找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

LZC-00UA00-00U7

型号:

LZC-00UA00-00U7

品牌:

ETC[ ETC ]

页数:

16 页

PDF大小:

853 K

High Radiant Flux Density  
400nm Violet LED Emitter  
LZC-00UA00  
Key Features  
.
.
.
.
.
.
.
.
.
.
.
Ultra-bright, compact 12-die, 400nm Violet LED  
Very high Radiant Flux density  
Small high density foot print, 9.0mm x 9.0mm  
Surface mount ceramic package with integrated glass lens  
Exceptionally low Thermal Resistance (0.7°C/W)  
Electrically neutral thermal slug  
Autoclave complaint (JEDEC JESD22-A102-C)  
JEDEC Level 1 for Moisture Sensitivity Level  
Lead (Pb) free and RoHS compliant  
Reflow solderable (up to 6 cycles)  
Emitter available on MCPCB (optional)  
Typical Applications  
.
.
.
.
.
.
.
.
Curing  
Sterilization  
Medical  
Currency Verification  
Fluorescence Microscopy  
Inspection of dyes, rodent and animal contamination,  
Leak detection  
Forensics  
Description  
The LZC-series emitter is rated for 40W power handling in an ultra compact package. With a small 9.0mm x 9.0mm  
footprint, this package provides exceptional radiant flux density. The patented design has unparalleled thermal  
and optical performance. The high quality materials used in the package are chosen to optimize Radiant Flux and  
minimize stresses which results in monumental reliability and radiant flux maintenance. The robust product design  
thrives in outdoor applications with high ambient temperatures and high humidity.  
UV RADIATION  
Avoid exposure to the beam  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
Wear protective eyewear  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Part number options  
Base part number  
Part number  
Description  
LZC-00UA00-xxxx  
LZC-70UA00-xxxx  
LZC-C0UA00-xxxx  
LZC emitter  
LZC emitter on 1 channel 1x12 Star MCPCB  
LZC emitter on 2 channel 2x6 Star MCPCB  
Bin kit option codes  
Single wavelength bin (5nm range)  
Kit number suffix Min flux Bin Color Bin Range Description  
00U4  
00U5  
00U6  
00U7  
00U8  
W
X
U4  
U5  
U6  
U7  
U8  
W minimum flux; wavelength U4 bin only  
X minimum flux; wavelength U5 bin only  
X minimum flux; wavelength U6 bin only  
X minimum flux; wavelength U7 bin only  
X minimum flux; wavelength U8 bin only  
X
X
X
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
2
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Radiant Flux Bins  
Table 1:  
Minimum  
Maximum  
Radiant Flux (Φ)  
@ IF = 700mA[1,2]  
(W)  
Radiant Flux (Φ)  
Bin Code  
@ IF = 700mA[1,2]  
(W)  
W
X
7.50  
9.50  
9.50  
12.00  
15.00  
Y
12.00  
Notes for Table 1:  
1.  
2.  
Radiant flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements.  
Future products will have even higher levels of radiant flux performance. Contact LED Engin Sales for updated information.  
Peak Wavelength Bins  
Table 2:  
Minimum  
Peak Wavelength (λP)  
@ IF = 700mA[1]  
(nm)  
Maximum  
Peak Wavelength (λP)  
@ IF = 700mA[1]  
(nm)  
Bin Code  
U4  
385  
390  
395  
400  
405  
390  
395  
400  
405  
410  
U5  
U6  
U7  
U8  
Notes for Table 2:  
1.  
LED Engin maintains a tolerance of ± 2.0nm on peak wavelength measurements.  
Forward Voltage Bins  
Table 3:  
Minimum  
Forward Voltage (VF)  
@ IF = 700mA[1,2]  
(V)  
Maximum  
Forward Voltage (VF)  
@ IF = 700mA[1,2]  
(V)  
Bin Code  
0
41.28  
47.04  
Notes for Table 3:  
1.  
Forward Voltage is binned with all 12 LED dice connected in series.  
2.  
LED Engin maintains a tolerance of ± 0.48V for forward voltage measurements (± 0.04V per die).  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
3
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Absolute Maximum Ratings  
Table 4:  
Parameter  
DC Forward Current[1]  
Peak Pulsed Forward Current[2]  
Reverse Voltage  
Symbol  
Value  
1000  
1000  
See Note 3  
-40 ~ +150  
125  
Unit  
mA  
mA  
V
°C  
°C  
IF  
IFP  
VR  
Tstg  
TJ  
Storage Temperature  
Junction Temperature  
Soldering Temperature[4]  
Allowable Reflow Cycles  
Tsol  
260  
6
°C  
> 2,000 V HBM  
Class 2B JESD22-A114-D  
ESD Sensitivity[5]  
Notes for Table 4:  
1.  
Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature.  
Follow the curves in Figure 10 for current derating.  
2.  
3.  
4.  
5.  
Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.  
LEDs are not designed to be reverse biased.  
Solder conditions per JEDEC 020D. See Reflow Soldering Profile Figure 3.  
LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZC-00UA00  
in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in  
ANSI/ESD S6.1.  
Optical Characteristics @ TC = 25°C  
Table 5:  
Typical  
385-390nm 390-400nm 400-410nm  
Parameter  
Symbol  
Unit  
Radiant Flux (@ IF = 700mA)  
Radiant Flux (@ IF = 1000mA)  
Peak Wavelength[1]  
Φ
Φ
8.50  
11.90  
385  
10.10  
14.10  
395  
11.30  
15.80  
405  
W
W
λP  
nm  
Viewing Angle[2]  
1/2  
Θ0.9V  
95  
Degrees  
Degrees  
Total Included Angle[3]  
115  
Notes for Table 5:  
1.  
2.  
3.  
When operating the VIOLET LED, observe IEC 60825-1 class 3B rating. Avoid exposure to the beam.  
Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is ½ of the peak value.  
Total Included Angle is the total angle that includes 90% of the total luminous flux.  
Electrical Characteristics @ TC = 25°C  
Table 6:  
Parameter  
Forward Voltage (@ IF = 700mA)[1]  
Symbol  
Typical  
Unit  
VF  
44  
V
Temperature Coefficient  
ΔVF/ΔTJ  
-14.2  
0.7  
mV/°C  
of Forward Voltage[1]  
Thermal Resistance  
(Junction to Case)  
J-C  
°C/W  
Notes for Table 6:  
1.  
Typical values for Forward Voltage and Temperature Coefficient of Forward Voltage is shown for with all 12 LED dice connected in series.  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
4
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
IPC/JEDEC Moisture Sensitivity Level  
Table 7 - IPC/JEDEC J-STD-20D.1 MSL Classification:  
Soak Requirements  
Floor Life  
Conditions  
Standard  
Conditions  
Accelerated  
Level  
1
Time  
Time (hrs)  
Time (hrs)  
Conditions  
≤ 30°C/  
168  
+5/-0  
85°C/  
85% RH  
Unlimited  
n/a  
n/a  
85% RH  
Notes for Table 7:  
1.  
The standard soak time includes a default value of 24 hours for semiconductor manufacturer’s exposure time (MET) between bake and bag and  
includes the maximum time allowed out of the bag at the distributor’s facility.  
Average Radiant Flux Maintenance Projections  
Lumen maintenance generally describes the ability of an emitter to retain its output over time. The useful lifetime  
for power LEDs is also defined as Radiant Flux Maintenance, with the percentage of the original light output  
remaining at a defined time period.  
Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, 70% Radiant Flux  
Maintenance (RP70%) at 20,000 hours of operation at a forward current of 700 mA per die. This projection is  
based on constant current operation with junction temperature maintained at or below 80°C.  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
5
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Mechanical Dimensions (mm)  
Pin Out  
Pad  
2
Series  
Function  
1
1
2
2
2
2
1
1
Cathode  
Cathode  
Cathode  
Cathode  
Anode  
3
5
6
14  
15  
17  
18  
Anode  
Anode  
Anode  
17  
2
3
18  
14  
5
6
15  
Figure 1: Package outline drawing.  
Notes for Figure 1:  
1.  
2.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Thermal contact, Pad is electrically neutral.  
Recommended Solder Pad Layout (mm)  
Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad.  
Note for Figure 2a:  
1. Unless otherwise noted, the tolerance = ± 0.20 mm.  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
6
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Recommended Solder Mask Layout (mm)  
Figure 2b: Recommended solder mask opening (hatched area) for anode, cathode, and thermal pad.  
Note for Figure 2b:  
1.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Reflow Soldering Profile  
Figure 3: Reflow soldering profile for lead free soldering.  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
7
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Radiation Pattern  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90  
Angular Displacement (Degrees)  
Figure 4: Typical representative spatial radiation pattern.  
Typical Relative Spectral Power Distribution  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
300  
350  
400  
450  
500  
Wavelength (nm)  
Figure 5: Relative spectral power vs. wavelength @ TC = 25°C.  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
8
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Relative Dominant Wavelength Shift over Temperature  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0
20  
40  
60  
80  
100  
120  
Case Temperature (ºC)  
Figure 6: Typical dominant wavelength shift vs. case temperature.  
Typical Relative Radiant Flux  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
200  
400  
600  
800  
1000  
IF - Forward Current (mA)  
Figure 7: Typical relative Radiant Flux vs. forward current @ TC = 25°C.  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
9
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Normalized Radiant Flux over Temperature  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0
20  
40  
60  
80  
100  
120  
Case Temperature (oC)  
Figure 8: Typical normalized radiant flux vs. case temperature @700mA  
Typical Forward Current Characteristics  
1200  
1000  
800  
600  
400  
200  
0
39  
40  
41  
42  
43  
44  
45  
46  
Vf-Forward Voltage (V)  
Figure 9: Typical forward current vs. forward voltage @ TC = 25°C.  
Note for Figure 9:  
1. Forward Voltage curve is assumes that all twelve LED dice are connected in series.  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
10  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Current De-rating  
1200  
1000  
800  
700  
(Rated)  
600  
400  
200  
J-A = 2.0°C/W  
J-A = 2.5°C/W  
J-A = 3.0°C/W  
0
0
25  
50  
75  
100  
125  
150  
Maximum Ambient Temperature (°C)  
Figure 10: Maximum forward current vs. ambient temperature based on TJ(MAX) = 125°C.  
Notes for Figure 10:  
1.  
2.  
3.  
Maximum current assumes that all four LED dice are operating concurrently at the same current.  
J-C [Junction to Case Thermal Resistance] for the LZC-series is typically 0.7°C/W.  
J-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance].  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
11  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Emitter Tape and Reel Specifications (mm)  
Figure 11: Emitter carrier tape specifications (mm).  
Figure 12: Emitter Reel specifications (mm).  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
12  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZC MCPCB Family  
Emitter + MCPCB  
Thermal Resistance  
(°C /W)  
Diameter  
(mm)  
Typical Vf  
(V)  
Typical If  
(mA)  
Part number  
Type of MCPCB  
LZC-7xxxxx  
LZC-Cxxxxx  
1-channel  
2-channel  
28.3  
28.3  
0.7 + 0.6 = 1.3  
0.7 + 0.6 = 1.3  
44.0  
22.0  
700  
2 x 700  
Mechanical Mounting of MCPCB  
.
MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to  
substrate cracking and subsequently LED dies cracking.  
.
To avoid MCPCB bending:  
o
o
Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.  
Care must be taken when securing the board to the heat sink. This can be done by tightening three M3  
screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will  
increase the likelihood of board bending.  
o
o
It is recommended to always use plastics washers in combinations with the three screws.  
If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after  
tightening (with controlled torque) and then re-tighten the screws again.  
Thermal interface material  
.
.
.
To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when  
mounting the MCPCB on to the heat sink.  
There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal  
epoxies. An example of such material is Electrolube EHTC.  
It is critical to verify the material’s thermal resistance to be sufficient for the selected emitter and its operating  
conditions.  
Wire soldering  
.
To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150oC.  
Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is  
recommended to use a solder iron of more than 60W.  
.
It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn:  
24-7068-7601)  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
13  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZC-7xxxxx  
Emitter on 1-channel MCPCB Dimensions (mm)  
Tc  
Pad Function  
Pad  
Function  
+
-
Anode  
Cathode  
Note for Figure 1:  
Unless otherwise noted, the tolerance = ± 0.2 mm.  
Slots in MCPCB are for M3 or #4-40 mounting screws.  
LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  
Electrical connection pads on MCPCB are labeled “+” for Anode and “-for Cathode.  
LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink.  
The thermal resistance of the MCPCB is: RΘC-B 0.6°C/W  
Components used  
MCPCB:  
ESD chips:  
HT04503  
BZX585-C51  
(Bergquist)  
(NPX, for 12 LED dies in series)  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
14  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZC-Cxxxxx  
Emitter on 2-channel MCPCB Dimensions (mm)  
Tc  
Pad Function  
Pad  
1+  
1-  
Function  
Anode Ch1  
Cathode Ch1  
Anode Ch2  
2+  
2-  
Cathode Ch2  
Note for Figure 1:  
Unless otherwise noted, the tolerance = ± 0.2 mm.  
Slots in MCPCB are for M3 or #4-40 mounting screws.  
LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  
Electrical connection pads on MCPCB are labeled “+” for Anode and “-” for Cathode.  
LED Engin recommends thermal interface material when attaching the MCPCB to a heatsink.  
The thermal resistance of the MCPCB is: RΘC-B 0.6°C/W  
Components used  
MCPCB:  
ESD chips:  
HT04503  
BZT52C36LP  
(Bergquist)  
(NPX, for 6 LED dies in series)  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
15  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Company Information  
LED Engin, Inc., based in California’s Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting  
solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient  
lighting experiences. The LuxiGen™ Platform an emitter and lens combination or integrated module  
solution, delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors,  
including whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target.  
The small size combined with powerful output allows for a previously unobtainable freedom of design wherever  
high-flux density, directional light is required. LED Engin’s packaging technologies lead the industry with products  
that feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and  
efficient solid state lighting solutions.  
LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions.  
LED Engin reserves the right to make changes to improve performance without notice.  
Please contact sales@ledengin.com or (408) 922-7200 for more information.  
COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.  
LZC-00UA00 (6.0 08/28/14)  
16  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
厂商 型号 描述 页数 下载

ETC

LZC-00CW00 [ High Luminous Efficacy Cool White LED Emitter ] 12 页

ETC

LZC-00CW0R-0000 [ LED COOL WHITE 4750K-7040K 24SMD ] 19 页

ETC

LZC-00CW0R-0055 [ LED COOL WHITE 5500K 70CRI 24SMD ] 19 页

ETC

LZC-00CW0R-0056 [ LED COOL WHITE 5600K 70CRI 24SMD ] 19 页

ETC

LZC-00CW0R-0065 [ LED COOL WHITE 6500K 70CRI 24SMD ] 19 页

ETC

LZC-00CW0R-C000 [ LED COOL WHITE 4750K-7040K 24SMD ] 19 页

ETC

LZC-00CW0R-C055 [ LED COOL WHITE 5500K 70CRI 24SMD ] 19 页

ETC

LZC-00CW0R-C056 [ LED COOL WHITE 5600K 70CRI 24SMD ] 19 页

ETC

LZC-00CW0R-C065 [ LED COOL WHITE 6500K 70CRI 24SMD ] 19 页

ETC

LZC-00CW40 [ High Luminous Efficacy Cool White LED Emitter ] 12 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.193416s