找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

8Q1024K8

型号:

8Q1024K8

描述:

高性能1M字节( 8Mbit的) CMOS静态RAM[ high-performance 1M byte (8Mbit) CMOS static RAM ]

品牌:

AEROFLEX[ AEROFLEX CIRCUIT TECHNOLOGY ]

页数:

15 页

PDF大小:

239 K

Standard ProducTts M  
QCOTS UT8Q1024K8 SRAM  
Data Sheet  
January, 2003  
FEATURES  
INTRODUCTION  
The QCOTS UT8Q1024K8 Quantified Commercial Off-the-  
TM  
‰
25ns maximum (3.3 volt supply) address access time  
Shelf product is a high-performance 1M byte (8Mbit) CMOS  
static RAM built with two individual 524,288 x 8 bit SRAMs  
with a common output enable. Memory access and control is  
provided by an active LOW chip enable (En), an active LOW  
output enable (G). This device has a power-down feature that  
reducespowerconsumption by more than 90% whendeselected.  
‰
Dual cavity package contains two (2) 512K x 8 industry-  
standard asynchronous SRAMs; the control architecture  
allows operation as an 8-bit data width  
‰
‰
TTL compatible inputs and output levels, three-state  
bidirectional data bus  
Typical radiation performance  
- Total dose: 50krad(Si)  
Writing to each memory is accomplished by taking one of the  
chip enable (En) inputs LOW and write enable (Wn) inputs  
LOW. Data on the I/O pins is then written into the location  
2
- SEL Immune >80 MeV-cm /mg  
2
- LET (0.25) = >10 MeV-cm /mg  
TH  
2
- Saturated Cross Section cm per bit, 5.0E-9  
specified on the address pins (A through A ). Reading from  
0
18  
- <1E-8 errors/bit-day, Adams 90% geosynchronous  
heavy ion  
the device is accomplished by taking one of the chip enable (En)  
and output enable (G) LOW while forcing write enable (Wn)  
HIGH. Under these conditions, the contents of the memory  
locationspecifiedbytheaddresspinswillappearontheI/Opins.  
Only one SRAM can be read or written at a time.  
‰
‰
Packaging options:  
- 44-lead bottom brazed dual CFP (BBTFP) (4.6 grams)  
Standard Microcircuit Drawing 5962-01532  
- QML T and Q compliant part  
The input/output pins are placed in a high impedance state when  
the device is deselected (En HIGH), the outputs are disabled (G  
HIGH), or during a write operation (En LOW and Wn LOW).  
W
W
1
0
E
E
0
1
A(18:0)  
G
512K x 8  
512K x 8  
DQ(7:0)  
Figure 1. UT8Q1024K8 SRAM Block Diagram  
DEVICE OPERATION  
Each die in the UT8Q1024K8 has three control inputs called  
Enable (En), Write Enable (Wn), and Output Enable (G); 19  
address inputs, A(18:0); and eight bidirectional data lines,  
DQ(7:0). The device enable (En) controls device selection,  
active, and standby modes. Asserting En enables the device,  
causes IDD to rise to its active value, and decodes the 19 address  
NC  
NC  
NC  
A0  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
E2  
2
NC  
3
A18  
A17  
A16  
A15  
G
A1  
4
A2  
5
A3  
6
A4  
7
E1  
8
DQ7  
DQ6  
VSS  
DQ0  
DQ1  
VDD  
9
inputs to each memory die . Wn controls read and write  
operations. During a read cycle, G must be asserted to enable  
the outputs.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VSS  
VDD  
DQ2  
DQ3  
W1  
A5  
DQ5  
DQ4  
A14  
A13  
A12  
A11  
A10  
NC  
Table 1. Device Operation Truth Table  
A6  
A7  
A8  
G
Wn  
X
En  
1
I/O Mode  
3-state  
Mode  
A9  
W2  
NC  
NC  
X1  
X
1
NC  
Standby  
0
1
0
0
Data in  
3-state  
Write  
Read2  
Read  
Figure 2. 25ns SRAM Pinout (44)  
0
1
0
Data out  
Notes:  
PIN NAMES  
1. “X” is defined as a “don’t care” condition.  
2. Device active; outputs disabled.  
A(18:0)  
DQ(7:0)  
En  
Address  
Data Input/Output  
Device Enable  
WriteEnable  
Output Enable  
Power  
READ CYCLE  
A combination of Wn greater than VIH (min) withEn andG less  
than VIL (max) defines a read cycle. Read access time is  
measured from the latter of device enable, output enable, or valid  
address to valid data output.  
Wn  
G
SRAM ReadCycle1, theAddressAccessisinitiatedbyachange  
in address inputs while the chip is enabled with G asserted and  
Wn deasserted. Valid data appears on data outputs DQ(7:0) after  
the specified tAVQV is satisfied. Outputs remain active  
VDD  
VSS  
Ground  
throughout the entire cycle. As long as device enable and output  
enable are active, the address inputs may change at a rate equal  
to the minimum read cycle time (tAVAV).  
Notes:  
1. To avoid bus contention, on the DQ(7:0) bus, only one En can be driven low  
simultaneously while G is low.  
SRAM Read Cycle 2, the Chip Enable-controlled Access is  
initiated by En going active while G remains asserted, Wn  
remains deasserted, and the addresses remain stable for the  
entire cycle. After the specified tETQV is satisfied, the eight-bit  
word addressed by A(18:0) is accessed and appears at the data  
outputs DQ(7:0).  
SRAM Read Cycle 3, the Output Enable-controlled Access is  
initiated by G going active while En is asserted, Wn is  
deasserted, and the addresses are stable. Read access time is  
tGLQV unless tAVQV or tETQV have not been satisfied.  
2
WRITE CYCLE  
TYPICAL RADIATION HARDNESS  
The UT8Q1024K8 SRAM incorporates features which allow  
operation in a limited radiation environment.  
A combination of Wn less than VIL(max) and En less than  
VIL(max) defines a write cycle. The state of G is a “don’t care”  
Table 2. Typical Radiation Hardness  
Design Specifications1  
for a write cycle. The outputs are placed in the high-impedance  
state when eitherG is greater than V IH(min), or when Wn is less  
than V (max).  
IL  
Total Dose  
50  
krad(Si) nominal  
Errors/Bit-Day  
Write Cycle 1, the Write Enable-controlled Access is defined  
by a write terminated byWn going high, with En still active.  
The write pulse width is defined by tWLWH when the write is  
Heavy Ion  
Error Rate 2  
<1E-8  
initiated byWn, and by tETWH when the write is initiated byEn.  
Notes:  
Unless the outputs have been previously placed in the high-  
impedance state byG, the user must wait t WLQZ before applying  
1. The SRAM will not latchup during radiation exposure under recommended  
operating conditions.  
2. 90% worst case particle environment, Geosynchronous orbit, 100 mils of  
Aluminum.  
data to the eight bidirectional pins DQ(7:0) to avoid bus  
contention.  
Write Cycle 2, the Chip Enable-controlled Access is defined by  
a write terminated by the former ofEn or Wn going inactive.  
The write pulse width is defined by tWLEF when the write is  
initiated by Wn, and by tETEF when the write is initiated by the  
En going active. For the Wn initiated write, unless the outputs  
have been previously placed in the high-impedance state byG,  
the user must wait tWLQZ before applying data to the eight  
bidirectional pins DQ(7:0) to avoid bus contention.  
3
ABSOLUTE MAXIMUM RATINGS1  
(Referenced to VSS  
)
SYMBOL  
PARAMETER  
DC supply voltage  
LIMITS  
VDD  
-0.5 to 4.6V  
VI/O  
TSTG  
PD  
Voltage on any pin  
-0.5 to 4.6V  
-65 to +150°C  
1.0W (per byte)  
+150°C  
Storage temperature  
Maximum power dissipation  
Maximum junction temperature2  
TJ  
Thermal resistance, junction-to-case3  
DC input current  
QJC  
10°C/W  
II  
±10 mA  
Notes:  
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device  
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability and performance.  
2. Maximum junction temperature may be increased to +175°C during burn-in and steady-static life.  
3. Test per MIL-STD-883, Method 1012.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
LIMITS  
VDD  
Positive supply voltage  
3.0 to 3.6V  
TC  
Case temperature range  
DC input voltage  
-40 to +125°C  
VIN  
0V to VDD  
4
DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)*  
(-40°C to +125°C) (VDD = 3.3V + 0.3)  
SYMBOL  
PARAMETER  
CONDITION  
MIN  
MAX  
UNIT  
VIH  
High-level input voltage  
(CMOS)  
(CMOS)  
2.0  
V
VIL  
Low-level input voltage  
Low-level output voltage  
Low-level output voltage  
High-level output voltage  
High-level output voltage  
Input capacitance  
0.8  
0.4  
V
V
VOL1  
VOL2  
VOH1  
VOH2  
IOL = 8mA, VDD =3.0V  
IOL = 200mA,VDD =3.0V  
IOH = -4mA,VDD =3.0V  
IOH = -200mA,VDD =3.0V  
¦ = 1MHz @ 0V  
0.08  
V
2.4  
V
VDD-0.10  
V
1
20  
24  
pF  
CIN  
1
Bidirectional I/O capacitance  
Input leakage current  
¦ = 1MHz @ 0V  
pF  
CIO  
IIN  
VSS < VIN < VDD, VDD = VDD (max)  
-2  
-2  
2
2
mA  
mA  
IOZ  
Three-state output leakage current 0V < VO < VDD  
VDD = VDD (max)  
G = VDD (max)  
2, 3  
Short-circuit output current  
0V < VO < VDD  
-90  
90  
mA  
mA  
IOS  
Supply current operating  
@ 1MHz  
Inputs: VIL = 0.8V,  
VIH = 2.0V  
150  
IDD(OP)  
IOUT = 0mA  
VDD = VDD (max)  
IDD1(OP) Supply current operating  
@40MHz  
Inputs: VIL = 0.8V,  
VIH = 2.0V  
220  
mA  
IOUT = 0mA  
VDD = VDD (max)  
-40°C and 25°C  
+125°C  
IDD2(SB) Nominal standby supply current  
@0MHz  
Inputs: VIL = VSS  
IOUT = 0mA  
4
mA  
mA  
En = VDD - 0.5,  
VDD = VDD (max)  
VIH = VDD - 0.5V  
25  
Notes:  
* Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019.  
1. Measured only for initial qualification and after process or design changes that could affect input/output capacitance.  
2. Supplied as a design limit but not guaranteed or tested.  
3. Not more than one output may be shorted at a time for maximum duration of one second.  
5
AC CHARACTERISTICS READ CYCLE (Pre/Post-Radiation)*  
(-40°C to +125°C) (VDD = 3.3V + 0.3)  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
1
Read cycle time  
25  
ns  
tAVAV  
tAVQV  
Read access time  
Output hold time  
25  
ns  
ns  
2
3
0
tAXQX  
2
G-controlled Output Enable time  
ns  
tGLQX  
tGLQV  
G-controlled Output Enable time (Read Cycle 3)  
G-controlled output three-state time  
10  
10  
ns  
ns  
2
tGHQZ  
2,3  
En-controlled Output Enable time  
En-controlled access time  
3
ns  
ns  
ns  
tETQX  
3
25  
10  
tETQV  
1,2,4  
En-controlled output three-state time  
tEFQZ  
Notes: * Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019.  
1. Functional test.  
2. Three-state is defined as a 300mV change from steady-state output voltage.  
3. The ET (enable true) notation refers to the falling edge of En. SEU immunity does not affect the read parameters.  
4. The EF (enable false) notation refers to the rising edge of En. SEU immunity does not affect the read parameters.  
High Z to Active Levels  
Active to High Z Levels  
VH - 300mV  
VLOAD + 300mV  
}
}
{
{
VLOAD  
VLOAD - 300mV  
VL + 300mV  
Figure 3. 3-Volt SRAM Loading  
6
tAVAV  
A(18:0)  
Previous Valid Data  
Valid Data  
tAVQV  
DQ(7:0)  
Assumptions:  
1. En andG <V (max) and Wn >V (min)  
tAXQX  
IL  
IH  
Figure 4a. SRAM Read Cycle 1: Address Access  
A(18:0)  
En  
tETQV  
tEFQZ  
tETQX  
DQ(7:0)  
DATA VALID  
Assumptions:  
1. G < V (max) and Wn > V (min)  
IL  
IH  
Figure 4b. SRAM Read Cycle 2: Chip Enable-Controlled Access  
tAVQV  
A(18:0)  
G
tGHQZ  
tGLQX  
DATA VALID  
DQ(7:0)  
tGLQV  
Assumptions:  
1. En < V (max) andWn >V (min)  
IL  
IH  
Figure 4c. SRAM Read Cycle 3: Output Enable-Controlled Access  
7
AC CHARACTERISTICS WRITE CYCLE (Pre/Post-Radiation)*  
(-40°C to +125°C) (VDD = 3.3V + 0.3)  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
1
Write cycle time  
25  
ns  
tAVAV  
tETWH  
tAVET  
Device Enable to end of write  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup time for write (En - controlled)  
Address setup time for write (Wn - controlled)  
Write pulse width  
tAVWL  
tWLWH  
tWHAX  
tEFAX  
0
20  
2
Address hold time for write (Wn - controlled)  
Address hold time for Device Enable (En - controlled)  
Wn- controlled three-state time  
2
2
10  
tWLQZ  
2
Wn - controlled Output Enable time  
5
ns  
tWHQX  
tETEF  
Device Enable pulse width (En - controlled)  
Data setup time  
20  
15  
2
ns  
ns  
ns  
tDVWH  
2
Data hold time  
tWHDX  
tWLEF  
Device Enable controlled write pulse width  
Data setup time  
20  
15  
ns  
ns  
2
tDVEF  
tEFDX  
Data hold time  
2
20  
5
ns  
ns  
ns  
tAVWH  
Address valid to end of write  
Write disable time  
1
tWHWL  
Notes :  
* Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019.  
1. Functional test performed with outputs disabled (G high).  
2. Three-state is defined as 300mV change from steady-state output voltage.  
8
A(18:0)  
En  
tAVAV  
2
tAVWH  
tETWH  
tWHWL  
Wn  
tAVWL  
tWLWH  
tWHAX  
Q(7:0)  
tWLQZ  
tWHQX  
D(7:0)  
APPLIED DATA  
Assumptions:  
tDVWH  
tWHDX  
1. G < V (max). If G > V (min) then Qn(8:0) will be  
IL  
IH  
in three-state for the entire cycle.  
2. G high for t  
cycle.  
AVAV  
Figure 5a . SRAM Write Cycle 1: Write Enable - Controlled Access  
tAVAV  
3
A(18:0)  
tETEF  
tAVET  
tEFAX  
En  
or  
tAVET  
En  
tETEF  
tEFAX  
tWLEF  
Wn  
APPLIED DATA  
D(7:0)  
Q(7:0)  
tWLQZ  
tDVEF  
tEFDX  
Assumptions & Notes:  
1. G < V (max). If G > VIH (min) then Q(7:0) will be in three-state for the entire cycle.  
IL  
2. Either En scenario above can occur.  
3. G high for t  
cycle.  
AVAV  
Figure 5b. SRAM Write Cycle 2: Chip Enable - Controlled Access  
9
DATA RETENTION MODE  
VDD  
50%  
tEFR  
50%  
tR  
VDR > 2.0V  
En  
Figure 7. Low VDD Data Retention Waveform  
DATA RETENTION CHARACTERISTICS (Pre/Post-Irradiation)  
(1 Second Data Retention Test)  
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM UNIT  
VDR  
VDD for data retention  
2.0  
--  
--  
V
1,2  
Data retention current (per byte)  
Chip select to data retention time  
Operation recovery time  
4.0  
mA  
IDDR  
1,3  
0
ns  
ns  
tEFR  
1,3  
tAVAV  
tR  
Notes:  
1. En = V - .2V, all other inputs = V or V .  
DD  
DR  
SS  
o
2. Data retention current (I  
) Tc = 25 C.  
DDR  
3. Not guaranteed or tested.  
DATA RETENTION CHARACTERISTICS (Pre/Post-Irradiation)  
(10 Second Data Retention Test, TC=-40oC to +125oC)  
SYMBOL  
PARAMETER  
VDD for data retention  
MINIMUM  
MAXIMUM UNIT  
1
3.0  
3.6  
V
VDD  
2, 3  
Chip select to data retention time  
Operation recovery time  
0
ns  
ns  
tEFR  
2, 3  
tAVAV  
tR  
Notes:  
1. Performed at V (min) and V (max).  
D D  
D D  
2. En = V , all other inputs = V or V .  
SS  
SS  
DR  
3. Not guaranteed or tested.  
10  
11  
PACKAGING  
1. All exposed metalized areas must be plated per MIL-PRF-38535.  
2. The lid is electrically connected to VSS  
3. Index mark configuration is optional.  
4. Total weight is approx. 4.6 g.  
.
Figure 9. 44-lead bottom brazed dual CFP (BBTFP) package  
12  
ORDERING INFORMATION  
1024K8 SRAM:  
UT8Q1024K8 - * *  
*
*
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Hot solder dipped  
Gold  
Factory option (gold or solder)  
Screening:  
(P) = Prototype flow  
o
o
(W) = Extended Industrial Temperature Range Flow (-40 C to +125 C)  
Package Type:  
(U) = 44-lead bottom brazed dual CFP (BBTFP)  
Device Type:  
- = 25ns access, 3.3V operation  
Aeroflex UTMC Core Part Number  
Notes:  
1. Lead finish (A,C, or X) must be specified.  
2. If an “X” is specified when ordering, then the part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. Prototype flow per UTMC Manufacturing Flows Document. Tested at 25°C only. Lead finish is GOLD ONLY. Radiation neither tested nor guaranteed.  
4. Extended Industrial Temperature Range flow per UTMC Manufacturing Flows Document. Devices are tested at -40°C to +125°C. Radiation neither  
tested nor guaranteed.  
13  
1024K8 SRAM: SMD  
5962 - 01532  
** * * *  
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Hot solder dipped  
Gold  
Factory Option (gold or solder)  
Case Outline:  
(Y) = 44-lead dual cavity CFP  
Class Designator:  
(T)  
(Q)  
=
QML Class T  
QML Class Q  
=
Device Type  
o
o
01 = 25ns access time, 3.3V operation, Extended Industrial Temp (-40 C to +125 C)  
Drawing Number: 01532  
Total Dose  
(-) = None  
(D) = 1E4 (10krad(Si))  
(P) = 3E4 (30krad(Si)) (contact factory)  
(L) = 5E4 (50krad(Si)) (contact factory)  
Federal Stock Class Designator: No Options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  
3. Total dose radiation must be specified when ordering.  
14  
COLORADO  
INTERNATIONAL  
NORTHEAST  
Toll Free: 800-645-8862  
Tel: 805-778-9229  
Tel: 603-888-3975  
Fax: 719-594-8468  
Fax: 805-778-1980  
Fax: 603-888-4585  
SE AND MID-ATLANTIC  
WEST COAST  
CENTRAL  
Tel: 321-951-4164  
Tel: 949-362-2260  
Tel: 719-594-8017  
Fax: 321-951-4254  
Fax: 949-362-2266  
Fax: 719-594-8468  
w w w . a e r o f l e x . c o m  
i n f o - a m s @ a e r o f l e x . c o m  
Aeroflex UTMC Microelectronic Systems Inc. (Aeroflex)  
reserves the right to make changes to any products and  
services herein at any time without notice. Consult Aeroflex  
or an authorized sales representative to verify that the  
information in this data sheet is current before using this  
product. Aeroflex does not assume any responsibility or  
liability arising out of the application or use of any product  
or service described herein, except as expressly agreed to in  
writing by Aeroflex; nor does the purchase, lease, or use of a  
product or service from Aeroflex convey a license under any  
patent rights, copyrights, trademark rights, or any other of the  
intellectual rights of Aeroflex or of third parties.  
Our passion for performance is defined by three  
attributes represented by these three icons:  
solution-minded, performance-driven and customer-focused  
厂商 型号 描述 页数 下载

AEROFLEX

8Q1024K8SRAM 高性能1M字节( 8Mbit的) CMOS静态RAM[ high-performance 1M byte (8Mbit) CMOS static RAM ] 15 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.228967s