找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

9ZXL1550BKLFT

型号:

9ZXL1550BKLFT

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

18 页

PDF大小:

301 K

15-output DB1900Z Low-Power Derivative  
9ZXL1550  
DATASHEET  
Description  
Features/Benefits  
The 9ZXL1550 is a DB1900Z derivative buffer utilizing  
Low-Power HCSL (LP-HCSL) outputs to increase edge rates  
on long traces, reduce board space, and reduce power  
consumption more than 50% from the original 9ZX21501. It is  
pin-compatible to the 9ZXL1530 and has the output  
terminations integrated. It is suitable for PCI-Express  
Gen1/2/3 or QPI/UPI applications, and uses a fixed external  
feedback to maintain low drift for demanding QPI/UPI  
applications.  
LP-HCSL outputs; up to 90% IO power reduction, better  
signal integrity over long traces  
Direct connect to 85transmission lines; eliminates 60  
2
termination resistors, saves 103mm area  
Pin compatible to the 9ZXL1530; easy upgrade to reduced  
board space  
64-VFQFPN package; smallest 15 output Z-buffer  
Fixed feedback path: ~ 0ps input-to-output delay  
9 Selectable SMBus addresses; multiple devices can share  
same SMBus segment  
Recommended Application  
Buffer for Romley, Grantley and Purley Servers  
Separate VDDIO for outputs; allows maximum power  
savings  
PLL or bypass mode; PLL can dejitter incoming clock  
100MHz & 133.33MHz PLL mode; legacy QPI/UPI support  
Key Specifications  
Selectable PLL BW; minimizes jitter peaking in downstream  
Cycle-to-cycle jitter: < 50ps  
Output-to-output skew: <75ps  
Input-to-output delay variation: <50ps  
Phase jitter: PCIe Gen3 < 1ps rms  
Phase jitter: QPI 9.6GB/s < 0.2ps rms  
PLL's  
Spread spectrum compatible; tracks spreading input clock  
for EMI reduction  
SMBus Interface; unused outputs can be disabled  
Output Features  
15 - LP-HCSL Differential Output Pairs w/integrated  
terminations (Zo = 85)  
Block Diagram  
FBOUT_NC  
Z-PLL  
(SS Compatible)  
DIF_IN  
DIF_IN#  
DIF(14:0)  
HIBW_BYPM_LOBW#  
100M_133M#  
CKPWRGD/PD#  
SMB_A0_tri  
Logic  
SMB_A1_tri  
SMBDAT  
SMBCLK  
9ZXL1550 REVISION E 11/20/15  
1
©2015 Integrated Device Technology, Inc.  
9ZXL1550 DATASHEET  
Pin Configuration  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDDA  
GNDA  
100M_133M#  
VDDIO  
GND  
DIF9#  
DIF9  
DIF8#  
DIF8  
GND  
VDD  
DIF7#  
DIF7  
DIF6#  
DIF6  
VDDIO  
GND  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
HIBW_BYPM_LOBW#  
CKPWRGD_PD#  
GND  
VDDR  
DIF_IN  
DIF_IN#  
SMB_A0_tri  
SMBDAT  
9ZXL1550  
EPAD is Pin 65  
9
10  
11  
12  
13  
14  
15  
16  
SMBCLK  
SMB_A1_tri  
FBOUT_NC#  
FBOUT_NC  
GND  
DIF5#  
DIF5  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
9x9 mm 64-pin VFQFPN  
Note: Pins with ^ prefix have internal 120K pullup  
Pins with v prefix have internal 120K pulldowm  
Power Management Table  
Inputs  
Outputs  
FBOUT_NC/  
Control Bits  
SMBus  
DIF_IN/  
DIF_IN#  
X
DIFx/  
DIFx#  
PLL State  
CKPWRGD_PD#  
EN bit  
FBOUT_NC#  
Low/Low  
Running  
0
1
X
0
1
Low/Low  
Low/Low  
Running  
OFF  
ON  
ON  
Running  
Running  
Power Connections  
PLL Operating Mode  
Pin Number  
VDDIO  
HiBW_BypM_LoBW# Byte0, bit (7:6)  
Description  
Low ( PLL Low BW)  
Mid (Bypass)  
00  
01  
11  
VDD  
1
7
GND  
2
6
Analog PLL  
Analog Input  
High (PLL High BW)  
16,20,25,32,  
35,42,47,52,  
57,64  
NOTE: PLL is off in Bypass mode  
19,31,36,48,5  
1,63  
26, 41, 58  
DIF clocks  
Tri-Level Input Thresholds  
Level  
Low  
Voltage  
<0.8V  
Functionality at Power-up (PLL mode)  
DIF_IN  
(MHz)  
100.00  
133.33  
DIFx  
(MHz)  
DIF_IN  
DIF_IN  
Mid  
High  
1.2<Vin<1.8V  
Vin > 2.2V  
100M_133M#  
1
0
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
2
REVISION E 11/20/15  
9ZXL1550 DATASHEET  
Pin Descriptions  
PIN #  
PIN NAME  
TYPE  
DESCRIPTION  
1
2
VDDA  
GNDA  
PWR Power for the PLL core.  
GND Ground pin for the PLL core.  
3.3V Input to select operating frequency.  
See Functionality Table for Definition  
Trilevel input to select High BW, Bypass or Low BW mode.  
See PLL Operating Mode Table for Details.  
3.3V Input notifies device to sample latched inputs and start up on first high assertion, or exit Power Down  
Mode on subsequent assertions. Low enters Power Down Mode.  
3
4
100M_133M#  
IN  
HIBW_BYPM_LOBW#  
IN  
IN  
5
6
7
CKPWRGD_PD#  
GND  
GND Ground pin.  
3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and  
filtered appropriately.  
VDDR  
PWR  
8
9
DIF_IN  
DIF_IN#  
IN  
IN  
HCSL True input  
HCSL Complementary Input  
SMBus address bit. This is a tri-level input that works in conjunction with the SMB_A1 to decode 1 of 9  
SMBus Addresses.  
10 SMB_A0_tri  
IN  
11 SMBDAT  
12 SMBCLK  
I/O  
IN  
Data pin of SMBUS circuitry, 5V tolerant  
Clock pin of SMBUS circuitry, 5V tolerant  
SMBus address bit. This is a tri-level input that works in conjunction with the SMB_A0 to decode 1 of 9  
SMBus Addresses.  
Complementary half of differential feedback output. This pin should NOT be connected to anything outside  
the chip. It exists to provide delay path matching to get 0 propagation delay.  
True half of differential feedback output. This pin should NOT be connected to anything outside the chip.  
It exists to provide delay path matching to get 0 propagation delay.  
13 SMB_A1_tri  
14 FBOUT_NC#  
15 FBOUT_NC  
IN  
OUT  
OUT  
16 GND  
17 DIF0  
18 DIF0#  
19 VDDIO  
20 GND  
21 DIF1  
22 DIF1#  
23 DIF2  
24 DIF2#  
25 GND  
26 VDD  
27 DIF3  
28 DIF3#  
29 DIF4  
30 DIF4#  
31 VDDIO  
32 GND  
GND Ground pin.  
OUT Differential true clock output  
OUT Differential Complementary clock output  
PWR Power supply for differential outputs  
GND Ground pin.  
OUT Differential true clock output  
OUT Differential Complementary clock output  
OUT Differential true clock output  
OUT Differential Complementary clock output  
GND Ground pin.  
PWR Power supply, nominal 3.3V  
OUT Differential true clock output  
OUT Differential Complementary clock output  
OUT Differential true clock output  
OUT Differential Complementary clock output  
PWR Power supply for differential outputs  
GND Ground pin.  
REVISION E 11/20/15  
3
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
9ZXL1550 DATASHEET  
Pin Descriptions (cont.)  
PIN #  
PIN NAME  
TYPE  
DESCRIPTION  
33 DIF5  
34 DIF5#  
35 GND  
OUT Differential true clock output  
OUT Differential Complementary clock output  
GND Ground pin.  
36 VDDIO  
37 DIF6  
38 DIF6#  
39 DIF7  
40 DIF7#  
41 VDD  
42 GND  
PWR Power supply for differential outputs  
OUT Differential true clock output  
OUT Differential Complementary clock output  
OUT Differential true clock output  
OUT Differential Complementary clock output  
PWR Power supply, nominal 3.3V  
GND Ground pin.  
43 DIF8  
44 DIF8#  
45 DIF9  
46 DIF9#  
47 GND  
OUT Differential true clock output  
OUT Differential Complementary clock output  
OUT Differential true clock output  
OUT Differential Complementary clock output  
GND Ground pin.  
48 VDDIO  
49 DIF10  
50 DIF10#  
51 VDDIO  
52 GND  
PWR Power supply for differential outputs  
OUT Differential true clock output  
OUT Differential Complementary clock output  
PWR Power supply for differential outputs  
GND Ground pin.  
53 DIF11  
54 DIF11#  
55 DIF12  
56 DIF12#  
57 GND  
OUT Differential true clock output  
OUT Differential Complementary clock output  
OUT Differential true clock output  
OUT Differential Complementary clock output  
GND Ground pin.  
58 VDD  
PWR Power supply, nominal 3.3V  
OUT Differential true clock output  
OUT Differential Complementary clock output  
OUT Differential true clock output  
OUT Differential Complementary clock output  
PWR Power supply for differential outputs  
GND Ground pin.  
59 DIF13  
60 DIF13#  
61 DIF14  
62 DIF14#  
63 VDDIO  
64 GND  
65 EPAD  
GND Epad should be connected to GND  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
4
REVISION E 11/20/15  
9ZXL1550 DATASHEET  
Absolute Maximum Ratings  
Stresses above the ratings listed below can cause permanent damage to the 9ZXL1550. These ratings, which are standard  
values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other  
conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the  
recommended operating temperature range.  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS NOTES  
MIN  
TYP  
MAX  
4.6  
4.6  
3.3V Core Supply Voltage VDDA, R  
3.3V Logic Supply Voltage  
I/O Supply Voltage  
V
V
V
V
1,2  
1,2  
1,2  
1
VDD  
VDDIO  
VIL  
4.6  
Input Low Voltage  
GND-0.5  
Input High Voltage  
Input High Voltage  
VIH  
Except for SMBus interface  
SMBus clock and data pins  
VDD+0.5V  
5.5V  
V
1
1
VIHSMB  
V
°C  
°C  
V
1
1
1
Storage Temperature  
Junction Temperature  
Input ESD protection  
Ts  
Tj  
ESD prot  
-65  
150  
125  
Human Body Model  
2000  
1Guaranteed by design and characterization, not 100% tested in production.  
2 Operation under these conditions is neither implied nor guaranteed.  
Electrical Characteristics–DIF_IN Clock Input Parameters  
TA = TCOM; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
Input Crossover Voltage -  
DIF_IN  
VCROSS  
Cross Over Voltage  
150  
900  
mV  
1
Input Swing - DIF_IN  
Input Slew Rate - DIF_IN  
Input Leakage Current  
Input Duty Cycle  
VSWING  
dv/dt  
IIN  
Differential value  
Measured differentially  
300  
0.4  
-5  
mV  
V/ns  
uA  
1
8
5
1,2  
VIN = VDD , VIN = GND  
dtin  
Measurement from differential wavefrom  
45  
0
55  
125  
%
1
1
Input Jitter - Cycle to Cycle  
JDIFIn  
Differential Measurement  
ps  
1 Guaranteed by design and characterization, not 100% tested in production.  
2Slew rate measured through +/-75mV window centered around differential zero  
REVISION E 11/20/15  
5
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
9ZXL1550 DATASHEET  
Electrical Characteristics–Input/Supply/Common Parameters  
TA = TCOM; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
°C  
Ambient Operating  
Temperature  
TCOM  
Commmercial range  
0
35  
70  
Single-ended inputs, except SMBus, low  
threshold and tri-level inputs  
Input High Voltage  
Input Low Voltage  
VIH  
2
V
DD + 0.3  
V
Single-ended inputs, except SMBus, low  
threshold and tri-level inputs  
VIL  
IIN  
GND - 0.3  
-5  
0.8  
5
V
Single-ended inputs, VIN = GND, VIN = VDD  
uA  
Single-ended inputs  
IN = 0 V; Inputs with internal pull-up resistors  
Input Current  
V
IINP  
-200  
200  
uA  
VIN = VDD; Inputs with internal pull-down resistors  
Fibyp  
Fipll  
VDD = 3.3 V, Bypass mode  
VDD = 3.3 V, 100MHz PLL mode  
VDD = 3.3 V, 133.33MHz PLL mode  
33  
90  
150  
110  
147  
7
MHz  
MHz  
MHz  
nH  
2
2
Input Frequency  
Pin Inductance  
Capacitance  
100.00  
133.33  
Fipll  
120  
2
Lpin  
1
CIN  
Logic Inputs, except DIF_IN  
DIF_IN differential clock inputs  
1.5  
1.5  
5
pF  
1
CINDIF_IN  
2.7  
pF  
1,4  
COUT  
Output pin capacitance  
6
pF  
1
From VDD Power-Up and after input clock  
stabilization or de-assertion of PD# to 1st clock  
Clk Stabilization  
TSTAB  
0.65  
1
ms  
2
Input SS Modulation  
Frequency  
Allowable Frequency  
(Triangular Modulation)  
fMODIN  
30  
31.5  
25  
33  
kHz  
us  
DIF output enable after  
PD# de-assertion  
Tdrive_PD#  
tDRVPD  
300  
1,3  
Tfall  
tF  
Fall time of control inputs  
5
5
ns  
ns  
V
1,2  
1,2  
Trise  
tR  
Rise time of control inputs  
SMBus Input Low Voltage  
SMBus Input High Voltage  
VILSMB  
VIHSMB  
0.8  
2.1  
VDDSMB  
0.4  
V
SMBus Output Low Voltage VOLSMB  
@ IPULLUP  
@ VOL  
V
SMBus Sink Current  
Nominal Bus Voltage  
SCLK/SDATA Rise Time  
IPULLUP  
VDDSMB  
tRSMB  
4
mA  
V
3V to 5V +/- 10%  
2.7  
5.5  
1000  
300  
(Max VIL - 0.15) to (Min VIH + 0.15)  
(Min VIH + 0.15) to (Max VIL - 0.15)  
ns  
ns  
1
1
SCLK/SDATA Fall Time  
SMBus Operating  
Frequency  
tFSMB  
fMINSMB  
Maximum SMBus operating frequency  
100  
kHz  
5
1Guaranteed by design and characterization, not 100% tested in production.  
2Control input must be monotonic from 20% to 80% of input swing.  
3Time from deassertion until outputs are >200 mV  
4DIF_IN input  
5The differential input clock must be running for the SMBus to be active  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
6
REVISION E 11/20/15  
9ZXL1550 DATASHEET  
Electrical Characteristics–DIF LP-HCSL Differential Outputs  
TA = TCOM; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
Trf  
CONDITIONS  
MIN  
1.5  
TYP MAX UNITS NOTES  
V/ns  
%
Slew rate  
Slew rate matching  
Scope averaging on  
Slew rate matching.  
2.7  
8.8  
4
20  
1, 2, 3  
1, 2, 4  
Trf  
Statistical measurement on single-ended signal  
using oscilloscope math function. (Scope  
averaging on)  
Voltage High  
Voltage Low  
VHigh  
VLow  
660  
787  
33  
850  
mV  
-150  
150  
Max Voltage  
Min Voltage  
Crossing Voltage (abs)  
Crossing Voltage (var)  
Vmax  
Vmin  
Vcross_abs  
Single ended signal using absolute value.  
Includes 300mV of over/undershoot. (Scope  
Scope averaging off  
845  
9
471  
14  
1150  
mV  
-300  
250  
550  
140  
mV  
mV  
1, 5  
1, 6  
-Vcross  
Scope averaging off  
1
Guaranteed by design and characterization, not 100% tested in production. CL = 2pF with RS = 27 for Zo = 85 differential trace  
impedance.  
2 Measured from differential waveform  
3 Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around  
differential 0V.  
4 Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on  
the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the  
oscilloscope is to use for the edge rate calculations.  
5 Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising  
edge (i.e. Clock rising and Clock# falling).  
6 The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross  
absolute) allowed. The intent is to limit Vcross induced modulation by setting -Vcross to be smaller than Vcross absolute.  
Electrical Characteristics–Current Consumption  
TA = TCOM; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
mA  
mA  
mA  
mA  
mA  
mA  
1
1
1
1
1
1
IDDVDD  
IDDVDDA/R  
IDDVDDIO  
All outputs 100MHz, CL = 2pF; Zo = 85  
All outputs 100MHz, CL = 2pF; Zo = 85  
All outputs 100MHz, CL = 2pF; Zo = 85  
All differential pairs low-low  
17  
15  
30  
20  
150  
4
Operating Supply Current  
112  
2.1  
4.4  
0.0  
IDDVDDPD  
IDDVDDA/RPD  
IDDVDDIOPD  
Powerdown Current  
All differential pairs low-low  
7
All differential pairs low-low  
1.5  
1Guaranteed by design and characterization, not 100% tested in production.  
REVISION E 11/20/15  
7
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
9ZXL1550 DATASHEET  
Electrical Characteristics–Skew and Differential Jitter Parameters  
TA = TCOM; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
tSPO_PLL  
CONDITIONS  
MIN  
-150  
TYP  
-117  
MAX  
-50  
UNITS NOTES  
Input-to-Output Skew in PLL mode  
nominal value @ 35°C, 3.3V, 100MHz  
Input-to-Output Skew in Bypass mode  
nominal value @ 35°C, 3.3V  
CLK_IN, DIF[x:0]  
ps  
ns  
ps  
1,2,4,5,8  
1,2,3,5,8  
1,2,3,5,8  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
tPD_BYP  
2.5  
-50  
4
0
4.5  
50  
Input-to-Output Skew Varation in PLL mode  
across voltage and temperature  
tDSPO_PLL  
Input-to-Output Skew Varation in Bypass mode  
across temperature for a given voltage  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
tDSPO_BYP  
-250  
0
1
5
250  
5
ps  
1,2,3,5,8  
1,2,3,5,8  
1,2,3,5,8  
Random Differential Tracking error beween two  
9ZX devices in Hi BW Mode  
ps  
(rms)  
tDTE  
Random Differential Spread Spectrum Tracking  
error beween two 9ZX devices in Hi BW Mode  
tDSSTE  
75  
ps  
ps  
Output-to-Output Skew across all outputs  
(Common to Bypass and PLL mode). 100MHz  
DIF[x:0]  
tSKEW_ALL  
53  
75  
1,2,3,8  
PLL Jitter Peaking  
PLL Jitter Peaking  
PLL Bandwidth  
PLL Bandwidth  
Duty Cycle  
jpeak-hibw  
jpeak-lobw  
pllHIBW  
pllLOBW  
tDC  
LOBW#_BYPASS_HIBW = 1  
LOBW#_BYPASS_HIBW = 0  
LOBW#_BYPASS_HIBW = 1  
LOBW#_BYPASS_HIBW = 0  
0
0
1.8  
0.7  
3.3  
1.2  
50  
2.5  
2
dB  
dB  
7,8  
7,8  
8,9  
8,9  
1
2
4
MHz  
MHz  
%
0.7  
45  
1.4  
55  
Measured differentially, PLL Mode  
Measured differentially, Bypass Mode  
@100MHz  
Duty Cycle Distortion  
Jitter, Cycle to cycle  
tDCD  
0
1
2
%
1,10  
PLL mode  
12  
0
50  
50  
ps  
ps  
1,11  
1,11  
tjcyc-cyc  
Additive Jitter in Bypass Mode  
Notes for preceding table:  
1
Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.  
Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.  
All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.  
2
3
4 This parameter is deterministic for a given device  
5
Measured with scope averaging on to find mean value.  
6. t is the period of the input clock  
7 Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.  
8.  
Guaranteed by design and characterization, not 100% tested in production.  
9
Measured at 3 db down or half power point.  
10 Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.  
11 Measured from differential waveform  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
8
REVISION E 11/20/15  
9ZXL1550 DATASHEET  
Electrical Characteristics–Phase Jitter Parameters  
TA = TCOM; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
tjphPCIeG1  
CONDITIONS  
PCIe Gen 1  
PCIe Gen 2 Lo Band  
10kHz < f < 1.5MHz  
MIN  
TYP  
34  
MAX  
86  
UNITS  
ps (p-p)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
Notes  
1,2,3  
1.2  
2.1  
0.5  
0.2  
0.1  
3
3.1  
1
1,2  
1,2  
tjphPCIeG2  
PCIe Gen 2 High Band  
1.5MHz < f < Nyquist (50MHz)  
PCIe Gen 3  
tjphPCIeG3  
1,2,4  
1,5  
Phase Jitter, PLL Mode  
(PLL BW of 2-4MHz, CDR = 10MHz)  
QPI & SMI  
(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)  
QPI & SMI  
0.5  
0.3  
tjphQPI_SMI  
1,5  
(100MHz, 8.0Gb/s, 12UI)  
QPI & SMI  
(100MHz, 9.6Gb/s, 12UI)  
0.1  
0.1  
0.1  
0.2  
10  
1,5  
(rms)  
tjphPCIeG1  
PCIe Gen 1  
PCIe Gen 2 Lo Band  
10kHz < f < 1.5MHz  
ps (p-p)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
(rms)  
ps  
1,2,3  
1,2,6  
0.3  
tjphPCIeG2  
PCIe Gen 2 High Band  
1.5MHz < f < Nyquist (50MHz)  
PCIe Gen 3  
0.1  
0.0  
0.0  
0.0  
0.0  
0.7  
1,2,6  
1,2,4,6  
1,5,6  
0.3  
AdditivePhase Jitter,  
tjphPCIeG3  
(PLL BW of 2-4MHz, CDR = 10MHz)  
QPI & SMI  
(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)  
QPI & SMI  
Bypass mode  
0.3  
0.1  
0.1  
tjphQPI_SMI  
1,5,6  
(100MHz, 8.0Gb/s, 12UI)  
QPI & SMI  
(100MHz, 9.6Gb/s, 12UI)  
1,5,6  
(rms)  
1 Applies to all outputs.  
2 See http://www.pcisig.com for complete specs  
3 Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.  
4 Subject to final ratification by PCI SIG.  
5 Calculated from Intel-supplied Clock Jitter Tool v 1.6.4  
6 For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)^2 = (total jittter)^2 - (input jitter)^2  
Test Loads  
Differential Output Terminations  
DIF Zo ( )  
Rs ( )  
85  
Internal  
7
(External)  
100  
9ZXL1550 Differential Test Loads  
10 in., Differential  
Zo=85  
2pF  
2pF  
LP-HCSL  
Differential  
Output  
REVISION E 11/20/15  
9
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
9ZXL1550 DATASHEET  
Driving LVDS  
Driving LVDS inputs  
Value  
Receiver does  
Receiver has  
termination  
10K ohm  
5.6K ohm  
0.1 uF  
not have  
termination Note  
140 ohm  
75 ohm  
0.1 uF  
Component  
R7a, R7b  
R8a, R8b  
Cc  
Vcm  
1.2 volts  
1.2 volts  
3.3V  
Driving LVDS  
Rs  
R7a  
R7b  
R8b  
Cc  
Cc  
Zo  
R8a  
Rs  
LVDS Clock  
input  
Device  
Clock Periods–Differential Outputs with Spread Spectrum Disabled  
Measurement Window  
1 Clock  
1us  
-SSC  
0.1s  
- ppm  
0.1s  
0.1s  
+ ppm  
Long-Term  
Average  
Max  
1us  
+SSC  
Short-Term  
Average  
Max  
1 Clock  
Center  
Freq.  
MHz  
SSC OFF  
-c2c jitter  
AbsPer  
Min  
0 ppm  
Period  
Nominal  
+c2c jitter Units Notes  
AbsPer  
Max  
Short-Term Long-Term  
Average  
Min  
Average  
Min  
100.00  
133.33  
9.94900  
7.44925  
9.99900  
7.49925  
10.00000  
7.50000  
10.00100  
7.50075  
10.05100  
7.55075  
ns  
ns  
1,2,3  
1,2,4  
DIF  
Clock Periods–Differential Outputs with Spread Spectrum Enabled  
Measurement Window  
1 Clock  
1us  
-SSC  
0.1s  
- ppm  
0.1s  
0.1s  
+ ppm  
Long-Term  
Average  
Max  
1us  
+SSC  
Short-Term  
Average  
Max  
1 Clock  
Center  
Freq.  
MHz  
SSC ON  
-c2c jitter  
AbsPer  
Min  
0 ppm  
Period  
Nominal  
+c2c jitter Units Notes  
AbsPer  
Max  
Short-Term Long-Term  
Average  
Min  
Average  
Min  
99.75  
133.00  
9.94906  
7.44930  
9.99906  
7.49930  
10.02406  
7.51805  
10.02506  
7.51880  
10.02607  
7.51955  
10.05107  
7.53830  
10.10107  
7.58830  
ns  
ns  
1,2,3  
1,2,4  
DIF  
Notes:  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+  
accuracy requirements (+/-100ppm). The 9ZXL1550 itself does not contribute to ppm error.  
3
Driven by SRC output of main clock, 100 MHz PLL Mode or Bypass mode  
4
Driven by CPU output of main clock, 133 MHz PLL Mode or Bypass mode  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
10  
REVISION E 11/20/15  
9ZXL1550 DATASHEET  
General SMBus Serial Interface Information  
How to Write  
How to Read  
Controller (host) sends a start bit  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) will send a start bit  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the byte count = X  
IDT clock will acknowledge  
Controller (host) starts sending Byte N through Byte  
N+X-1  
Controller (host) will send a separate start bit  
Controller (host) sends the read address  
IDT clock will acknowledge  
IDT clock will send the data byte count = X  
IDT clock sends Byte N+X-1  
IDT clock will acknowledge each byte one at a time  
Controller (host) sends a Stop bit  
IDT clock sends Byte 0 through Byte X (if X was  
written to Byte 8)  
(H)  
Controller (host) will need to acknowledge each byte  
Controller (host) will send a not acknowledge bit  
Controller (host) will send a stop bit  
Index Block Write Operation  
Index Block Read Operation  
Controller (Host)  
IDT (Slave/Receiver)  
Controller (Host)  
starT bit  
IDT (Slave/Receiver)  
T
starT bit  
T
Slave Address  
Slave Address  
WRite  
WR  
WRite  
WR  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
Beginning Byte = N  
Data Byte Count = X  
Beginning Byte N  
Beginning Byte = N  
RT  
Repeat starT  
Slave Address  
ReaD  
RD  
ACK  
O
O
O
O
O
O
Data Byte Count=X  
Beginning Byte N  
ACK  
ACK  
Byte N + X - 1  
ACK  
O
O
O
P
stoP bit  
O
O
O
Byte N + X - 1  
N
P
Not acknowledge  
stoP bit  
REVISION E 11/20/15  
11  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
9ZXL1550 DATASHEET  
9ZXL1550 SMBus Addressing  
SMB_A(1:0)_tri  
Address (Rd/Wrt bit = 0) (Hex)  
00  
0M  
01  
M0  
MM  
M1  
10  
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
1M  
11  
SMBusTable: PLL Mode, and Frequency Select Register  
Byte 0  
Bit 7  
Pin #  
4
4
Name  
PLL Mode 1  
PLL Mode 0  
Control Function  
PLL Operating Mode Rd back 1  
PLL Operating Mode Rd back 0  
Reserved  
Output Enable  
Output Enable  
Reserved  
Reserved  
Frequency Select Readback  
Type  
R
R
0
1
Default  
Latch  
Latch  
1
See PLL Operating Mode  
Readback Table  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
61/62  
59/60  
DIF_14_En  
DIF_13_En  
RW  
RW  
Low/Low  
Low/Low  
Enable  
Enable  
1
1
0
0
133MHz  
100MHz  
3
100M_133M#  
Latch  
R
SMBusTable: Output Control Register  
Byte 1  
Pin #  
39/40  
Name  
DIF_5_En  
Control Function  
Output Enable  
Reserved  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Reserved  
Type  
RW  
0
1
Default  
Low/Low  
Enable  
1
1
1
1
1
1
1
1
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
29/30  
29/30  
23/24  
21/22  
17/18  
DIF_4_En  
DIF_3_En  
DIF_2_En  
DIF_1_En  
DIF_0_En  
RW  
RW  
RW  
RW  
RW  
Low/Low  
Enable  
SMBusTable: Output Control Register  
Byte 2  
Bit 7  
Pin #  
55/56  
53/54  
49/50  
Name  
Control Function  
Output Enable  
Output Enable  
Output Enable  
Reserved  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Type  
RW  
RW  
0
1
Default  
DIF_12_En  
DIF_11_En  
DIF_10_En  
1
1
1
1
1
1
1
1
Low/Low  
Enable  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RW  
45/46  
43/44  
39/40  
37/38  
DIF_9_En  
DIF_8_En  
DIF_7_En  
DIF_6_En  
RW  
RW  
RW  
RW  
Low/Low  
Enable  
SMBusTable: Reserved Register  
Byte 3 Pin # Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Control Function  
Reserved  
Type  
0
1
Default  
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
12  
REVISION E 11/20/15  
9ZXL1550 DATASHEET  
SMBusTable: Reserved Register  
Byte 4 Pin # Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Control Function  
Reserved  
Type  
0
1
Default  
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SMBusTable: Vendor & Revision ID Register  
Byte 5  
Bit 7  
Pin #  
-
Name  
RID3  
RID2  
RID1  
RID0  
VID3  
VID2  
VID1  
VID0  
Control Function  
Type  
R
R
R
R
R
R
R
R
0
1
Default  
0
0
0
1
0
0
0
1
-
-
-
-
-
-
-
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
REVISION ID  
B Rev = 0000  
-
-
-
-
-
-
-
-
VENDOR ID  
SMBusTable: DEVICE ID  
Byte 6 Pin #  
Bit 7  
Name  
Control Function  
Device ID 7 (MSB)  
Type  
R
R
R
R
R
R
R
R
0
1
Default  
-
1
0
0
1
1
0
1
1
-
-
-
-
-
-
-
Device ID 6  
Device ID 5  
Device ID 4  
Device ID 3  
Device ID 2  
Device ID 1  
Device ID 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1550 is 155 decimal or 9B Hex  
SMBusTable: Byte Count Register  
Byte 7  
Bit 7  
Pin #  
Name  
Control Function  
Reserved  
Type  
0
1
Default  
0
0
0
0
1
0
0
0
Reserved  
Reserved  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
BC4  
BC3  
BC2  
BC1  
BC0  
RW  
RW  
RW  
RW  
RW  
Default value is 8 hex, so 9  
bytes (0 to 8) will be read back  
by default.  
-
-
-
-
Writing to this register configures how  
many bytes will be read back.  
SMBusTable: Reserved Register  
Byte 8 Pin # Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Control Function  
Reserved  
Type  
0
1
Default  
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
REVISION E 11/20/15  
13  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
9ZXL1550 DATASHEET  
Marking Diagram  
ICS  
9ZXL1550BKL  
LOT  
COO YYWW  
Notes:  
1. “L” denotes RoHS compliant package.  
2. “LOT” denotes the lot number.  
2. “COO” denotes country of origin.  
3. “YYWW” is the last two digits of the year and week that the part was assembled.  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
14  
REVISION E 11/20/15  
9ZXL1550 DATASHEET  
Package Outline and Package Dimensions (NLG64  
REVISION E 11/20/15  
15  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
9ZXL1550 DATASHEET  
Package Outline and Package Dimensions (NLG64), cont.  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
16  
REVISION E 11/20/15  
9ZXL1550 DATASHEET  
Ordering Information  
Part / Order Number Shipping Package  
Package  
64-pin VFQFPN  
64-pin VFQFPN  
Temperature  
0 to +70°C  
0 to +70°C  
9ZXL1550BKLF  
9ZXL1550BKLFT  
Trays  
Tape and Reel  
“LF” suffix denotes Pb-Free configuration, RoHS compliant.  
“B” is the device revision designator (will not correlate with the datasheet revision).  
Revision History  
Rev. Issuer Issue Date Description  
Page #  
1. Cleaned up output pin names to be DIFxx instead of DIF_xx  
2. Updated electrical tables with characterized data  
A
RDW  
2/27/2015 3. Updated ordering info to B rev along with Rev ID.  
4. Updated termination schemes for driving LVDS.  
5. Minor cleanup and move to final  
Various  
1. Updated Data sheet Title, General Description and Recommended  
Application text.  
2. Corrected tSPO_PLL parameter in Skew and Differential Jitter  
B
RDW  
3/6/2015  
1,8  
Parameters table.  
C
D
RDW  
RDW  
3/16/2015 1.Changed max IDDVDDIOPD limit from 0.5mA to 1.5mA.  
6/16/2015 Added landing pattern from POD drawing.  
7
16  
1. Updated QPI references to QPI/UPI  
11/20/2015  
E
RDW  
1,5  
2. Updated DIF_IN table to match PCI SIG specification, no silicon change  
REVISION E 11/20/15  
17  
15-OUTPUT DB1900Z LOW-POWER DERIVATIVE  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
Sales  
Support  
www.idt.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in  
this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether  
express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This  
document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected  
names, logos and designs, are the property of IDT or their respective third party owners.  
Copyright ©2015 Integrated Device Technology, Inc.. All rights reserved.  
厂商 型号 描述 页数 下载

IDT

9ZX21201 12 ,输出差分Z缓冲的第二代PCIe / 3和QPI[ 12-OUTPUT DIFFERENTIAL Z-BUFFER FOR PCIE GEN2/3 AND QPI ] 16 页

IDT

9ZX21201AKLF 12 ,输出差分Z缓冲的第二代PCIe / 3和QPI[ 12-OUTPUT DIFFERENTIAL Z-BUFFER FOR PCIE GEN2/3 AND QPI ] 16 页

IDT

9ZX21201AKLFT 12 ,输出差分Z缓冲的第二代PCIe / 3和QPI[ 12-OUTPUT DIFFERENTIAL Z-BUFFER FOR PCIE GEN2/3 AND QPI ] 16 页

IDT

9ZX21201BKLF 12 ,输出差分Z缓冲的第二代PCIe / 3和QPI[ 12-OUTPUT DIFFERENTIAL Z-BUFFER FOR PCIE GEN2/3 AND QPI ] 16 页

IDT

9ZX21201BKLFT 12 ,输出差分Z缓冲的第二代PCIe / 3和QPI[ 12-OUTPUT DIFFERENTIAL Z-BUFFER FOR PCIE GEN2/3 AND QPI ] 16 页

IDT

9ZX21501B 15输出差分Zbuffer的第二代PCIe / 3和QPI[ 15-Output Differential Zbuffer for PCIe Gen2/3 and QPI ] 16 页

IDT

9ZX21501BKLF 15输出差分Zbuffer的第二代PCIe / 3和QPI[ 15-Output Differential Zbuffer for PCIe Gen2/3 and QPI ] 16 页

IDT

9ZX21501BKLFT 15输出差分Zbuffer的第二代PCIe / 3和QPI[ 15-Output Differential Zbuffer for PCIe Gen2/3 and QPI ] 16 页

IDT

9ZX21901B 19 ,输出差分Zbuffer的第二代PCIe / 3和QPI[ 19-Output Differential Zbuffer for PCIe Gen2/3 and QPI ] 16 页

IDT

9ZX21901BKLF 19 ,输出差分Zbuffer的第二代PCIe / 3和QPI[ 19-Output Differential Zbuffer for PCIe Gen2/3 and QPI ] 16 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.218475s