找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

HYS72D16000GR-7-A

型号:

HYS72D16000GR-7-A

描述:

注册的DDR SDRAM模块[ Registered DDR SDRAM-Modules ]

品牌:

INFINEON[ Infineon ]

页数:

28 页

PDF大小:

652 K

Data Sheet, Rev. 1.04, Jan. 2004  
HYS72D16000GR-[7/8]-A  
HYS72D32001GR-[7/8]-A  
Registered DDR SDRAM-Modules  
DDR SDRAM  
Memory Products  
N e v e r s t o p t h i n k i n g .  
Edition 2004-01  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2004.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, Rev. 1.04, Jan. 2004  
HYS72D16000GR-[7/8]-A  
HYS72D32001GR-[7/8]-A  
Registered DDR SDRAM-Modules  
DDR SDRAM  
Memory Products  
N e v e r s t o p t h i n k i n g .  
HYS72D16000GR-[7/8]-A HYS72D32001GR-[7/8]-A  
Revision History:  
Rev. 1.04  
2004-01  
Previous Version:  
Rev. 1.03  
2003-10  
Page  
Subjects (major changes since last revision)  
Editorial and table-layout changes  
Rev. 1.04  
16  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc.mp@infineon.com  
Template: mp_a4_v2.2_2003-10-07.fm  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Table of Contents  
Page  
1
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Current Specification and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1  
3.2  
3.3  
4
5
6
SPD Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Application Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data Sheet  
5
Rev. 1.04, 2004-01  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Overview  
1
Overview  
1.1  
Features  
184-pin Registered 8 Byte Dual-In-Line DDR SDRAM Module for PC and Server main memory applications  
One bank 16M × 72 and 32M × 72 organization  
JEDEC standard Double Data Rate Synchronous DRAMs (DDR SDRAM) with a single +2.5 V (± 0.2 V) power  
supply  
Built with 128 Mbit DDR SDRAMs in 66-Lead TSOPII package  
Programmable CAS Latency, Burst Length, and Wrap Sequence (Sequential & Interleave)  
Auto Refresh (CBR) and Self Refresh  
All inputs and outputs SSTL_2 compatible  
Re-drive for all input signals using register and PLL devices.  
Serial Presence Detect with E2PROM  
JEDEC standard MO-206 form factor:  
133.35 mm (nom.) × 43.18 mm (nom.) × 4.00 mm (max.)  
(6,80 mm max. with stacked components)  
JEDEC standard reference layout:  
Raw Cards A, B and C  
Gold plated contacts  
Table 1  
Performance -8/-7  
Part Number Speed Code  
–7  
8  
Unit  
Speed Grade  
Component  
Module  
DDR266A  
PC2100-2033  
143  
DDR200  
PC1600-2022  
125  
max. Clock Frequency  
@CL2.5  
@CL2  
fCK2.5  
fCK2  
MHz  
MHz  
133  
100  
1.2  
Description  
The HYS 72D××0×0GR are industry standard 184-pin 8 byte Dual in-line Memory Modules (DIMMs) organized as  
16M × 72 (128 MB) and 32M × 72 (256 MB). The memory array is designed with Double Data Rate Synchronous  
DRAMs for ECC applications. All control and address signals are re-driven on the DIMM using register devices  
and a PLL for the clock distribution. This reduces capacitive loading to the system bus, but adds one cycle to the  
SDRAM timing. A variety of decoupling capacitors are mounted on the PC board. The DIMMs feature serial  
presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are  
programmed with configuration data and the second 128 bytes are available to the customer.  
Data Sheet  
6
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Overview  
Table 2  
Type  
Ordering Information  
Compliance Code  
Description  
SDRAM Technology  
PC2100 (CL=2)  
HYS72D16000GR-7-A  
HYS72D32001GR-7-A  
PC2100R-20330-A1  
PC2100R-20330-B1  
one bank 128 MB Reg. DIMM 128 Mbit (×8)  
one bank 256 MB Reg. DIMM 128 Mbit (×4)  
PC1600 (CL=2)  
HYS72D16000GR-8-A  
HYS72D32001GR-8-A  
PC1600R-20220-A1  
PC1600R-20220-B1  
one bank 128 MB Reg. DIMM 128 Mbit (×8)  
one bank 256 MB Reg. DIMM 128 Mbit (×4)  
Note:All part numbers end with a place code (not shown), designating the silicon-die revision. Reference  
information available on request. Example: HYS72D16000GR-8-A, indicating Rev. A die are used for  
SDRAM components The Compliance Code is printed on the module labels and describes the speed sort  
for example “PC2100R”, the latencies (for example “20330” means CAS latency = 2, tRCD latency = 3 and  
t
RP latency = 3 ) and the Raw Card used for this module.  
Data Sheet  
7
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Pin Configuration  
2
Pin Configuration  
Table 3  
Symbol  
A0 – A11  
BA0, BA1  
DQ0 – DQ63  
CB0 – CB7  
RAS  
Pin Definitions and Functions  
Type  
Function  
Input  
Address Inputs  
Rank Selects  
Data Input/Output  
Input  
Input/Output  
Input/Output  
Input  
Check Bits (×72 organization only)  
Row Address Strobe  
Column Address Strobe  
Read/Write Input  
CAS  
Input  
WE  
Input  
CKE0, CKE1  
Input  
Clock Enable  
DQS0 – DQS8  
CK0, CK0  
DM0 – DM8  
DQS9 – DQS17  
CS0, CS1  
VDD  
Input/Output  
Input  
SDRAM low data strobes  
Differential Clock Input  
SDRAM low data mask  
high data strobes  
Input  
Input/Output  
Input  
Chip Selects  
Supply  
Supply  
Supply  
Output  
Supply  
Supply  
Input  
Power (+2.5 V)  
VSS  
Ground  
VDDQ  
I/O Driver power supply  
VDDID  
VDD Indentification flag  
VDDSPD  
VREF  
EEPROM power supply  
I/O reference supply  
Serial bus clock  
SCL  
SDA  
Output  
Input  
Serial bus data line  
slave address select  
no connect  
SA0 – SA2  
NC  
Input  
DU  
Input  
don’t use  
RESET  
Input  
Reset pin (forces register inputs low) *)  
*) for detailed description of the Power Up and Power Management on DDR Registered DIMMs see the Application Note at the  
end of this datasheet  
Table 4  
Density  
Address Format  
Organization Memory  
Ranks  
SDRAMs # of  
SDRAMs  
# of  
Refresh Period Interval  
row/rank/  
columns  
bits  
128 MB  
256 MB  
16M × 72  
32M × 72  
1
1
16M × 8  
32M × 4  
9
12/2/10  
12/2/11  
4K  
4K  
64 ms 15.6 µs  
64 ms 15.6 µs  
18  
Data Sheet  
8
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Pin Configuration  
Table 5  
Pin Configuration  
PIN# Symbol  
PIN#  
48  
Symbol  
A0  
PIN#  
94  
Symbol  
DQ4  
PIN#  
141  
142  
143  
144  
Symbol  
A10  
1
VREF  
DQ0  
VSS  
2
49  
CB2  
95  
DQ5  
CB6  
3
50  
VSS  
96  
VDDQ  
VDDQ  
4
DQ1  
DQS0  
DQ2  
VDD  
51  
CB3  
97  
DM0/DQS9  
DQ6  
CB7  
5
52  
BA1  
98  
KEY  
6
KEY  
DQ32  
VDDQ  
DQ33  
DQS4  
DQ34  
VSS  
99  
DQ7  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
VSS  
7
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
VSS  
DQ36  
DQ37  
VDD  
8
DQ3  
NC  
NC  
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
RESET  
VSS  
NC  
DM4/DQS13  
DQ38  
DQ39  
VSS  
VDDQ  
DQ8  
DQ9  
DQS1  
VDDQ  
DU  
DQ12  
DQ13  
DM1/DQS10  
VDD  
BA0  
DQ35  
DQ40  
VDDQ  
WE  
DQ44  
RAS  
DQ14  
DQ15  
CKE1  
VDDQ  
DQ45  
VDDQ  
DU  
VSS  
DQ41  
CAS  
VSS  
CS0  
DQ10  
DQ11  
CKE0  
VDDQ  
CS1  
NC  
DM5/DQS14  
VSS  
DQS5  
DQ42  
DQ20  
NC/A12  
DQ46  
A12 is used for  
256 Mbit and  
512 Mbit based  
modules only  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
DQ16  
DQ17  
DQS2  
VSS  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
DQ43  
VDD  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
VSS  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
DQ47  
NC  
DQ21  
A11  
NC  
VDDQ  
DQ48  
DQ49  
VSS  
DM2/DQS11  
VDD  
DQ52  
DQ53  
NC  
A9  
DQ18  
A7  
DQ22  
A8  
DU  
VDD  
VDDQ  
DQ19  
A5  
DU  
DQ23  
VSS  
DM6/DQS15  
DQ54  
DQ55  
VDDQ  
VDDQ  
DQS6  
DQ50  
DQ51  
VSS  
A6  
DQ24  
VSS  
DQ28  
DQ29  
VDDQ  
NC  
DQ25  
DQS3  
A4  
DQ60  
DQ61  
VSS  
VDDID  
DQ56  
DQ57  
DM3/DQS12  
A3  
VDD  
DQ30  
DM7/DQS16  
Data Sheet  
9
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Pin Configuration  
Table 5  
Pin Configuration (cont’d)  
PIN# Symbol  
PIN#  
85  
86  
87  
88  
Symbol  
VDD  
PIN#  
132  
133  
134  
135  
136  
137  
138  
139  
140  
Symbol  
VSS  
PIN#  
178  
179  
180  
181  
182  
183  
184  
185  
Symbol  
DQ62  
DQ63  
VDDQ  
SA0  
39  
DQ26  
DQ27  
A2  
40  
41  
42  
43  
44  
45  
46  
47  
DQS7  
DQ58  
DQ59  
VSS  
DQ31  
CB4  
VSS  
CB5  
A1  
89  
90  
91  
92  
93  
VDDQ  
SA1  
CB0  
CB1  
VDD  
NC  
CK0  
SA2  
SDA  
SCL  
CK0  
VDDSPD  
VSS  
VSS  
DQS8  
VSS  
DM8/DQS17  
Data Sheet  
10  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Pin Configuration  
RS0  
DQS0  
DQS4  
DM4/DQS13  
DM0/DQS9  
DM  
CS DQS  
D4  
DQS  
CS  
D0  
DM  
I/O 0  
I/O 0  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
DQ0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS5  
DQS1  
DM1/DQS10  
DM5/DQS14  
DM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS  
CS  
D5  
DQS  
CS  
D1  
DM  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQS6  
DQS2  
DM2/DQS11  
DM6/DQS15  
DM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
CS DQS  
D6  
DM  
CS DQS  
D2  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
DQ16  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQS3  
DM3/DQS12  
DQS7  
DM7/DQS16  
CS  
D7  
DM  
DQS  
CS DQS  
D3  
DM  
I/O 0  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
DQ24  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQS8  
V
EEPROM  
D0 - D8  
DDSPD  
DM8/DQS17  
Serial PD  
DM  
I/O 7  
I/O 6  
I/O 1  
I/O 0  
I/O 5  
I/O 4  
I/O 3  
I/O 2  
CS  
D8  
DQS  
V
V
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
DD, DDQ  
VREF  
D0 - D8  
D0 - D8  
SDA  
SCL  
A0  
SA0 SA1  
A1 A2  
V
V
SS  
D0 - D8  
SA2  
DDID  
Strap: see Note 4  
CS0  
RS0 -> CS : SDRAMs D0-D8  
RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D8  
R
E
G
I
S
T
E
R
Notes:  
BA0-BA1  
A0-A12  
RAS  
1. DQ-to-I/O wiring may be changed within a byte.  
RA0-RA12 -> A0-A12: SDRAMs D0 - D8  
RRAS -> RAS : SDRAMs D0 - D8  
RCAS -> CAS : SDRAMs D0 - D8  
RCKE0 -> CKE: SDRAMs D0 - D8  
RWE -> WE: SDRAMs D0 - D8  
2. DQ/DQS/DM/CKE/S relationships must be  
maintained as shown.  
CAS  
3. DQ, DQS, Adress and control resistors: 22 Ohms.  
4. VDDID strap connections  
CKE0  
WE  
STRAP OUT (OPEN): VDD = VDDQ  
5. SDRAM placement alternates between the back  
and front of the DIMM.  
CK0, CK 0 --------- PLL*  
* Wire per Clock Loading Table/Wiring Diagrams  
PCK  
PCK  
RESET  
Figure 1  
Block Diagram One Rank 16 MB × 72 DDR SDRAM DIMM Modules HYS72D16000GR-[7/8]-A  
using ×8 organized SDRAMs on RAW Card Version A  
Data Sheet  
11  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Pin Configuration  
VSS  
RS0B  
RS0A  
DQS0  
DM0/DQS9  
DM  
DQS  
CS  
D0  
DQS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CS  
D9  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ5  
DQ6  
DQ7  
DQS1  
DQS2  
DQS3  
DM1/DQS10  
DM  
DM  
DM  
CS  
D1  
DQS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DM  
DQS  
CS  
DQ8  
DQ12  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ9  
DQ13  
DQ14  
DQ15  
D10  
DQ10  
DQ11  
DM2/DQS11  
DQS  
DQS  
CS  
CS  
D2  
DM  
DM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D11  
DM3/DQS12  
CS  
DQS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CS  
D3  
DQS  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D12  
DQS4  
DM4/DQS13  
V
EEPROM  
D0 - D17  
DDSPD  
DQS  
DM  
DM  
DQS  
CS  
CS  
D4  
DQ32  
DQ33  
DQ34  
DQ35  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
V
V
D13  
DD, DDQ  
VREF  
D0 - D17  
D0 - D17  
V
DQS5  
DQS6  
SS  
DM5/DQS14  
DQS  
CS DM  
D14  
DQS  
CS DM  
D5  
V
DDID  
Strap: see Note 4  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
Serial PD  
DM6/DQS15  
CS DM  
D15  
DQS  
CS DM  
D6  
DQS  
SDA  
DQ48  
DQ49  
DQ50  
DQ51  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
SCL  
A0  
SA0 SA1 SA2  
A1 A2  
DQS7  
DQS8  
DM7/DQS16  
DM  
DM  
DM  
DM  
CS  
DQS  
CS  
D7  
DQS  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D16  
Notes:  
1. DQ-to-I/O wiring may be changed within a byte.  
DM8/DQS17  
2. DQ/DQS/DM/CKE/S relationships must be  
DQS  
CS  
D8  
CS  
DQS  
maintained as shown.  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
3. DQ, DQS, Adress and control resistors: 22 Ohms.  
4. VDDID strap connections  
D17  
STRAP OUT (OPEN): VDD = VDDQ  
5. SDRAM placement alternates between the back  
and front of the DIMM.  
CS0  
RS 0 -> CS : SDRAMs D0-D17  
R
E
G
I
S
T
E
R
BA0-BA1  
A0-A11,A12  
RAS  
CAS  
CKE0  
RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D17  
RA0-RA11,RA12 -> A0-A11,A12: SDRAMs D0 - D17  
RRAS -> RAS : SDRAMs D0 - D17  
RCAS -> CAS : SDRAMs D0 - D17  
RCKE0A -> CKE: SDRAMs D0 - D8  
RCKEB -> CKE: SDRAMs D9 - D17  
RWE -> WE: SDRAMs D0 - D17  
CK0, CK 0 --------- PLL*  
* Wire per Clock Loading Table/Wiring Diagrams  
WE  
PCK  
PCK  
RESET  
Figure 2  
Block Diagram One Rank 32 MB × 72 DDR SDRAM DIMM Modules HYS72D32001GR-[7/8]-A  
using ×4 organized SDRAMs on RAW Card Version B  
Data Sheet  
12  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Electrical Characteristics  
3
Electrical Characteristics  
3.1  
Operating Conditions  
Table 6  
Absolute Maximum Ratings  
Parameter  
Symbol  
Values  
typ.  
Unit Note/ Test  
Condition  
min.  
VIN, VOUT –0.5  
max.  
Voltage on I/O pins relative to VSS  
VDDQ  
+
V
0.5  
Voltage on inputs relative to VSS  
Voltage on VDD supply relative to VSS  
Voltage on VDDQ supply relative to VSS  
Operating temperature (ambient)  
Storage temperature (plastic)  
VIN  
–1  
–1  
–1  
0
+3.6  
+3.6  
+3.6  
+70  
+150  
V
VDD  
VDDQ  
TA  
V
V
°C  
°C  
W
mA  
TSTG  
PD  
-55  
Power dissipation (per SDRAM component)  
Short circuit output current  
1
IOUT  
50  
Attention: Permanent damage to the device may occur if “Absolute Maximum Ratings” are exceeded. This  
is a stress rating only, and functional operation should be restricted to recommended operation  
conditions. Exposure to absolute maximum rating conditions for extended periods of time may  
affect device reliability and exceeding only one of the values may cause irreversible damage to  
the integrated circuit.  
Data Sheet  
13  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Electrical Characteristics  
Table 7  
Electrical Characteristics and DC Operating Conditions  
Parameter  
Symbol  
Values  
Typ.  
Unit Note/Test Condition 1)  
Min.  
2.3  
2.3  
0
Max.  
2.7  
2.7  
0
Device Supply Voltage  
Output Supply Voltage  
VDD  
2.5  
2.5  
V
2)  
VDDQ  
V
Supply Voltage, I/O Supply VSS,  
V
Voltage  
VSSQ  
VREF  
VTT  
3)  
4)  
Input Reference Voltage  
0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ  
V
I/O Termination Voltage  
(System)  
V
REF – 0.04  
V
REF + 0.04 V  
7)  
7)  
7)  
Input High (Logic1) Voltage VIH(DC)  
Input Low (Logic0) Voltage VIL(DC)  
V
REF + 0.15  
V
V
V
DDQ + 0.3  
V
–0.3  
REF – 0.15 V  
Input Voltage Level,  
CK and CK Inputs  
VIN(DC) –0.3  
DDQ + 0.3  
DDQ + 0.6  
V
7)5)  
6)  
Input Differential Voltage, VID(DC) 0.36  
CK and CK Inputs  
V
V
VI-Matching Pull-up  
Current to Pull-down  
Current  
VIRatio  
0.71  
–2  
1.4  
2
Input Leakage Current  
II  
µA Any input 0 V VIN VDD;  
All other pins not under test  
= 0 V 7)8)  
Output Leakage Current  
IOZ  
IOH  
IOL  
–5  
5
µA DQs are disabled;  
7)  
0 V VOUT VDDQ  
Output High Current,  
Normal Strength Driver  
–16.2  
mA  
mA  
V
OUT = 1.95 V 7)  
Output Low  
16.2  
V
OUT = 0.35 V 7)  
Current, Normal Strength  
Driver  
1) 0 °C TA 70 °C  
2) Under all conditions, VDDQ must be less than or equal to VDD  
3) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC). VREF is also expected to track noise variations in VDDQ  
4) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal  
to VREF, and must track variations in the DC level of VREF  
.
.
.
5) VID is the magnitude of the difference between the input level on CK and the input level on CK.  
6) The ratio of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the entire  
temperature and voltage range, for device drain to source voltage from 0.25 to 1.0 V. For a given output, it represents the  
maximum difference between pull-up and pull-down drivers due to process variation.  
7) Inputs are not recognized as valid until VREF stabilizes.  
8) Values are shown per component  
Data Sheet  
14  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Electrical Characteristics  
Table 8  
IDD Conditions  
Parameter  
Symbol  
Operating Current 0  
IDD0  
one bank; active/ precharge; DQ, DM, and DQS inputs changing once per clock cycle;  
address and control inputs changing once every two clock cycles.  
Operating Current 1  
IDD1  
one bank; active/read/precharge; Burst Length = 4; see component data sheet.  
Precharge Power-Down Standby Current  
all banks idle; power-down mode; CKE VIL,MAX  
IDD2P  
IDD2F  
Precharge Floating Standby Current  
CS VIH,,MIN, all banks idle; CKE VIH,MIN  
;
address and other control inputs changing once per clock cycle; VIN = VREF for DQ, DQS and DM.  
Precharge Quiet Standby Current  
IDD2Q  
CS VIHMIN, all banks idle; CKE VIH,MIN; VIN = VREF for DQ, DQS and DM;  
address and other control inputs stable at VIH,MIN or VIL,MAX  
.
Active Power-Down Standby Current  
one bank active; power-down mode; CKE VILMAX; VIN = VREF for DQ, DQS and DM.  
IDD3P  
IDD3N  
Active Standby Current  
one bank active; CS VIH,MIN; CKE VIH,MIN; tRC = tRAS,MAX  
DQ, DM and DQS inputs changing twice per clock cycle;  
address and control inputs changing once per clock cycle.  
;
Operating Current Read  
IDD4R  
one bank active; Burst Length = 2; reads; continuous burst;  
address and control inputs changing once per clock cycle;  
50% of data outputs changing on every clock edge;  
CL = 2 for DDR266(A), CL = 3 for DDR333 and DDR400B; IOUT = 0 mA  
Operating Current Write  
IDD4W  
one bank active; Burst Length = 2; writes; continuous burst;  
address and control inputs changing once per clock cycle;  
50% of data outputs changing on every clock edge;  
CL = 2 for DDR266(A), CL = 3 for DDR333 and DDR400B  
Auto-Refresh Current  
IDD5  
IDD6  
IDD7  
t
RC = tRFCMIN, burst refresh  
Self-Refresh Current  
CKE 0.2 V; external clock on  
Operating Current 7  
four bank interleaving with Burst Length = 4; see component data sheet.  
Data Sheet  
15  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Electrical Characteristics  
Table 9  
IDD Specification and Conditions  
Unit  
Note 1)2)  
128MB  
x72  
256MB  
x72  
128MB  
x72  
256MB  
x72  
1 Rank  
–7  
1 Rank  
–7  
1 Rank  
–8  
1 Rank  
–8  
Symbol  
IDD0  
max.  
810  
max.  
1620  
1980  
90  
max.  
765  
max.  
1530  
1800  
81  
3)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
3)4)  
5)  
IDD1  
990  
900  
IDD2P  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
45  
40.5  
315  
5)  
405  
810  
630  
5)  
405  
810  
315  
630  
5)  
135  
270  
135  
270  
5)  
405  
810  
315  
630  
3)4)  
3)  
990  
1980  
1980  
3420  
45  
810  
1620  
1710  
3240  
45  
990  
855  
3)  
1710  
22.5  
2520  
1620  
22.5  
2430  
5)  
IDD6  
3)4)  
IDD7  
5040  
4860  
1) Module IDD values are calculated on the basis of component IDD and can be measured differently according to DQ loading  
capacity.  
2) Test condition for maximum values: VDD = 2.7 V, TA = 10 °C  
3) The module IDDx values are calculated from the IDDx values of the component data sheet as follows:  
m × IDDx[component] + n × IDD3N[component] with m and n number of components of rank 1 and 2; n=0 for 1 rank modules  
4) DQ I/O (IDDQ) currents are not included in the calculations (see note 1)  
5) The module IDDx values are calculated from the corrponent IDDx data sheet values as: (m + n) × IDDx[component]  
Data Sheet  
16  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Electrical Characteristics  
3.2  
3.3  
Current Specification and Conditions  
AC Characteristics  
Table 10  
AC Timing - Absolute Specifications –8/–7  
Parameter  
Symbol  
–8  
DDR200  
–7  
Unit Note/  
Test Condition 1)  
DDR266A  
Min. Max.  
Min.  
Max.  
+0.75  
+0.75  
0.55  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
–0.8  
+0.8  
+0.8  
0.55  
0.55  
–0.75  
–0.75  
0.45  
ns  
ns  
tCK  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDQSCK –0.8  
tCH  
0.45  
0.45  
CK low-level width  
tCL  
0.45  
0.55  
Clock Half Period  
tHP  
min. (tCL, tCH)  
min. (tCL, tCH)  
Clock cycle time  
tCK2.5  
tCK2  
tCK1.5  
tDH  
8
12  
7
12  
CL = 2.5 2)3)4)5)  
CL = 2.0 2)3)4)5)  
CL = 1.5 2)3)4)5)  
10  
12  
12  
7.5  
12  
10  
2)3)4)5)  
DQ and DM input hold time  
DQ and DM input setup time  
0.6  
0.6  
2.5  
0.5  
0.5  
2.2  
2)3)4)5)  
tDS  
2)3)4)5)6)  
Control and Addr. input pulse width  
(each input)  
tIPW  
2)3)4)5)6)  
2)3)4)5)7)  
2)3)4)5)7)  
2)3)4)5)  
DQ and DM input pulse width (each  
input)  
tDIPW  
tHZ  
2.0  
1.75  
–0.75  
–0.75  
0.75  
ns  
ns  
ns  
tCK  
ns  
Data-out high-impedance time from  
CK/CK  
–0.8  
–0.8  
0.75  
+0.8  
+0.8  
1.25  
+0.6  
+0.75  
+0.75  
1.25  
+0.5  
Data-out low-impedance time from  
CK/CK  
Write command to 1st DQS latching  
tLZ  
tDQSS  
tDQSQ  
transition  
2)3)4)5)  
DQS-DQ skew (DQS and associated  
DQ signals)  
2)3)4)5)  
2)3)4)5)  
Data hold skew factor  
tQHS  
tQH  
1.0  
0.75  
ns  
ns  
DQ/DQS output hold time  
tHP  
tHP –  
tQHS  
tQHS  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
DQS input low (high) pulse width (write tDQSL,H 0.35  
0.35  
tCK  
tCK  
tCK  
cycle)  
DQS falling edge to CK setup time  
(write cycle)  
tDSS  
tDSH  
0.2  
0.2  
0.2  
0.2  
DQS falling edge hold time from CK  
(write cycle)  
2)3)4)5)  
Mode register set command cycle time tMRD  
2
2
tCK  
ns  
2)3)4)5)8)  
2)3)4)5)9)  
2)3)4)5)  
Write preamble setup time  
Write postamble  
tWPRES  
tWPST  
tWPRE  
0
0
0.40  
0.25  
0.60  
0.40  
0.25  
0.60  
tCK  
tCK  
Write preamble  
Data Sheet  
17  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Electrical Characteristics  
Table 10  
AC Timing - Absolute Specifications –8/–7  
Parameter  
Symbol  
–8  
–7  
Unit Note/  
Test Condition 1)  
DDR200  
DDR266A  
Min. Max.  
Min.  
Max.  
Address and control input setup time  
Address and control input hold time  
Read preamble  
tIS  
1.1  
1.1  
1.1  
1.1  
0.9  
0.9  
1.0  
0.9  
1.0  
ns  
ns  
ns  
ns  
fast slew rate  
3)4)5)6)10)  
1.1  
slow slew rate  
3)4)5)6)10)  
tIH  
fast slew rate  
3)4)5)6)10)  
slow slew rate  
3)4)5)6)10)  
tRPRE  
1.1  
1.1  
0.9  
tCK CL > 1.5 2)3)4)5)  
tCK CL = 1.5 2)3)4)5)11)  
tRPRE1.5 0.9  
NA  
NA  
0.40  
2)3)4)5)12)  
Read preamble setup time  
Read postamble  
tRPRES  
tRPST  
tRAS  
1.5  
0.40  
50  
ns  
2)3)4)5)  
0.60  
0.60  
tCK  
2)3)4)5)  
Active to Precharge command  
120E+3 45  
120E+3 ns  
2)3)4)5)  
Active to Active/Auto-refresh command tRC  
70  
65  
ns  
period  
2)3)4)5)  
Auto-refresh to Active/Auto-refresh  
command period  
tRFC  
80  
75  
ns  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
Active to Read or Write delay  
Precharge command period  
Active to Autoprecharge delay  
tRCD  
tRP  
tRAP  
tRRD  
20  
20  
20  
15  
20  
20  
20  
15  
ns  
ns  
ns  
ns  
Active bank A to Active bank B  
command  
2)3)4)5)  
Write recovery time  
tWR  
15  
15  
ns  
2)3)4)5)13)  
Auto precharge write recovery +  
precharge time  
tDAL  
(twr/tCK) + (trp/tCK)  
tCK  
Internal write to read command delay  
tWTR  
1
1
7.8  
tCK CL > 1.5 2)3)4)5)  
tCK CL = 1.5 2)3)4)5)  
tWTR1.5  
2
7.8  
75  
200  
2)3)4)5)  
Exit self-refresh to non-read command tXSNR  
80  
200  
ns  
2)3)4)5)  
Exit self-refresh to read command  
Average Periodic Refresh Interval  
tXSRD  
tREFI  
tCK  
2)3)4)5)14)  
µs  
1) 0 °C TA 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V  
2) Input slew rate 1 V/ns for DDR266, and = 1 V/ns for DDR200  
3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference  
level for signals other than CK/CK, is VREF. CK/CK slew rate are 1.0 V/ns.  
4) Inputs are not recognized as valid until VREF stabilizes.  
5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT.  
6) These parameters guarantee device timing, but they are not necessarily tested on each device.  
7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred  
to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).  
8) The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge.  
A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were  
previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress,  
DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS  
.
Data Sheet 18  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Electrical Characteristics  
9) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but  
system performance (bus turnaround) degrades accordingly.  
10) Fast slew rate 1.0 V/ns , slow slew rate 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns,  
measured between VOH(ac) and VOL(ac)  
.
11) CAS Latency 1.5 operation is supported on DDR200 devices only  
12) tRPRES is defined for CL = 1.5 operation only  
13) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock  
cycle time.  
14) A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device.  
Data Sheet  
19  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
SPD Contents  
4
SPD Contents  
Table 11  
Byte#  
SPD Codes  
Description  
128MB 128MB 256MB 256MB  
x72  
1rank  
–7  
x72  
1rank  
–8  
x72  
1rank  
–7  
x72  
1rank  
–8  
HEX.  
80  
HEX.  
80  
HEX.  
80  
HEX.  
80  
0
1
2
3
4
5
6
7
8
9
10  
Number of SPD Bytes  
Total Bytes in Serial PD  
Memory Type  
128  
256  
08  
08  
08  
08  
DDR-SDRAM  
12  
07  
07  
07  
07  
Number of Row Addresses  
0C  
0A  
01  
0C  
0A  
01  
0C  
0B  
01  
0C  
0B  
01  
Number of Column Addresses 10/11  
Number of DIMM Banks  
Module Data Width  
1
×72  
48  
48  
48  
48  
Module Data Width (cont’d)  
Module Interface Levels  
0
00  
00  
00  
00  
SSTL_2.5  
04  
04  
04  
04  
SDRAM Cycle Time at CL = 2.5 7 ns/8 ns  
70  
80  
70  
80  
Access Time from Clock at  
CL = 2.5  
0.75 ns/0.8 ns  
75  
80  
75  
80  
11  
12  
13  
14  
DIMM config  
ECC  
02  
80  
08  
08  
02  
80  
08  
08  
02  
80  
04  
04  
02  
80  
04  
04  
Refresh Rate/Type  
SDRAM Width, Primary  
Self-Refresh 15.6 ms  
×8/×4  
Error Checking SDRAM Data  
Witdh  
na  
15  
Minimum Clock Delay for Back- tCCD = 1 CLK  
to-Back Random Column  
Address  
01  
01  
01  
01  
16  
17  
18  
19  
20  
21  
Burst Length Supported  
Number of SDRAM Banks  
Supported CAS Latencies  
CS Latencies  
2, 4 & 8  
0E  
04  
0C  
01  
02  
26  
0E  
04  
0C  
01  
02  
26  
0E  
04  
0C  
01  
02  
26  
0E  
04  
0C  
01  
02  
26  
4
CAS latency = 2 & 2.5  
CS latency = 0  
Write latency = 1  
registered  
WE Latencies  
SDRAM DIMM Module  
Attributes  
22  
23  
24  
25  
26  
SDRAM Device Attributes:  
General  
Concurrent Auto  
Precharge  
C0  
75  
75  
00  
00  
C0  
A0  
80  
00  
00  
C0  
75  
75  
00  
00  
C0  
A0  
80  
00  
00  
Min. Clock Cycle Time at CAS 7.5 ns/10 ns  
Latency = 2  
Access Time from Clock for  
CL = 2  
0.75 ns/0.8 ns  
Minimum Clock Cycle Time for not supported  
CL = 1.5  
Access Time from Clock at  
CL = 1.5  
not supported  
Data Sheet  
20  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
SPD Contents  
Table 11  
Byte#  
SPD Codes (cont’d)  
Description  
128MB 128MB 256MB 256MB  
x72  
1rank  
–7  
x72  
1rank  
–8  
x72  
1rank  
–7  
x72  
1rank  
–8  
HEX.  
50  
HEX.  
50  
HEX.  
50  
HEX.  
50  
27  
28  
Minimum Row Precharge Time 20 ns  
Minimum Row Act. to Row Act. 15 ns  
3C  
3C  
3C  
3C  
Delay tRRD  
29  
Minimum RAS to CAS Delay tRCD 20 ns  
50  
2D  
20  
90  
90  
50  
50  
00  
41  
4B  
50  
32  
20  
B0  
B0  
60  
60  
00  
46  
50  
50  
2D  
40  
90  
90  
50  
50  
00  
41  
4B  
50  
32  
40  
B0  
B0  
60  
60  
00  
46  
50  
30  
Minimum RAS Pulse Width tRAS 45 ns/50 ns  
Module Bank Density (per Bank) 128 MByte/256 Mbyte  
Addr. and Command Setup Time 0.9 ns/1.1 ns  
Addr. and Command Hold Time 0.9 ns/1.1 ns  
31  
32  
33  
34  
Data Input Setup Time  
Data Input Hold Time  
Superset Information  
0.5 ns/0.6 ns  
0.5 ns/0.6 ns  
35  
36 to 40  
41  
Minimum Core Cycle Time tRC 65 ns/70 ns  
42  
Min. Auto Refresh Cmd Cycle 75 ns/80 ns  
Time tFRC  
43  
Maximum Clock Cycle Time tCK 12 ns  
0C  
32  
75  
00  
00  
A7  
C1  
0C  
3C  
A0  
00  
00  
9C  
C1  
0C  
32  
75  
00  
00  
C0  
C1  
0C  
3C  
A0  
00  
00  
B5  
C1  
44  
Max. DQS-DQ Skew tDQSQ  
X-Factor tQHS  
0.5 ns/0.6 ns  
45  
0.75 ns/1.0 ns  
46 to 61  
62  
Superset Information  
SPD Revision  
Revision 0.0  
63  
Checksum for Bytes 0 - 62  
64  
Manufactures JEDEC ID Codes –  
65 to 71  
72  
Manufactures  
Infineon Infineon Infineon Infineon  
Module Assembly Location  
Module Part Number  
Module Revision Code  
Module Manufacturing Date  
Module Serial Number  
73 to 90  
91 to 92  
93 to 94  
95 to 98  
99 to 127  
128 to 255 open for Customer use  
Data Sheet  
21  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Package Outlines  
5
Package Outlines  
Module Package  
DDR Registered DIMM Modules Raw Card A, 128 MB Module  
(one physical bank, 9 components)  
Front View  
4.0 max.  
+ 0.15  
-
133.35  
4.0  
Register  
PLL  
Register  
53  
92  
52  
pin 1  
2.3 typ.  
+ 0.1  
-
1.27  
64.77  
49.53  
6.62  
Backside View  
pin 93  
144 145  
184  
2.5D  
3
3
Detail of Contacts A  
Detail of Contacts B  
6.35  
0.9R  
+ 0.05  
-
1
1.27  
1.8  
2.175  
L-DIM-184-10, Raw Card A, one  
bank  
Figure 3  
Package Outlines Raw Card A  
Data Sheet  
22  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Package Outlines  
Module Package  
DDR Registered DIMM Modules Raw Card B, 256 MB Module  
(one physical bank, 18 components)  
Front View  
4.0 max.  
+ 0.15  
-
133.35  
4.0  
Register  
PLL  
Register  
53  
92  
52  
pin 1  
2.3 typ.  
+ 0.1  
-
1.27  
64.77  
49.53  
6.62  
Backside View  
pin 93  
144 145  
184  
2.5D  
3
3
Detail of Contacts A  
Detail of Contacts B  
6.35  
0.9R  
+ 0.05  
-
1
1.27  
1.8  
2.175  
L-DIM-184-8, Raw Card  
B
Figure 4  
Package Outlines Raw Card B  
Data Sheet  
23  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Application Note  
6
Application Note  
Power Up and Power Management on DDR Registered DIMMs (according to JEDEC ballot JC-42.5 Item  
1173)  
184-pin Double Data Rate (DDR) Registered DIMMs include two new features to facilitate controlled power-up and  
to minimize power consumption during low power mode. One feature is externally controlled via a system-  
generated RESET signal; the second is based on module detection of the input clocks. These enhancements  
permit the modules to power up with SDRAM outputs in a High-Z state (eliminating risk of high current dissipations  
and/or dotted I/Os), and result in the powering-down of module support devices (registers and Phase-Locked  
Loop) when the memory is in Self-Refresh mode.  
The new RESET pin controls power dissipation on the module’s registers and ensures that CKE and other SDRAM  
inputs are maintained at a valid ‘low’ level during power-up and self refresh. When RESET is at a low level, all the  
register outputs are forced to a low level, and all differential register input receivers are powered down, resulting  
in very low register power consumption. The RESET pin, located on DIMM tab #10, is driven from the system as  
an asynchronous signal according to the attached details. Using this function also permits the system and DIMM  
clocks to be stopped during memory Self Refresh operation, while ensuring that the SDRAMs stay in Self Refresh  
mode.  
Table 12  
RESET Truth Table  
Register Inputs  
Register  
Outputs  
RESET  
CK  
CK  
Data in (D)  
Data out (Q)  
H
H
H
H
Rising  
Rising  
L or H  
Falling  
Falling  
L or H  
High Z  
H
L
H
L
X
X
Qo  
High Z  
Illegal input  
conditions  
L
X or Hi-Z  
X or Hi-Z  
X or Hi-Z  
L
X: Don’t care, Hi-Z: High Impedance, Qo: Data latched at the previous of CK rising and CK falling  
As described in the table above, a low on the RESET input ensures that the Clock Enable (CKE) signal(s) are  
maintained low at the SDRAM pins (CKE being one of the 'Q' signals at the register output). Holding CKE low  
maintains a high impedance state on the SDRAM DQ, DQS and DM outputs — where they will remain until  
activated by a valid ‘read’ cycle. CKE low also maintains SDRAMs in Self Refresh mode when applicable.  
The DDR PLL devices automatically detect clock activity above 20 MHz. When an input clock frequency of 20 MHz  
or greater is detected, the PLL begins operation and initiates clock frequency lock (the minimum operating  
frequency at which all specifications will be met is 95 MHz). If the clock input frequency drops below 20 MHz  
(actual detect frequency will vary by vendor), the PLL VCO (Voltage Controlled Oscillator) is stopped, outputs are  
made High-Z, and the differential inputs are powered down — resulting in a total PLL current consumption of less  
than 1 mA. Use of this low power PLL function makes the use of the PLL RESET (or G pin) unnecessary, and it  
is tied inactive on the DIMM. This application note describes the required and optional system sequences  
associated with the DDR Registered DIMM 'RESET' function. It is important to note that all references to CKE refer  
to both CKE0 and CKE1 for a 2-bank DIMM. Because RESET applies to all DIMM register devices, it is therefore  
not possible to uniquely control CKE to one physical DIMM bank through the use of the RESET pin.  
Power-Up Sequence with RESET — Required  
1. The system sets RESET at a valid low level.  
This is the preferred default state during power-up. This input condition forces all register outputs to a low state  
independent of the condition on the register inputs (data and clock), ensuring that CKE is at a stable low-level  
at the DDR SDRAMs.  
Data Sheet  
24  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Application Note  
2. The power supplies should be initialized according to the JEDEC-approved initialization sequence for DDR  
SDRAMs.  
3. Stabilization of Clocks to the SDRAM  
The system must drive clocks to the application frequency (PLL operation is not assured until the input clock  
reaches 20 MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices,  
and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM PLL,  
the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. When a  
stable clock is present at the SDRAM input (driven from the PLL), the DDR SDRAM requires 200 µsec prior to  
SDRAM operation.  
4. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM  
connector).  
CKE must be maintained low and all other inputs should be driven to a known state. In general these  
commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command  
(with CKE low), as this is the first command defined by the JEDEC initialization sequence (ideally this would  
be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be  
consistent with the state of the register outputs.  
5. The system switches RESET to a logic ‘high’ level.  
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,  
setting the RESET timing in relation to a specific clock edge is not required (during this period, register inputs  
must remain stable).  
6. The system must maintain stable register inputs until normal register operation is attained.  
The registers have an activation time that allows their clock receivers, data input receivers, and output drivers  
sufficient time to be turned on and become stable. During this time the system must maintain the valid logic  
levels described in step 5. It is also a functional requirement that the registers maintain a low state at the CKE  
outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time  
(t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to  
accept an input signal, is specified in the register and DIMM do-umentation.  
7. The system can begin the JEDEC-defined DDR SDRAM power-up sequence (according to the JEDEC-  
pproved initialization sequence).  
Self Refresh Entry (RESET low, clocks powered off) — Optional  
Self Refresh can be used to retain data in DDR SDRAM DIMMs even if the rest of the system is powered down  
and the clocks are off. This mode allows the DDR SDRAMs on the DIMM to retain data without external clocking.  
Self Refresh mode is an ideal time to utilize the RESET pin, as this can reduce register power consumption  
(RESET low deactivates register CK and CK, data input receivers, and data output drivers).  
1. The system applies Self Refresh entry command.  
(CKELow, CSLow, RAS Low, CASLow, WEHigh)  
Note:The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a  
Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input  
conditions to the SDRAM are Don’t Cares— with the exception of CKE.The system sets RESET at a valid  
low level.  
This input condition forces all register outputs to a low state, independent of the condition on the registerm  
inputs (data and clock), and ensures that CKE, and all other control and address signals, are a stable low-  
level at the DDR SDRAMs. Since the RESET signal is asynchronous, setting the RESET timing in relation  
to a specific clock edge is not required.  
2. The system turns off clock inputs to the DIMM. (Optional)  
a. In order to reduce DIMM PLL current, the clock inputs to the DIMM are turned off, resulting in High-Z clock  
inputs to both the SDRAMs and the registers. This must be done after the RESET deactivate time of the  
register (t (INACT) ). The deactivate time defines the time in which the clocks and the control and address  
signals must maintain valid levels after RESET low has been applied and is specified in the register and DIMM  
documentation.  
b. The system may release DIMM address and control inputs to High-Z.  
This can be done after the RESET deactivate time of the register. The deactivate time defines the time in which  
Data Sheet  
25  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Application Note  
the clocks and the control and the address signals must maintain valid levels after RESET low has been  
applied. It is highly recommended that CKE continue to remain low during this operation.  
3. The DIMM is in lowest power Self Refresh mode.  
Self Refresh Exit (RESET low, clocks powered off) — Optional  
1. Stabilization of Clocks to the SDRAM.  
The system must drive clocks to the application frequency (PLL operation is not assured until the input clock  
reaches ~ 20 MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices,  
and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM PLL,  
the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds.  
2. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM  
connector).  
CKE must be maintained low and all other inputs should be driven to a known state. In general these  
commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command  
(with CKE low), as this is the first command defined by the JEDEC Self Refresh Exit sequence (ideally this  
would be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs, to  
be consistent with the state of the register outputs.  
3. The system switches RESET to a logic ‘high’ level.  
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,  
RESET timing relationship to a specific clock edge is not required (during this period, register inputs must  
remain stable).  
4. The system must maintain stable register inputs until normal register operation is attained.  
The registers have an activation time that allows the clock receivers, input receivers, and output drivers  
sufficient time to be turned on and become stable. During this time the system must maintain the valid logic  
levels described in Step 2. It is also a functional requirement that the registers maintain a low state at the CKE  
outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time  
(t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to  
accept an input signal, is specified in the register and DIMM do-umentation.  
5. System can begin the JEDEC-defined DDR SDRAM Self Refresh Exit Procedure.  
Self Refresh Entry (RESET low, clocks running) — Optional  
Although keeping the clocks running increases power consumption from the on-DIMM PLL during self refresh, this  
is an alternate operating mode for these DIMMs.  
1. System enters Self Refresh entry command.  
(CKELow, CSLow, RASLow, CASLow, WEHigh)  
Note:The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a  
Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input  
conditions to the SDRAM are Don’t Cares — with the exception of CKE.  
2. The system sets RESET at a valid low level.  
This input condition forces all register outputs to a low state, independent of the condition on the data and clock  
register inputs, and ensures that CKE is a stable low-level at the DDR SDRAMs.  
3. The system may release DIMM address and control inputs to High-Z.  
This can be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time describes  
the time in which the clocks and the control and the address signals must maintain valid levels after RESET  
low has been applied. It is highly recommended that CKE continue to remain low during the operation.  
4. The DIMM is in a low power, Self Refresh mode.  
Self Refresh Exit (RESET low, clocks running) — Optional  
1. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM  
connector).  
CKE must be maintained low and all other inputs should be driven to a known state. In general these  
commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command  
(with CKE low), as this is the first command defined by the Self Refresh Exit sequence (ideally this would be  
Data Sheet  
26  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
HYS72D[16000/32001]GR-[7/8]-A  
Registered DDR SDRAM Modules  
Application Note  
a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent  
with the state of the register outputs.  
2. The system switches RESET to a logic 'high' level.  
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,  
it does not need to be tied to a particular clock edge (during this period, register inputs must continue to remain  
stable).  
3. The system must maintain stable register inputs until normal register operation is attained.  
The registers have an activation time that allows the clock receivers, input receivers, and output drivers  
sufficient time to be turned on and become stable. During this time the system must maintain the valid logic  
levels described in Step 1. It is also a functional requirement that the registers maintain a low state at the CKE  
outputs in order to guarantee that the DDR SDRAMs continue to receive a low level on CKE. This activation  
time, from asynchronous switching of RESET from low to high, until the registers are stable and ready to accept  
an input signal, is t (ACT ) as specified in the register and DIMM documentation.  
4. The system can begin JEDEC defined DDR SDRAM Self Refresh Exit Procedure.  
Self Refresh Entry/Exit (RESET high, clocks running) — Optional  
As this sequence does not involve the use of the RESET function, the JEDEC standard SDRAM specification  
explains in detail the method for entering and exiting Self Refresh for this case.  
Self Refresh Entry (RESET high, clocks powered off) — Not Permissible  
In order to maintain a valid low level on the register output, it is required that either the clocks be running and the  
system drive a low level on CKE, or the clocks are powered off and RESET is asserted low according to the  
sequence defined in this application note. In the case where RESET remains high and the clocks are powered off,  
the PLL drives a High-Z clock input into the register clock input. Without the low level on RESET an unknown DIMM  
state will result.  
Data Sheet  
27  
Rev. 1.04, 2004-01  
10282003-ROLI-0GQ8  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  
厂商 型号 描述 页数 下载

INFINEON

HYS64-72V2200GU-8 3.3V 2M ×64 /72- 1位BANK SDRAM模块3.3V 4M ×64 /72- 2位BANK SDRAM模块[ 3.3V 2M x 64/72-Bit 1 BANK SDRAM Module 3.3V 4M x 64/72-Bit 2 BANK SDRAM Module ] 17 页

INFINEON

HYS64-74V8200GU 3.3 V 8M ×64 /72- 1位银行SDRAM模块3.3 V 16M ×64 /72- 2位银行SDRAM模块[ 3.3 V 8M x 64/72-Bit 1 Bank SDRAM Module 3.3 V 16M x 64/72-Bit 2 Bank SDRAM Module ] 17 页

INFINEON

HYS6472V16200GU 3.3 V 16M ×64 /72-位SDRAM模块3.3 V 32M ×64 /72-位SDRAM模块3.3 V 64M ×64 /72-位SDRAM模块[ 3.3 V 16M x 64/72-Bit SDRAM Modules 3.3 V 32M x 64/72-Bit SDRAM Modules 3.3 V 64M x 64/72-Bit SDRAM Modules ] 17 页

INFINEON

HYS6472V4200GU 3.3V 4M ×64 /72- 1位BANK SDRAM模块3.3V 8M ×64 /72- 2位BANK SDRAM模块[ 3.3V 4M x 64/72-Bit 1 BANK SDRAM Module 3.3V 8M x 64/72-Bit 2 BANK SDRAM Module ] 15 页

INFINEON

HYS64D128020GBDL-6-A [ DDR DRAM Module, 128MX64, 0.7ns, CMOS, SO-DIMM-200 ] 11 页

ETC

HYS64D128020GBDL-7-A ? 1GB ( 1024Mx64 ) PC2100 2银行?\n[ ?1GB (1024Mx64) PC2100 2-bank? ] 11 页

INFINEON

HYS64D128020GU-7-A 2.5 V 184针无缓冲DDR- SDRAM我模块[ 2.5 V 184-pin Unbuffered DDR-I SDRAM Modules ] 18 页

INFINEON

HYS64D128020GU-8-A 2.5 V 184针无缓冲DDR- SDRAM我模块[ 2.5 V 184-pin Unbuffered DDR-I SDRAM Modules ] 18 页

QIMONDA

HYS64D128020GU-8-A [ DDR DRAM Module, 128MX64, 0.8ns, CMOS, PDMA184 ] 18 页

INFINEON

HYS64D128021 200针的小型双列直插式内存模块[ 200-Pin Small Outline Dual-In-Line Memory Modules ] 23 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.228690s