 42  
CYNCP80192  
Table 16-5. AC Timing Parameters for ZBT and Flow-Through SSRAM  
CYNPC80192–83  
Test Conditions  
Parameter  
TCLK  
Description  
CLK period: max frequency  
Load (pF)  
Min  
Max  
Unit  
MHz  
ns  
50  
TCKHI  
CLK high pulse; worst-case 40%–60% duty cycle  
CLK low pulse; worst-case 40%–60% duty cycle  
Address setup time to CLK rising edge  
Address hold time to CLK rising edge  
Clock to output valid (network processor interface)  
Clock to CLK2X delay  
8
8
6
2
TCKLO  
TSA  
ns  
ns  
THA  
ns  
TCKOV  
TCLK2  
30  
18  
4
ns  
ns  
TCLKPHSL  
TCKSE  
TSCK  
Clock to PHS_L delay  
7
ns  
Clock to output valid (NSE Interface)  
Clock to SCLK delay  
40  
20  
12  
6
ns  
ns  
TCKSD  
TCKOLZ  
TCKOHZ  
Clock to output valid (SDATA)  
13  
ns  
Clock to output in low-Z  
3
ns  
Clock to output in high-Z  
7
ns  
Document #: 38-02043 Rev. *B  
Page 32 of 42  
CYNCP80192  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
Data 2  
DATA5  
DATA6  
DATA9 Data 12 Data 15 Data 18 Data 21 Data 23 Data 26 BW_L6 BW_L3 BW_L2 BW_L1  
ADR1  
ADR4  
ADR7  
CE2  
RW_L  
BWE_L Data 30 Data 33 Data 36 Data 39 DATA4 DATA4  
1
2
1
2
2
3
STRB  
Data 1  
CPID0  
CPID2  
Data 3  
Data 0  
IRST_L  
DATA7 Data 10 Data 13 Data 16 Data 19 Data 22 Data 25 BW_L7 BW_L4  
CLK  
BW_L0  
ADR2  
ADR3  
VDDQ  
ADR5  
ADR6  
VDDQ  
ADR8  
ADR9  
VDDQ  
CE_L  
OE_L  
Data 29 Data 32 Data 35 Data 38 DATA4  
1
GND  
DATA4  
4
CBID1  
DATA4  
GND  
VDD  
DATA8 Data 11 Data 14 Data 17 Data 20 Data 24 Data 27 BW_L5 XVER_2 ADR0  
CE2_L Data 28 Data 31 Data 34 Data 37 DATA4  
0
GND  
DATA4 DATA4  
3
3
_L  
5
7
BIG_LT  
L_L  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
GND  
GND  
VDDQ  
VDD  
VDD  
VDD  
VDD  
GND  
VDD  
VDD  
VDD  
DATA4 DATA4 DATA5  
0]  
4
4
6
8
CPID4 IFC_CF IWIDTH  
G0  
DATA4 DATA5 DATA5  
5
5
9
1
8
IFC_CF CPID5  
G2  
CPID3  
VDD  
DATA5 DATA5 DATA5  
6
6
2
4
6
TCK  
TDI  
IFC_CF  
G1  
VDD  
DATA5 DATA5 DATA5  
7
7
5
7
9
CPID7  
CPID6  
TMS  
VDDQ  
VDDQ DATA5 DATA6 DATA6  
8
8
8
0
1
DESC_ CAM_F TRST_L VDDQ  
VDDQ DATA6 DATA6  
INTR  
9
9
AFULL  
ULL  
2
3
TDO  
CLK2X  
PHS_L  
VDDQ  
VDDQ  
VDDQ SCANE SCAN TESTM  
M
10  
11  
10  
11  
CMD1  
CMD0  
ORST_  
L
VDD  
VDD  
GND  
GND  
VDD  
VDD  
VDDQ XVER_ XVER_ XVER_  
2
1_L  
1
CMD4  
CMD7  
CMD3  
CMD6  
CMD2  
CMD5  
VDDQ  
GND  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
GND  
VDDQ DQ_72 SCLK SOE_L  
12  
13  
12  
13  
GND  
GND  
SDATA SDATA SDATA  
63 62 61  
CMD8  
DQ1  
CMDV  
DQ2  
DQ0  
DQ3  
GND  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDD  
GND  
VDD  
VDD  
GND  
GND  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
GND  
VDD  
VDD  
SDATA SDATA SDATA  
58 59 60  
14  
15  
16  
17  
18  
19  
20  
21  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
VDDQ SDATA SDATA SDATA  
55 56 57  
DQ4  
DQ5  
DQ6  
VDDQ SDATA SDATA SDATA  
52 53 54  
DQ7  
DQ8  
DQ9  
VDDQ SDATA SDATA SDATA  
49 50 51  
DQ10  
DQ13  
DQ15  
DQ18  
DQ21  
DQ11  
DQ14  
DQ17  
DQ20  
DQ23  
DQ12  
DQ16  
DQ19  
DQ22  
DQ25  
VDDQ SDATA SDATA SDATA  
45 47 48  
VDDQ SDATA SDATA SDATA  
42 44 46  
VDD  
VDD  
VDD  
GND  
SData SDATA SDATA  
39  
41  
43  
VDD  
SData  
36  
SData SDATA  
38  
40  
VDD  
SData  
33  
SData  
35  
SData  
37  
22  
23  
24  
25  
26  
DQ24 XVER_0 DQ26  
GND  
VDD  
DQ37  
DQ39  
DQ40  
VDD  
FULL  
DQ41  
DQ43  
VDD  
DQ42  
DQ44  
DQ45  
VDDQ  
SSV  
VDDQ  
DQ47  
DQ49  
SSF  
VDDQ  
DQ50  
DQ51  
DQ52  
VDDQ  
DQ53  
DQ54  
EOT  
VDDQ  
DQ55  
DQ56  
DQ57  
GND  
DQ58  
DQ59  
ACK  
GND  
DQ61  
DQ62  
DQ60  
VDDQ  
DQ65  
DQ64  
DQ63  
VDDQ  
VDDQ  
VDDQ  
VDD  
VDD  
VDD  
VDD  
SData  
28  
SData  
32  
SData  
34  
XVER_0 DQ27  
_L  
DQ29  
DQ33  
DQ35  
DQ32  
DQ36  
DQ38  
SData 0 SData 3 SDATA6 SData  
10  
SData  
13  
SData  
16  
SData  
19  
SData  
22  
SData  
25  
SData  
29  
SData  
31  
DQ28  
DQ30  
DQ46  
DQ48  
DQ67  
SData 2 SDATA5 SDATA8 SData  
11  
SData  
14  
SData  
17  
SData  
20  
SData  
23  
SData  
26  
SData  
30  
DQ31  
DQ34  
DQ66  
SData 1 SDATA4 SDATA7 SDATA9 SData  
12  
SData  
15  
SData  
18  
SData  
21  
SData  
24  
SData  
27  
AF AE AD AC AB AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
Figure 16-1. Pinout Diagram  
Document #: 38-02043 Rev. *B  
33  
CYNCP80192  
Table 16-6 contains an alphabetical listing of the pins marked out in Figure 16-1, above.  
Table 16-6. CYNPC80192 Pinout Description  
Package Ball  
Number  
Package Ball  
Number  
Signal Name  
DATA[43]  
TESTM  
Signal Type  
I/O  
Signal Name  
DATA[12]  
DATA[10]  
VDD  
Signal Type  
I/O  
A1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A2  
AB1  
AB2  
Input  
Output  
Input  
I/O  
I/O  
XVER_1  
SOE_L  
AB23  
AB24  
AB25  
AB26  
AB3  
2.5 Volts  
I/O  
DQ[37]  
DQ[39]  
DQ[40]  
DATA[08]  
VDD  
SDATA[61]  
SDATA[60]  
SDATA[57]  
SDATA[54]  
SDATA[51]  
SDATA[48]  
SDATA[46]  
DATA[44]  
SDATA[43]  
SDATA[40]  
SDATA[37]  
SDATA[34]  
SDATA[31]  
SDATA[30]  
SDATA[27]  
DATA[47]  
DATA[50]  
DATA[53]  
DATA[56]  
DATA[59]  
DATA[61]  
INTR  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AB4  
2.5 Volts  
I/O  
I/O  
AC1  
DATA[09]  
VDDQ  
I/O  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC2  
3.3 Volts  
3.3 Volts  
3.3 Volts  
Ground  
Ground  
3.3 Volts  
3.3 Volts  
3.3 Volts  
3.3 Volts  
3.3 Volts  
I/O  
I/O  
VDDQ  
I/O  
VDDQ  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A3  
I/O  
VSS  
I/O  
VSS  
I/O  
VDDQ  
I/O  
VDDQ  
I/O  
VDDQ  
I/O  
VDDQ  
I/O  
VDDQ  
I/O  
DATA[07]  
VDD  
A4  
I/O  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC3  
2.5 Volts  
2.5 Volts  
2.5 Volts  
Ground  
I/O  
A5  
I/O  
VDD  
A6  
I/O  
VDD  
A7  
I/O  
VSS  
A8  
I/O  
DQ[32]  
DQ[36]  
DQ[38]  
DATA[04]  
VSS  
A9  
Output  
I/O  
I/O  
AA1  
AA2  
AA23  
AA24  
AA25  
AA26  
AA3  
AA4  
AD1  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
DATA[15]  
DATA[13]  
VDD  
I/O  
I/O  
I/O  
2.5 Volts  
Input  
I/O  
AC4  
Ground  
2.5 Volts  
2.5 Volts  
2.5 Volts  
3.3 Volts  
3.3 Volts  
I/O  
FULL  
AC5  
VDD  
DQ[41]  
AC6  
VDD  
DQ[43]  
I/O  
AC7  
VDD  
DATA[11]  
VDD  
I/O  
AC8  
VDDQ  
2.5 Volts  
I/O  
AC9  
VDDQ  
DATA[06]  
PHS_L  
AE19  
AE2  
DQ[14]  
DATA[01]  
DQ[17]  
DQ[20]  
DQ[23]  
XVER_0  
DQ[27]  
DQ[30]  
Output  
Output  
Output  
Output  
I/O  
I/O  
ORST_L  
CMD[2]  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
I/O  
I/O  
CMD[5]  
I/O  
DQ[00]  
Output  
I/O  
DQ[03]  
I/O  
DQ[06]  
I/O  
I/O  
Document #: 38-02043 Rev. *B  
Page 34 of 42  
CYNCP80192  
Table 16-6. CYNPC80192 Pinout Description (continued)  
Package Ball  
Package Ball  
Number  
Number  
AD17  
AD18  
AD19  
AD2  
Signal Name  
DQ[09]  
Signal Type  
I/O  
Signal Name  
DQ[34]  
Signal Type  
I/O  
AE26  
AE3  
AE4  
AE5  
AE6  
AE7  
AE8  
AE9  
AF1  
DQ[12]  
I/O  
CPID[0]  
Output  
Output  
Input  
Output  
Input  
Output  
Output  
I/O  
DQ[16]  
I/O  
CPID[2]  
DATA[03]  
DQ[19]  
I/O  
IFC_CFG[0]  
CPID[5]  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD3  
I/O  
DQ[22]  
I/O  
TDI  
DQ[25]  
I/O  
CPID[6]  
DQ[26]  
I/O  
CAM_FULL  
DATA[02]  
TDO  
DQ[29]  
I/O  
DQ[33]  
I/O  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF2  
Output  
Output  
Output  
Output  
Output  
I/O  
DQ[35]  
I/O  
CMD[1]  
DATA[00]  
IRST_L  
I/O  
CMD[4]  
AD4  
Input  
Input  
Output  
Input  
Input  
Input  
I/O  
CMD[7]  
AD5  
IWIDTH  
CPID[3]  
IFC_CFG[1]  
TMS  
CMD[8]  
AD6  
DQ[01]  
AD7  
DQ[4]  
I/O  
AD8  
DQ[07]  
I/O  
AD9  
TRST_L  
DATA[05]  
CLK2X  
DQ[10]  
I/O  
AE1  
DQ[13]  
I/O  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AF4  
Output  
Output  
Output  
Output  
Output  
I/O  
STRB  
Output  
I/O  
CMD[0]  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF3  
DQ[15]  
CMD[3]  
DQ[18]  
I/O  
CMD[6]  
DQ[21]  
I/O  
CMDV  
DQ[24]  
I/O  
DQ[02]  
XVER_0_L  
DQ[28]  
Output  
I/O  
DQ[05]  
I/O  
DQ[08]  
I/O  
DQ[31]  
I/O  
DQ[11]  
I/O  
CPID[1]  
Output  
I/O  
BIG_LTL_L  
CPID[4]  
IFC_CFG[2]  
TCK  
Input  
Output  
Input  
Input  
Output  
Output  
I/O  
C13  
SDATA[63]  
SDATA[58]  
SDATA[55]  
SDATA[52]  
SDATA[49]  
SDATA[45]  
SDATA[42]  
DATA[41]  
SDATA[39]  
SDATA[36]  
SDATA[33]  
SDATA[28]  
SDATA[25]  
SDATA[23]  
SDATA[21]  
AF5  
C14  
I/O  
AF6  
C15  
I/O  
AF7  
C16  
I/O  
AF8  
CPID[7]  
DESC_AFULL  
DATA[42]  
SCANM  
XVER_1_L  
SCLK  
C17  
I/O  
AF9  
C18  
I/O  
B1  
C19  
I/O  
B10  
Input  
Output  
Output  
I/O  
C2  
I/O  
B11  
C20  
I/O  
B12  
C21  
I/O  
B13  
SDATA[62]  
SDATA[59]  
SDATA[56]  
SDATA[53]  
SDATA[50]  
C22  
I/O  
B14  
I/O  
C23  
I/O  
B15  
I/O  
C24  
I/O  
B16  
I/O  
C25  
I/O  
B17  
I/O  
C26  
I/O  
Document #: 38-02043 Rev. *B  
Page 35 of 42  
CYNCP80192  
Table 16-6. CYNPC80192 Pinout Description (continued)  
Package Ball  
Package Ball  
Number  
Number  
B18  
B19  
B2  
Signal Name  
SDATA[47]  
SDATA[44]  
VSS  
Signal Type  
I/O  
Signal Name  
VSS  
Signal Type  
Ground  
I/O  
C3  
C4  
I/O  
DATA[46]  
DATA[49]  
DATA[52]  
DATA[55]  
DATA[58]  
DATA[62]  
DATA[36]  
VDDQ  
Ground  
I/O  
C5  
I/O  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B3  
SDATA[41]  
SDATA[38]  
SDATA[35]  
SDATA[32]  
SDATA[29]  
SDATA[26]  
SDATA[24]  
DATA[45]  
DATA[48]  
DATA[51]  
DATA[54]  
DATA[57]  
DATA[60]  
DATA[63]  
DATA[39]  
SCANE  
C6  
I/O  
I/O  
C7  
I/O  
I/O  
C8  
I/O  
I/O  
C9  
I/O  
I/O  
D1  
I/O  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D2  
3.3 Volts  
3.3 Volts  
3.3 Volts  
Ground  
Ground  
3.3 Volts  
3.3 Volts  
3.3 Volts  
3.3 Volts  
3.3 Volts  
I/O  
I/O  
VDDQ  
I/O  
VDDQ  
B4  
I/O  
VSS  
B5  
I/O  
VSS  
B6  
I/O  
VDDQ  
B7  
I/O  
VDDQ  
B8  
I/O  
VDDQ  
B9  
I/O  
VDDQ  
C1  
I/O  
VDDQ  
C10  
C11  
C12  
D22  
D23  
D24  
D25  
D26  
D3  
Input  
Output  
I/O  
DATA[38]  
VDD  
XVER_2  
DQ_72  
D20  
D21  
H1  
2.5 Volts  
2.5 Volts  
Input  
VDD  
VDD  
2.5 Volts  
Ground  
I/O  
RW_L  
VSS  
H2  
OE_L  
Input  
SDATA[22]  
SDATA[20]  
SDATA[18]  
DATA[40]  
VSS  
H23  
H24  
H25  
H26  
H3  
VDD  
2.5 Volts  
I/O  
I/O  
SDATA[10]  
SDATA[08]  
SDATA[07]  
DATA[28]  
VDD  
I/O  
I/O  
I/O  
I/O  
D4  
Ground  
2.5 Volts  
2.5 Volts  
2.5 Volts  
3.3 Volts  
3.3 Volts  
I/O  
I/O  
D5  
VDD  
H4  
2.5 Volts  
Input  
D6  
VDD  
J1  
CE2  
D7  
VDD  
J2  
CE_L  
Input  
D8  
VDDQ  
J23  
J24  
J25  
J26  
J3  
VDDQ  
3.3 Volts  
I/O  
D9  
VDDQ  
SDATA[06]  
SDATA[05]  
SDATA[04]  
CE2_L  
VDDQ  
E1  
DATA[33]  
DATA[35]  
VDD  
I/O  
E2  
I/O  
I/O  
E23  
E24  
E25  
E26  
E3  
2.5 Volts  
I/O  
Input  
SDATA[19]  
SDATA[17]  
SDATA[15]  
DATA[37]  
VDD  
J4  
3.3 Volts  
Input  
I/O  
K1  
ADR[7]  
ADR[8]  
VDDQ  
I/O  
K2  
Input  
I/O  
K23  
K24  
K25  
K26  
3.3 Volts  
I/O  
E4  
2.5 Volts  
I/O  
SDATA[03]  
SDATA[02]  
SDATA[01]  
F1  
DATA[30]  
DATA[32]  
I/O  
F2  
I/O  
I/O  
Document #: 38-02043 Rev. *B  
Page 36 of 42  
CYNCP80192  
Table 16-6. CYNPC80192 Pinout Description (continued)  
Package Ball  
Package Ball  
Number  
Number  
F23  
F24  
F25  
F26  
F3  
Signal Name  
VDD  
Signal Type  
2.5 Volts  
I/O  
Signal Name  
ADR[9]  
VDDQ  
ADR[4]  
VDD  
Signal Type  
Input  
K3  
K4  
SDATA[16]  
SDATA[14]  
SDATA[12]  
DATA[34]  
VDD  
3.3 Volts  
Input  
I/O  
L1  
I/O  
L11  
L12  
L13  
L14  
L15  
L16  
L2  
2.5 Volts  
2.5 Volts  
Ground  
Ground  
2.5 Volts  
2.5 Volts  
Input  
I/O  
VDD  
F4  
2.5 Volts  
Input  
VSS  
G1  
BWE_L  
DATA[29]  
VDD  
VSS  
G2  
I/O  
VDD  
G23  
G24  
G25  
G26  
G3  
2.5 Volts  
I/O  
VDD  
SDATA[13]  
SDATA[11]  
SDATA[09]  
DATA[31]  
VDD  
ADR[5]  
VDDQ  
SDATA[00]  
DQ[67]  
DQ[66]  
VSS  
I/O  
L23  
L24  
L25  
L26  
P16  
P2  
3.3 Volts  
I/O  
I/O  
I/O  
I/O  
G4  
2.5 Volts  
Input  
I/O  
L3  
ADR[6]  
VDDQ  
Ground  
Input  
L4  
3.3 Volts  
Input  
CLK  
M1  
ADR[1]  
VDD  
P23  
P24  
P25  
P26  
P3  
VSS  
Ground  
I/O  
M11  
M12  
M13  
M14  
M15  
M16  
M2  
2.5 Volts  
Ground  
Ground  
Ground  
Ground  
2.5 Volts  
Input  
DQ[58]  
DQ[59]  
ACK  
VSS  
I/O  
VSS  
Input  
VSS  
XVER_2_L  
VSS  
Output  
Ground  
Input  
VSS  
P4  
VDD  
R1  
BW_L[3]  
VDD  
ADR[2]  
VDDQ  
R11  
R12  
R13  
R14  
R15  
R16  
R2  
2.5 Volts  
Ground  
Ground  
Ground  
Ground  
2.5 Volts  
Input  
M23  
M24  
M25  
M26  
M3  
3.3 Volts  
I/O  
VSS  
DQ[65]  
DQ[64]  
DQ[63]  
ADR[3]  
VDDQ  
VSS  
I/O  
VSS  
I/O  
VSS  
Input  
VDD  
M4  
3.3 Volts  
Input  
BW_L[4]  
VDDQ  
DQ[55]  
DQ[56]  
DQ[57]  
BW_L[5]  
VDDQ  
BW_L[6]  
VDD  
N1  
BW_L[1]  
VSS  
R23  
R24  
R25  
R26  
R3  
3.3 Volts  
I/O  
N11  
N12  
N13  
N14  
N15  
N16  
N2  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Input  
VSS  
I/O  
VSS  
I/O  
VSS  
Input  
VSS  
R4  
3.3 Volts  
Input  
VSS  
T1  
BW_L[0]  
VSS  
T11  
T12  
T13  
T14  
T15  
T16  
2.5 Volts  
2.5 Volts  
Ground  
Ground  
2.5 Volts  
2.5 Volts  
N23  
N24  
N25  
N26  
N3  
Ground  
I/O  
VDD  
DQ[61]  
DQ[62]  
DQ[60]  
ADR[0]  
VSS  
I/O  
VSS  
I/O  
VDD  
Input  
VDD  
Document #: 38-02043 Rev. *B  
Page 37 of 42  
CYNCP80192  
Table 16-6. CYNPC80192 Pinout Description (continued)  
Package Ball  
Package Ball  
Number  
Number  
Signal Name  
VSS  
Signal Type  
Ground  
Input  
Signal Name  
BW_L[7]  
VDDQ  
Signal Type  
Input  
3.3 Volts  
I/O  
N4  
T2  
T23  
T24  
T25  
T26  
T3  
P1  
BW_L[2]  
VSS  
P11  
P12  
P13  
P14  
P15  
U1  
Ground  
Ground  
Ground  
Ground  
Ground  
I/O  
DQ[53]  
DQ[54]  
EOT  
VSS  
I/O  
VSS  
Input  
I/O  
VSS  
DATA[27]  
VDDQ  
VSS  
T4  
3.3 Volts  
I/O  
DATA[26]  
DATA[25]  
VDDQ  
W1  
W2  
W23  
W24  
W25  
W26  
W3  
W4  
Y1  
DATA[21]  
DATA[19]  
VDDQ  
U2  
I/O  
I/O  
U23  
U24  
U25  
U26  
U3  
3.3 Volts  
I/O  
3.3 Volts  
Input  
I/O  
DQ[50]  
DQ[51]  
DQ[52]  
DATA[24]  
VDDQ  
SSV  
I/O  
DQ[46]  
DQ[48]  
DATA[17]  
VDDQ  
I/O  
I/O  
I/O  
I/O  
U4  
3.3 Volts  
I/O  
3.3 Volts  
I/O  
V1  
DATA[23]  
DATA[22]  
VDDQ  
DATA[18]  
DATA[16]  
VDD  
V2  
I/O  
Y2  
I/O  
V23  
V24  
V25  
V26  
V3  
3.3 Volts  
I/O  
Y23  
Y24  
Y25  
Y26  
Y3  
2.5 Volts  
I/O  
DQ[47]  
DQ[49]  
SSF  
DQ[42]  
DQ[44]  
DQ[45]  
DATA[14]  
VDD  
I/O  
I/O  
Input  
I/O  
DATA[20]  
VDDQ  
I/O  
I/O  
V4  
3.3 Volts  
Y4  
2.5 Volts  
Document #: 38-02043 Rev. *B  
Page 38 of 42  
CYNCP80192  
17.0  
Ordering Information  
Table 17-1 provides ordering information for the CYNCP80192 device.  
Table 17-1. Ordering Information  
Part Number  
Description  
Frequency  
Temperature Range  
Commercial  
CYNPC80192-BGC  
Network Database Coprocessor  
100 MHz  
Document #: 38-02043 Rev. *B  
Page 39 of 42  
CYNCP80192  
18.0  
Package Drawings  
In the following figures the NDC package diagrams are shown from various views. Figure 18-1 shows the package from a bottom  
view, Figure 18-2 from a side view, and Figure 18-3 from a top view.  
Figure 18-1. Package Bottom View  
Figure 18-2. Package Side View  
Document #: 38-02043 Rev. *B  
Page 40 of 42  
CYNCP80192  
Figure 18-3. Package Top View  
ZBT is a trademark of Integrated Device Technology. SyncBurst is a trademark of Micron Technology. All product and company  
names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-02043 Rev. *B  
Page 41 of 42  
© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CYNCP80192  
Document History Page  
Document Title: CYNCP80192 Network Database Coprocessor  
Document Number: 38-02043  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
111444  
115873  
01/29/02  
05/17/02  
AFX  
FSG  
New Data Sheet  
*A  
Typo in ordering information table (changed from CYNCP80192-100 to  
CYNCP80192-BGC)  
*B  
127446  
08/29/03  
DCU  
Clarified scope and description of BIG/LTL_L signal  
Clarified SSRAM feature support  
Corrected timing diagram for SyncBurst SSRAM interface (early write)  
Document #: 38-02043 Rev. *B  
Page 42 of 42  
厂商 型号 描述 页数 下载

TOSHIBA

CYN17-4 红外发光二极管和光电晶体管( AC LINE /数字逻辑隔离器)[ IRED & PHOTO-TRANSISTOR (AC LINE/DIGITAL LOGIC ISOLATOR) ] 6 页

CYNERGY3

CYNA16-1000 [ Silicon Controlled Rectifier, 16A I(T)RMS, 10000mA I(T), 1000V V(DRM), 1000V V(RRM), 1 Element, TO-220AB, ISOLATED TO-220AB, 3 PIN ] 2 页

CYNERGY3

CYNA16-1000PT [ Silicon Controlled Rectifier, 16A I(T)RMS, 10000mA I(T), 1000V V(DRM), 1000V V(RRM), 1 Element, TO-220AB, ISOLATED TO-220AB, 3 PIN ] 2 页

CRYDOM

CYNA16-1200 [ Silicon Controlled Rectifier, 16A I(T)RMS, 1200V V(DRM), 1200V V(RRM), 1 Element, TO-220AB, TO-220AB, 3 PIN ] 2 页

CRYDOM

CYNA16-400 [ Silicon Controlled Rectifier, 16A I(T)RMS, 400V V(DRM), 400V V(RRM), 1 Element, TO-220AB, ISOLATED TO-220AB, 3 PIN ] 2 页

CRYDOM

CYNA16-400PT [ Silicon Controlled Rectifier, 16A I(T)RMS, 400V V(DRM), 400V V(RRM), 1 Element, TO-220AB, ISOLATED TO-220AB, 3 PIN ] 2 页

CRYDOM

CYNA16-600 [ Silicon Controlled Rectifier, 16A I(T)RMS, 600V V(DRM), 600V V(RRM), 1 Element, TO-220AB, ISOLATED TO-220AB, 3 PIN ] 2 页

CRYDOM

CYNA16-600PT [ Silicon Controlled Rectifier, 16A I(T)RMS, 600V V(DRM), 600V V(RRM), 1 Element, TO-220AB, ISOLATED TO-220AB, 3 PIN ] 2 页

CRYDOM

CYNA16-800 [ Silicon Controlled Rectifier, 16A I(T)RMS, 800V V(DRM), 800V V(RRM), 1 Element, TO-220AB, ISOLATED TO-220AB, 3 PIN ] 2 页

CYNERGY3

CYNA16-800PT [ Silicon Controlled Rectifier, 16A I(T)RMS, 10000mA I(T), 800V V(DRM), 800V V(RRM), 1 Element, TO-220AB, ISOLATED TO-220AB, 3 PIN ] 2 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.203980s