找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

8T49N004A-045NLGI8

型号:

8T49N004A-045NLGI8

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

37 页

PDF大小:

772 K

Programmable FemtoClock® NG LVPECL/LVDS  
Clock Generator with 4-Outputs  
IDT8T49N004I  
DATASHEET  
General Description  
Features  
The IDT8T49N004I is a four output Clock Generator with selectable  
LVDS or LVPECL outputs. The IDT8T49N004I can generate any one  
of four frequencies from a single crystal or reference clock. The four  
frequencies are selected from the Frequency Selection Table (Table  
3A) and are programmed via I2C interface. The four predefined  
frequencies are selected in the user application by two frequency  
selection pins. Note the desired programmed frequencies must be  
used with the corresponding crystal or clock frequency as indicated  
in Table 3A.  
Fourth Generation FemtoClock NG PLL technology  
Four selectable LVPECL or LVDS outputs via I2C  
CLK, nCLK input pair can accept the following differential input  
levels: LVPECL, LVDS, HCSL  
FemtoClock NG VCO Range: 1.91GHz - 2.5GHz  
RMS phase jitter at 156.25MHz (12kHz - 20MHz):  
228fs (typical)  
RMS phase jitter at 156.25MHz (10kHz - 1MHz): 175fs (typical)  
Full 2.5V or 3.3V power supply  
I2C programming interface  
Excellent phase noise performance is maintained with IDT’s Fourth  
Generation FemtoClock® NG PLL technology, which delivers  
sub-400fs RMS phase jitter.  
PCI Express (2.5Gb/s), Gen 2 (5Gb/s), and Gen 3 (8Gb/s)  
jitter compliant  
-40°C to 85°C ambient operating temperature  
Lead-free (RoHS 6) packaging  
Pin Assignment  
24 23 22 21 20 19 18 17  
25  
16  
15 VEE  
14  
VCC  
SCLK  
SDATA 26  
VEE 27  
FSEL0  
28  
29  
VCCA  
LOCK  
VEE  
13 nCLK  
12 CLK  
11  
10  
9
VEE  
30  
31  
32  
VCC  
XTAL_OUT  
XTAL_IN  
CLK_SEL  
1
2
3
4
5
6
7
8
IDT8T49N004I  
32-Lead VFQFN  
5mm x 5mm x 0.925mm package body  
3.15mm x 3.15mm E-Pad  
NL Package  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
1
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Block Diagram  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
2
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 7, 11, 15,  
18, 24, 27, 30  
VEE  
Power  
Negative supply pins.  
2, 3  
4, 21  
5, 6  
8
Q0, nQ0  
VCCO  
Output  
Power  
Differential output pair. LVPECL or LVDS interface levels.  
Output supply pins.  
Q1, nQ1  
nc  
Output  
Unused  
Differential output pair. LVPECL or LVDS interface levels.  
No connect.  
9,  
10  
XTAL_IN  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.  
Crystal frequency is selected from Table 3A.  
Input  
Input  
Input  
12  
CLK  
Pulldown  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
13  
nCLK  
Inverting differential clock input. Internal resistor bias to VCC/2.  
Frequency and configuration. Selects between one of four factory  
programmable power-up default configurations. The four configurations can  
have different PLL states, output frequencies, output styles and output  
states. These default configurations can be overwritten after power-up via  
I2C. LVCMOS/LVTTL interface levels.  
FSEL0,  
FSEL1  
14, 17  
Input  
Pulldown  
00 = Configuration 0 (default)  
01 = Configuration 1  
10 = Configuration 2  
11 = Configuration 3  
16, 31  
19, 20  
22, 23  
25  
VCC  
Power  
Output  
Output  
Input  
Core supply pins.  
nQ3, Q3  
nQ2, Q2  
SCLK  
Differential output pair. LVPECL or LVDS interface levels.  
Differential output pair. LVPECL or LVDS interface levels.  
I2C Clock Input. LVCMOS/LVTTL interface levels.  
I2C Data Input. Input: LVCMOS/LVTTL interface levels.  
Output: Open Drain.  
Pullup  
Pullup  
26  
SDATA  
I/O  
28  
29  
VCCA  
Power  
Output  
Analog supply pin.  
LOCK  
PLL Lock Indicator. LVCMOS/LVTTL interface levels.  
Input source control pin. LVCMOS/LVTTL interface levels.  
0 = XTAL (default)  
32  
CLK_SEL  
Input  
Pulldown  
1 = CLK, nCLK  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
3.5  
Maximum  
Units  
pF  
Input Capacitance  
Input Pulldown Resistor  
Input Pullup Resistor  
RPULLDOWN  
RPULLUP  
51  
k  
51  
k  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
3
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Frequency Configuration  
Table 3A. Frequency Configuration Examples  
Input Frequency or  
Crystal Frequency  
(MHz)  
Input Clock  
Divider  
P
Input Clock  
Prescaler  
PS  
Feedback  
Divider  
M
VCO  
Frequency  
(MHz)  
Output Frequencies  
(MHz)  
Output Divider  
N
30.72  
61.44  
62.5  
30.72  
30.72  
25  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
5
1
1
1
1
1
1
1
1
1
1
1
1
2
1
2
5
1
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x1  
x2  
x2  
x2  
x2  
x2  
x1  
x1  
x2  
x2  
x2  
x2  
x2  
x1  
x1  
x2  
x1  
x2  
x2  
32  
32  
40  
40  
50  
40  
40  
32  
40  
48  
44  
42  
40  
64  
50  
50  
50  
36  
48  
40  
36  
36  
90  
40  
40  
40  
48  
64  
32  
32  
50  
40  
40  
36  
64  
32  
32  
32  
32  
20  
20  
16  
16  
18  
16  
14  
16  
16  
16  
16  
16  
12  
12  
12  
12  
12  
12  
10  
10  
8
1966.08  
1966.08  
2000  
76.8  
30.72  
25  
2457.6  
2500  
78.125  
100  
25  
2000  
106.25  
122.8  
125  
26.5625  
30.72  
25  
2125  
1966.08  
2000  
133.33  
148.5  
150  
25  
2400  
27  
2376  
25  
2100  
153.6  
155.52  
30.72  
19.44  
25  
2457.6  
2488.32  
2500  
156.25  
100  
2500  
125  
2500  
159.375  
160  
26.5625  
20  
1912.5  
1920  
166.66  
25  
2000  
30.72  
61.44  
25  
2211.84  
2211.84  
2250  
184.32  
187.5  
200  
25  
2000  
212.5  
250  
26.5625  
25  
2125  
2000  
300  
25  
8
2400  
19.44  
77.76  
155.52  
25  
8
2488.32  
2488.32  
2488.32  
2500  
311.04  
312.5  
8
8
8
125  
8
2500  
156.25  
26.5625  
8
2500  
318.75  
6
1912.5  
Continued on next page.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
4
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Input Frequency or  
Crystal Frequency  
(MHz)  
Input Clock  
Divider  
P
Input Clock  
Prescaler  
PS  
Feedback  
Divider  
M
VCO  
Frequency  
(MHz)  
Output Frequencies  
(MHz)  
Output Divider  
N
322.265625  
375  
25.78125  
25  
2
1
1
1
1
1
2
5
1
1
1
x1  
x1  
x2  
x2  
x2  
x2  
x1  
x2  
x2  
x2  
x2  
150  
90  
40  
40  
32  
40  
40  
40  
64  
50  
40  
6
6
5
5
4
4
4
4
4
4
2
1933.59375  
2250  
400  
25  
2000  
425  
26.5625  
30.72  
30.72  
122.88  
153.6  
19.44  
25  
2125  
491.52  
1966.08  
2457.6  
2457.6  
2457.6  
2488.32  
2500  
614.4  
622.08  
625  
1228.88  
30.72  
2457.6  
NOTE: Each device supports 4 output frequencies (with related input or crystal value) as selected from this table Register Settings.  
NOTE: XTAL operation: fOUT = fREF * PS * M / N; CLK, nCLK input operation: fOUT = (fREF / P) * PS * M / N.  
2
Table 3B. I C Register Map  
Binary  
Register  
Register Bit  
Register Address  
D7  
D6  
M0[7]  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
M0[8]  
M0[6]  
M1[6]  
M2[6]  
M3[6]  
N0[5]  
N1[5]  
N2[5]  
N3[5]  
PS0[1]  
PS1[1]  
PS2[1]  
PS3[1]  
M0[5]  
M1[5]  
M2[5]  
M3[5]  
N0[4]  
M0[4]  
M0[3]  
M1[3]  
M2[3]  
M3[3]  
N0[2]  
N1[2]  
N2[2]  
N3[2]  
P0[0]  
P1[0]  
P2[0]  
P3[0]  
M0[2]  
M1[2]  
M2[2]  
M3[2]  
N0[1]  
N1[1]  
N2[1]  
N3[1]  
CP0[1]  
CP1[1]  
CP2[1]  
CP3[1]  
M0[1]  
M1[1]  
M2[1]  
M3[1]  
N0[0]  
N1[0]  
N2[0]  
N3[0]  
CP0[0]  
CP1[0]  
CP2[0]  
CP3[0]  
M1[8]  
M1[7]  
M1[4]  
2
M2[8]  
M2[7]  
M2[4]  
3
M3[8]  
M3[7]  
M3[4]  
4
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
N0[6]  
N0[3]  
5
N1[6]  
N1[4]  
N1[3]  
6
N2[6]  
N2[4]  
N2[3]  
7
N3[6]  
N3[4]  
N3[3]  
8
BYPASS0  
BYPASS1  
BYPASS2  
BYPASS3  
PS0[0]  
PS1[0]  
PS2[0]  
PS3[0]  
P0[1]  
9
P1[1]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
P2[1]  
P3[1]  
reserved LVDS_SEL0[Q3] LVDS_SEL0[Q2] reserved  
reserved LVDS_SEL1[Q3] LVDS_SEL1[Q2] reserved  
reserved LVDS_SEL2[Q3] LVDS_SEL2[Q2] reserved  
reserved LVDS_SEL3[Q3] LVDS_SEL3[Q2] reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
unused  
unused  
unused  
LVDS_SEL0[Q1] LVDS_SEL0[Q0] reserved  
LVDS_SEL1[Q1] LVDS_SEL1[Q0] reserved  
LVDS_SEL2[Q1] LVDS_SEL2[Q0] reserved  
LVDS_SEL3[Q1] LVDS_SEL3[Q0] reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
unused  
OE0[Q3]  
OE1[Q3]  
OE2[Q3]  
OE3[Q3]  
reserved  
unused  
OE0[Q2]  
OE1[Q2]  
OE2[Q2]  
OE3[Q2]  
reserved  
unused  
reserved  
reserved  
reserved  
reserved  
reserved  
unused  
OE0[Q1]  
OE1[Q1]  
OE2[Q1]  
OE3[Q1]  
reserved  
unused  
OE0[Q0]  
OE1[Q0]  
OE2[Q0]  
OE3[Q0]  
unused  
unused  
unused  
unused  
reserved  
reserved  
reserved  
reserved  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
5
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
2
Table 3C. I C Function Descriptions  
Bits  
Name  
Function  
Sets the PLL input clock divider. The divider value has the range of 1, 2, 4  
and 5. See Table 3F. Pn[1:0] bits are programmed with values to support  
default configuration settings for FSEL[1:0].  
Input Clock Divider Register n  
(n = 0...3)  
Pn[1:0]  
Sets the PLL input clock prescaler value. Valid prescaler values are x0.5, x1  
or x2. See Table 3F. Set prescaler to x2 for optimum phase noise  
performance. PSn[1:0] bits are programmed with values to support default  
configuration settings for FSEL[1:0].  
Input Prescaler Register n  
(n = 0...3)  
PSn(1:0)  
Sets the integer feedback divider value. Based on the FemtoClock NG VCO  
Integer Feedback Divider Register range, the applicable feedback dividers settings are 16 thru 250. Please note  
Mn[8:1]  
n
the register value presents bits [8:1] of Mn, the LSB of Mn is not in the  
register. Mn[8:1] bits are programmed with values to support default  
configuration settings for FSEL[1:0].  
(n = 0...3)  
Sets the output divider. The output divider value can range from 2, 3, 4, 5, 6  
and 8, 10, 12 to 126 (step: 2). See Table 3G for the output divider coding.  
Nn[6:0] bits are programmed with values to support default configuration  
settings for FSEL[1:0].  
Output Divider Register n  
(n = 0...3)  
Nn[6:0]  
Sets the FemtoClock NG PLL bandwidth by controlling the charge pump  
current. See Table 3H. CPn[1:0] bits are programmed with values to support  
default configuration settings for FSEL[1:0].  
PLL Bandwidth Register n  
(n = 0...3)  
CPn[1:0]  
Bypasses PLL. Output of the prescaler is routed through the output divider  
N to the output fanout buffer. Programming a 1 to this bit bypasses the PLL.  
Programming a 0 to this bit routes the output of the prescaler through the  
PLL. BYPASSn bits are programmed with values to support default  
configuration settings for FSEL[1:0].  
PLL Bypass Register n  
(n = 0...3)  
BYPASSn  
Sets the outputs to Active or High Impedance. Programming a 0 to this bit  
sets the outputs to High Impedance. Programming a 1, sets the outputs to  
active status. OEn[Q0], OEn[Q1], OEn[Q2], and OEn[Q3] bits are  
programmed with values to support default configuration settings for  
FSEL[1:0].  
OEn[Q0]  
OEn[Q1]  
OEn[Q2]  
OEn[Q3]  
Output Enable Register n  
(n = 0...3)  
Sets the differential output style to either LVDS or LVPECL interface levels.  
Programming a 1 to this bit sets the output styles to LVDS levels.  
Programming a 0 to this bit sets the output styles to LVPECL levels.  
LVDS_SELn[Q0], LVDS_SELn[Q1], LVDS_SELn[Q2], and LVDS_SELn[Q3]  
bits are programmed with values to support default configuration settings for  
FSEL[1:0].  
LVDS_SELn[Q0]  
LVDS_SELn[Q1]  
LVDS_SELn[Q2]  
LVDS_SELn[Q3]  
Output Style Register n  
(n = 0...3)  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
6
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Table 3D. Feedback Divider Mn Coding  
Register Bit  
Mn[8:1]  
Do Not Use  
00001000  
00001001  
00001010  
00001011  
00001100 thru 00011111  
00100000  
00100001  
00100010  
00100011  
00100100  
...  
Feedback Divider Mn  
1 thru 15  
16  
18  
20  
22  
24 thru 62  
64  
66  
68  
70  
72  
Mn  
00110010  
00110011  
00110100  
00110101  
...  
100  
102  
104  
106  
Mn  
01111010  
01111011  
01111100  
01111101  
244  
246  
248  
250  
Note: Mn is always an even value. The Mn[0] bits are not implemented.  
Table 3E. Input Clock Divider Pn and Prescaler PSn Coding  
Input Clock  
Divider  
P
Input Clock  
Prescaler  
PS  
Input Frequency (MHz)  
CLK_SEL  
Input  
P[1:0]  
PS[1:0]  
00  
Minimum  
10  
Maximum  
40  
1
1
1
1
1
1
2
2
2
4
4
4
5
5
5
x1  
x0.5  
x2  
0
XTAL  
xx  
01  
20  
5
40  
1x  
40  
00  
x1  
10  
20  
5
120  
240  
60  
00  
01  
10  
11  
01  
x0.5  
x2  
1x  
00  
x1  
20  
40  
10  
40  
80  
20  
50  
100  
25  
240  
480  
120  
480  
800  
240  
600  
800  
300  
01  
x0.5  
x2  
1x  
1
CLK  
00  
x1  
01  
x0.5  
x2  
1x  
00  
x1  
01  
x0.5  
x2  
1x  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
7
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Table 3F. Output Divider Nn Coding  
Register Bit  
Nn[6:0]  
Output Frequency Range  
Output Divider  
N
fOUT_MIN (MHz)  
fOUT_MAX (MHz)  
000000X  
0000010  
0000011  
0000100  
0000101  
000011X  
000100X  
000101X  
000110X  
000111X  
001000X  
...  
2
Do Not Use  
2
955  
636.67  
477.5  
1250  
833.33  
625  
3
4
5
382  
500  
6
318.33  
238.75  
191  
416.67  
312.5  
8
10  
250  
12  
159.1667  
136.4286  
119.375  
(1910 ÷ N)  
15.40  
208.33  
178.57  
156.25  
(2500 ÷ N)  
20.16  
14  
16  
N (even integer)  
124  
111101X  
111111X  
126  
15.16  
19.84  
NOTE: X denotes “don’t care”.  
Table 3G. Charge Pump CP Settings  
Register Bit  
Feedback Divider (M) Value Range  
CPn1  
CPn0  
Minimum  
16  
Maximum  
48  
0
0
1
1
0
1
0
1
48  
100  
100  
250  
192  
250  
NOTE: FemtoClock NG PLL stability is only guaranteed over the feedback divider ranges listed is Table 3G.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
8
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Power-up Default Configuration Description  
The IDT8T49N004I supports a variety of options such as different  
output styles, number of programmed default frequencies, output en-  
able and operating temperature range. The device options and de-  
fault frequencies must be specified at the time of order and are  
programmed by IDT prior to shipment. The document, Programma-  
ble FemtoClock® NG Product Ordering Guide specifies the available  
order codes, including the device options and default frequency con-  
figurations. Example part number: 8T49N004A-007NLGI, specifies a  
quad frequency clock generator with default frequencies of  
outputs that are enabled after power-up, specified over the industrial  
temperature range and housed in a lead-free (6/6 RoHS) VFQFN  
package.  
Other order codes with respective programmed frequencies are  
available from IDT upon request. After power-up changes to the out-  
put frequencies are controlled by FSEL[1:0] or the I2C interface.  
Changes to the style (LVDS or LVPECL) and state (active or high im-  
pedance) of each individual output can also be controlled with the I2C  
interface after power up.  
106.25MHz, 133.333MHz, 156.25MHz and 156.25MHz, with 4 LVDS  
Table 3H. Power-up Default Settings  
PLL State  
Output State  
Output Style  
FSEL1  
FSEL0  
Frequency  
Frequency 0  
Frequency 1  
Frequency 2  
Frequency 3  
(On or Bypass)  
PLL State 0  
PLL State 1  
PLL State 2  
PLL State 3  
(Active or High Impedance)  
(LVDS or LVPECL)  
0 (default)  
0 (default)  
Output State 0  
Output State 1  
Output State 2  
Output State 3  
Output Style 0  
Output Style 1  
Output Style 2  
Output Style 3  
0
1
1
1
0
1
Serial Interface Configuration Description  
The IDT8T49N004I has an I2C-compatible configuration interface to  
access any of the internal registers (Table 3B) for frequency and PLL  
parameter programming. The IDT8T49N004I acts as a slave device  
on the I2C bus and has the address 0b1101110. The interface  
accepts byte-oriented block write and block read operations. An  
address byte (P) specifies the register address (Table 3B) as the byte  
position of the first register to write or read. Data bytes (registers) are  
accessed in sequential order from the lowest to the highest byte  
(most significant bit first, see Table 3I, 3J).  
Read and write block transfers can be stopped after any complete  
byte transfer. It is recommended to terminate the I2C read or write  
transfer after accessing byte #23 by sending a stop command.  
For full electrical I2C compliance, it is recommended to use external  
pull-up resistors for SDATA and SCLK. The internal pull-up resistors  
have a size of 50ktypical.  
Table 3I. Block Write Operation  
Bit  
1
START  
1
2:8  
9
W (0)  
1
10  
ACK  
1
11:18  
Address Byte P  
8
19  
ACK  
1
20:27  
28  
ACK  
1
29-36  
37  
ACK  
1
...  
...  
ACK  
1
...  
STOP  
1
Description  
Data Byte  
(P)  
DataByte  
(P+1)  
Data Byte  
...  
Slave Address  
7
Length (bits)  
8
8
8
Table 3J. Block Read Operation  
Bit  
1
START  
1
2:8  
9
10  
11:18  
19  
20  
21:27  
28  
29  
30:37  
38  
39-46  
47  
...  
...  
...  
STOP  
1
Description  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Slave  
Address  
W
(0)  
Address  
byte P  
Repeated  
START  
Slave  
Address  
R
(1)  
Data Byte  
(P)  
DataByte  
(P+1)  
Data Byte  
...  
Length (bits)  
7
1
1
8
1
1
7
1
1
8
1
8
1
8
1
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
9
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress  
specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC  
Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
3.63V  
Inputs, VI  
XTAL_IN  
Other Input  
0V to 2V  
-0.5V to VCC + 0.5V  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Outputs, IO (SDATA)  
10mA  
Outputs, IO (LVDS)  
Continuous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, JA  
33.1C/W (0 mps)  
-65C to 150C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, V = V  
= 3.3V 5%, V = 0V, T = -40°C to 85°C  
EE A  
CC  
CCO  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum  
3.465  
VCC  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Power Supply Current  
Power Supply Current  
Output Supply Current  
3.135  
VCC – 0.32  
3.135  
VCCA  
VCCO  
ICCA  
IEE  
3.3  
V
3.3  
3.465  
32  
V
mA  
mA  
mA  
mA  
LVPECL  
LVDS  
192  
ICC  
125  
ICCO  
LVDS  
85  
Table 4B. Power Supply DC Characteristics, V = V  
= 2.5V 5%, V = 0V, T = -40°C to 85°C  
EE A  
CC  
CCO  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
2.5  
Maximum  
2.625  
VCC  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Power Supply Current  
Power Supply Current  
Output Supply Current  
2.375  
VCC – 0.28  
2.375  
VCCA  
VCCO  
ICCA  
IEE  
2.5  
V
2.5  
2.625  
28  
V
mA  
mA  
mA  
mA  
LVPECL  
LVDS  
184  
ICC  
122  
ICCO  
LVDS  
82  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
10  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Table 4C. LVCMOS/LVTTL DC Characteristics, V = V  
= 3.3V 5% or 2.5V 5%, V = 0V, T = -40°C to 85°C  
CC  
CCO  
EE  
A
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
V
CC = 3.3V  
VCC = 2.5V  
CC = 3.3V  
2
VCC + 0.3  
V
V
Input High  
Voltage  
SCLK, SDATA,  
CLK_SEL, FSEL[1:0]  
VIH  
1.7  
-0.3  
-0.3  
VCC + 0.3  
SCLK, SDATA, CLK_SEL  
SCLK, SDATA, CLK_SEL  
FSEL[1:0]  
V
0.8  
0.7  
0.5  
5
V
Input Low  
Voltage  
VIL  
VCC = 2.5V  
V
VCC = 3.3V or 2.5V  
V
SCLK, SDATA  
V
CC = VIN = 3.465V or 2.625V  
µA  
µA  
µA  
µA  
V
Input  
High Current  
IIH  
CLK_SEL, FSEL[1:0]  
SCLK, SDATA  
VCC = VIN = 3.465V or 2.625V  
CC = 3.465V or 2.625V, VIN = 0V  
150  
V
-150  
-5  
Input  
Low Current  
IIL  
CLK_SEL, FSEL[1:0]  
LOCK  
VCC = 3.465V or 2.625V, VIN = 0V  
CCO = 3.465V  
Output  
V
2.6  
VOH  
High Voltage;  
NOTE 1  
LOCK  
VCCO = 2.625V  
1.8  
V
Output  
VOL  
Low Voltage; LOCK  
NOTE 1  
VCCO = 3.465V or 2.625V  
0.5  
V
NOTE 1: Outputs terminated with 50to VCCO/2. In the Parameter Measurement Information Section, see Output Load Test Circuit Diagrams.  
Table 4D. Differential DC Characteristics, V = V  
= 3.3V 5% or 2.5V 5%, V = 0V, T = -40°C to 85°C  
CC  
CCO  
EE  
A
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Input  
High Current  
IIH  
CLK, nCLK  
V
CC = VIN = 3.465V or 2.625V  
150  
µA  
nCLK  
CLK  
V
CC = 3.465V or 2.625V, VIN = 0V  
-150  
-5  
µA  
µA  
V
Input  
Low Current  
IIL  
VCC = 3.465V or 2.625V, VIN = 0V  
VPP  
Peak-to-Peak Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1  
VCMR  
VEE  
VCC – 0.85  
V
NOTE 1: Common mode input voltage is at the cross point.  
Table 4E. LVPECL DC Characteristics, V = V  
= 3.3V 5%, V = 0V, T = -40°C to 85°C  
EE A  
CC  
CCO  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCCO – 0.75  
VCCO – 1.6  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCCO – 1.1  
VCCO – 2.0  
0.6  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs termination with 50to VCCO – 2V.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
11  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Table 4F. LVPECL DC Characteristics, V = V  
= 2.5V 5%, V = 0V, T = -40°C to 85°C  
EE A  
CC  
CCO  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCCO – 0.75  
VCCO – 1.5  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCCO – 1.2  
VCCO – 2.0  
0.5  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs termination with 50to VCCO – 2V.  
Table 4G. LVDS DC Characteristics, V = V  
= 3.3V 5%, V = 0V, T = -40°C to 85°C  
EE A  
CC  
CCO  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
454  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
247  
345  
VOD  
VOS  
50  
1.15  
1.25  
1.375  
50  
VOS  
VOS Magnitude Change  
mV  
Table 4H. LVDS DC Characteristics, V = V  
= 2.5V 5%, V = 0V, T = -40°C to 85°C  
EE A  
CC  
CCO  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
454  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
230  
340  
VOD  
VOS  
50  
1.15  
1.25  
1.375  
50  
VOS  
VOS Magnitude Change  
mV  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Fundamental  
Frequency  
10  
10  
40  
18  
50  
MHz  
pF  
Load Capacitance (CL)  
Equivalent Series Resistance (ESR)  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
12  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
AC Electrical Characteristics  
Table 6A. PCI Express Jitter Specifications, V = V  
= 3.3V 5% or 2.5V 5%, V = 0V, T = -40°C to 85°C  
CC  
CCO  
EE  
A
Maximum  
13.2  
PCIe Industry  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Specification Units  
Phase Jitter  
Peak-to-Peak;  
NOTE 1, 4  
ƒ = 100MHz, 25MHz Crystal Input  
Evaluation Band: 0Hz - Nyquist  
(clock frequency/2)  
tj  
8.3  
86  
ps  
(PCIe Gen 1)  
ƒ = 100MHz, 25MHz Crystal Input  
High Band: 1.5MHz - Nyquist  
(clock frequency/2)  
tREFCLK_HF_RMS  
(PCIe Gen 2)  
Phase Jitter RMS;  
NOTE 2, 4  
0.78  
0.05  
1.35  
0.10  
0.34  
3.1  
3.0  
0.8  
ps  
ps  
ps  
tREFCLK_LF_RMS  
(PCIe Gen 2)  
Phase Jitter RMS; ƒ = 100MHz, 25MHz Crystal Input  
NOTE 2, 4  
Low Band: 10kHz - 1.5MHz  
ƒ = 100MHz, 25MHz Crystal Input  
Evaluation Band: 0Hz - Nyquist  
(clock frequency/2)  
tREFCLK_RMS  
(PCIe Gen 3)  
Phase Jitter RMS;  
NOTE 3, 4  
0.175  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions. For additional information, refer to the PCI Express Application Note section in the datasheet.  
NOTE 1: Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1  
is 86ps peak-to-peak for a sample size of 106 clock periods.  
NOTE 2: RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and  
reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps RMS for tREFCLK_HF_RMS  
(High Band) and 3.0ps RMS for tREFCLK_LF_RMS (Low Band).  
NOTE 3: RMS jitter after applying system transfer function for the common clock architecture. This specification is based on the PCI Express  
Base Specification Revision 0.7, October 2009 and is subject to change pending the final release version of the specification.  
NOTE 4: This parameter is guaranteed by characterization. Not tested in production.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
13  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Table 6B. AC Characteristics, V = V  
= 3.3V 5% or 2.5V 5% V = 0V, T = -40°C to 85°  
CC  
CCO  
EE  
A
Symbol  
fDIFF_IN  
fVCO  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
312.5  
Units  
MHz  
MHz  
Differential Input Frequency  
VCO Frequency  
10  
1910  
2500  
25MHz Crystal, fOUT = 100MHz,  
Integration Range:  
258  
220  
164  
228  
175  
212  
213  
280  
332  
291  
232  
306  
234  
292  
299  
386  
fs  
fs  
fs  
fs  
fs  
fs  
fs  
fs  
12kHz – 20MHz  
25MHz Crystal, fOUT = 125MHz,  
Integration Range: 12kHz –  
20MHz  
25MHz Crystal, fOUT = 125MHz,  
Integration Range: 10kHz –  
1MHz  
25MHz Crystal, fOUT  
=
156.25MHz, Integration Range:  
12kHz – 20MHz  
RMS Phase Jitter, Random;  
NOTE 1  
tjit(Ø)  
25MHz Crystal, fOUT  
=
156.25MHz, Integration Range:  
10kHz – 1MHz  
25MHz Crystal, fOUT = 250MHz,  
Integration Range: 12kHz –  
20MHz  
30.72MHz Crystal, fOUT  
=
491.52MHz, Integration Range:  
12kHz – 20MHz  
19.44MHz Crystal, fOUT  
=
622.08MHz, Integration Range:  
12kHz – 20MHz  
LVPECL Outputs  
LVDS Outputs  
LVPECL Outputs  
LVDS Outputs  
LVDS_SEL = 0  
LVDS_SEL = 1  
45  
45  
ps  
ps  
ps  
ps  
Output Skew;  
NOTE 2, 3  
tsk(o)  
tR / tF  
20% - 80%, LVDS_SEL = 0  
20% - 80%, LVDS_SEL = 1  
100  
100  
400  
400  
Output  
Rise/Fall Time  
N > 3 Output Divider;  
LVDS_SEL = 0 or 1  
47  
42  
53  
58  
20  
%
%
odc  
Output Duty Cycle  
N 3 Output Divider;  
LVDS_SEL = 0 or 1  
PLL Lock Time;  
NOTE 3, 4  
tLOCK  
LOCK Output  
LOCK Output  
ms  
Transition  
tTRANSITION Time;  
NOTE 3, 4  
20  
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Refer to Phase Noise Plots.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential  
crosspoints.  
NOTE 3: These parameters are guaranteed by characterization. Not tested in production.  
NOTE 4: Refer to tLOCK and tTRANSITION in Parameter Measurement Information.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
14  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Typical Phase Noise at 100MHz (3.3V)  
Offset Frequency (Hz)  
Typical Phase Noise at 125MHz (3.3V)  
Offset Frequency (Hz)  
15  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Typical Phase Noise at 156.25MHz (3.3V)  
Offset Frequency (Hz)  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
16  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Parameter Measurement Information  
2V  
2V  
2V  
2V  
VCC,  
VCC,  
VCCO  
VCCO  
VCCA  
VCCA  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V LVPECL Output Load AC Test Circuit  
2.5V LVPECL Output Load AC Test Circuit  
SCOPE  
Qx  
VCC,  
VCC,  
3.3V 5%  
VCCO  
2.5V 5%  
VCCO  
POWER SUPPLY  
VCCA  
VCCA  
+
Float GND –  
nQx  
3.3V LVDS Output Load AC Test Circuit  
2.5V LVDS Output Load AC Test Circuit  
VCC  
nCLK  
CLK  
VEE  
Differential Input Levels  
RMS Phase Jitter  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
17  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Parameter Measurement Information, continued  
nQ[0:3]  
Q[0:3]  
nQx  
Qx  
nQy  
Qy  
Output Skew  
Output Duty Cycle/Pulse Width/Period  
nQ[0:3]  
Q[0:3]  
nQ[0:3]  
80%  
tF  
80%  
VOD  
20%  
20%  
Q[0:3]  
tR  
LVPECL Output Rise/Fall Time  
LVDS Output Rise/Fall Time  
Offset Voltage Setup  
Differential Output Voltage Setup  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
18  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Parameter Measurement Information, continued  
LockTime & Transition Time  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVPECL Outputs  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
CLK/nCLK Inputs  
LVDS Outputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
All unused LVDS output pairs can be either left floating or terminated  
with 100across. If they are left floating, there should be no trace  
attached.  
Crystal Inputs  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied from  
XTAL_IN to ground.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
19  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 1 shows how a differential input can be wired to accept single  
ended levels. The reference voltage V1= VCC/2 is generated by the  
bias resistors R1 and R2. The bypass capacitor (C1) is used to help  
filter noise on the DC bias. This bias circuit should be located as close  
to the input pin as possible. The ratio of R1 and R2 might need to be  
adjusted to position the V1 in the center of the input voltage swing.  
For example, if the input clock swing is 2.5V and VCC = 3.3V, R1 and  
R2 value should be adjusted to set V1 at 1.25V. The values below are  
for when both the single ended swing and VCC are at the same  
voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VCC + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
20  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Overdriving the XTAL Interface  
The XTAL_IN input can be overdriven by an LVCMOS driver or by one  
side of a differential driver through an AC coupling capacitor. The  
XTAL_OUT pin can be left floating. The amplitude of the input signal  
should be between 500mV and 1.8V and the slew rate should not be  
less than 0.2V/nS. For 3.3V LVCMOS inputs, the amplitude must be  
reduced from full swing to at least half the swing in order to prevent  
signal interference with the power rail and to reduce internal noise.  
Figure 2A shows an example of the interface diagram for a high  
speed 3.3V LVCMOS driver. This configuration requires that the sum  
of the output impedance of the driver (Ro) and the series resistance  
(Rs) equals the transmission line impedance. In addition, matched  
termination at the crystal input will attenuate the signal in half. This  
can be done in one of two ways. First, R1 and R2 in parallel should  
equal the transmission line impedance. For most 50applications,  
R1 and R2 can be 100. This can also be accomplished by removing  
R1 and changing R2 to 50. The values of the resistors can be  
increased to reduce the loading for a slower and weaker LVCMOS  
driver. Figure 2B shows an example of the interface diagram for an  
LVPECL driver. This is a standard LVPECL termination with one side  
of the driver feeding the XTAL_IN input. It is recommended that all  
components in the schematics be placed in the layout. Though some  
components might not be used, they can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a quartz crystal as the input.  
Figure 2A. General Diagram for LVCMOS Driver to XTAL Input Interface  
Figure 2B. General Diagram for LVPECL Driver to XTAL Input Interface  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
21  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
3.3V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, HCSL and other differential  
signals. Both VSWING and VOH must meet the VPP and VCMR input  
requirements. Figures 3A to 3D show interface examples for the  
CLK/nCLK input driven by the most common driver types. The input  
interfaces suggested here are examples only. If the driver is from  
another vendor, use their termination recommendation. Please  
consult with the vendor of the driver component to confirm the driver  
termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Differential  
Input  
LVPECL  
nCLK  
R1  
50Ω  
R2  
50Ω  
Differential  
Input  
LVPECL  
R2  
50Ω  
Figure 3A. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
*R3  
*R4  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
Receiver  
HCSL  
LVDS  
Figure 3C. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
22  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
2.5V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, HCSL and other differential  
signals. Both VSWING and VOH must meet the VPP and VCMR input  
requirements. Figures 4A to 4D show interface examples for the  
CLK/nCLK input driven by the most common driver types. The input  
interfaces suggested here are examples only. If the driver is from  
another vendor, use their termination recommendation. Please  
consult with the vendor of the driver component to confirm the driver  
termination requirements.  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
R3  
R4  
Zo = 50  
250  
250  
CLK  
Zo = 50  
Zo = 50  
CLK  
Zo = 50  
nCLK  
Differential  
Input  
LVPECL  
nCLK  
R1  
50  
R2  
50  
Differential  
Input  
LVPECL  
R1  
R2  
62.5  
62.5  
R3  
18  
Figure 4A. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
Figure 4B. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
2.5V  
2.5V  
2.5V  
2.5V  
Zo = 50  
Zo = 50  
*R3  
*R4  
33  
33  
CLK  
CLK  
R1  
100  
Zo = 50  
nCLK  
nCLK  
Zo = 50  
Differential  
Input  
Differential  
Input  
HCSL  
R1  
50  
R2  
50  
LVDS  
*Optional R3 and R4 can be 0  
Figure 4C. CLK/nCLK Input Driven by a  
2.5V HCSL Driver  
Figure 4D. CLK/nCLK Input Driven by a 2.5V LVDS Driver  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
23  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
LVDS Driver Termination  
For a general LVDS interface, the recommended value for the  
termination impedance (ZT) is between 90and 132. The actual  
value should be selected to match the differential impedance (Z0) of  
your transmission line. A typical point-to-point LVDS design uses a  
100parallel resistor at the receiver and a 100differential  
transmission-line environment. In order to avoid any  
standard termination schematic as shown in Figure 5A can be used  
with either type of output structure. Figure 5B, which can also be  
used with both output types, is an optional termination with center tap  
capacitance to help filter common mode noise. The capacitor value  
should be approximately 50pF. If using a non-standard termination, it  
is recommended to contact IDT and confirm if the output structure is  
current source or voltage source type. In addition, since these  
outputs are LVDS compatible, the input receiver’s amplitude and  
common-mode input range should be verified for compatibility with  
the output.  
transmission-line reflection issues, the components should be  
surface mounted and must be placed as close to the receiver as  
possible. IDT offers a full line of LVDS compliant devices with two  
types of output structures: current source and voltage source. The  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 6A and 6B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50  
Figure 6A. 3.3V LVPECL Output Termination  
3.3V  
R3  
R4  
125  
125  
3.3V  
3.3V  
Z
Z
o = 50  
o = 50  
+
_
LVPECL  
Input  
R1  
84  
R2  
84  
Figure 6B. 3.3V LVPECL Output Termination  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
24  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Termination for 2.5V LVPECL Outputs  
Figure 7A and Figure 9B show examples of termination for 2.5V  
LVPECL driver.These terminations are equivalent to terminating 50  
to VCCO – 2V. For VCCO = 2.5V, the VCCO – 2V is very close to ground  
level. The R3 in Figure 7B can be eliminated and the termination is  
shown in Figure 7C.  
2.5V  
VCCO = 2.5V  
2.5V  
2.5V  
VCCO = 2.5V  
R1  
R3  
50  
250  
250  
+
50  
50  
+
50  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
2.5V LVPECL Driver  
R2  
62.5  
R4  
62.5  
R3  
18  
Figure 7A. 2.5V LVPECL Driver Termination Example  
Figure 7B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCCO = 2.5V  
50  
+
50  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
Figure 7C. 2.5V LVPECL Driver Termination Example  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
25  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 6. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 6. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
26  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
PCI Express Application Note  
PCI Express jitter analysis methodology models the system  
response to reference clock jitter. The block diagram below shows the  
most frequently used Common Clock Architecture in which a copy of  
the reference clock is provided to both ends of the PCI Express Link.  
In the jitter analysis, the transmit (Tx) and receive (Rx) serdes PLLs  
are modeled as well as the phase interpolator in the receiver. These  
transfer functions are called H1, H2, and H3 respectively. The overall  
system transfer function at the receiver is:  
Hts= H3s  H1sH2s  
The jitter spectrum seen by the receiver is the result of applying this  
system transfer function to the clock spectrum X(s) and is:  
Ys= Xs  H3s  H1sH2s  
In order to generate time domain jitter numbers, an inverse Fourier  
Transform is performed on X(s)*H3(s) * [H1(s) - H2(s)].  
PCIe Gen 2A Magnitude of Transfer Function  
PCI Express Common Clock Architecture  
For PCI Express Gen 1, one transfer function is defined and the  
evaluation is performed over the entire spectrum: DC to Nyquist (e.g  
for a 100MHz reference clock: 0Hz – 50MHz) and the jitter result is  
reported in peak-peak.  
PCIe Gen 2B Magnitude of Transfer Function  
For PCI Express Gen 3, one transfer function is defined and the  
evaluation is performed over the entire spectrum. The transfer  
function parameters are different from Gen 1 and the jitter result is  
reported in RMS.  
PCIe Gen 1 Magnitude of Transfer Function  
For PCI Express Gen 2, two transfer functions are defined with 2  
evaluation ranges and the final jitter number is reported in RMS. The  
two evaluation ranges for PCI Express Gen 2 are 10kHz – 1.5MHz  
(Low Band) and 1.5MHz – Nyquist (High Band). The plots show the  
individual transfer functions as well as the overall transfer function Ht.  
PCIe Gen 3 Magnitude of Transfer Function  
For a more thorough overview of PCI Express jitter analysis  
methodology, please refer to IDT Application Note PCI Express  
Reference Clock Requirements.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
27  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Schematic Layout  
Figure 9 shows an example of IDT8T49N004I application schematic.  
The schematic focuses on functional connections and is not  
configuration specific. Refer to the pin description and functional  
tables in the datasheet to ensure that the logic control inputs are  
properly set.  
In order to achieve the best possible filtering, it is recommended that  
the placement of the filter components be on the device side of the  
PCB as close to the power pins as possible. If space is limited, the  
0.1uF capacitor in each power pin filter should be placed on the  
device side of the PCB and the other components can be placed on  
the opposite side.  
In this example, the device is operated at VCC = VCCO = VCCA = 3.3V  
rather than 2.5V. The CLK, nCLK inputs are provided by a 3.3V  
LVPECL driver and depicted with a Y-termination rather than the  
standard four resistor VCC-2V Thevinin termination for reasons of  
minimum termination power and layout simplicity. Three examples of  
PECL terminations are shown for the outputs to demonstrate some  
of the design options available with LVPECL.  
Power supply filter recommendations are a general guideline to be  
used for reducing external noise from coupling into the devices. The  
VCC and VCCO filters start to attenuate noise at approximately 10kHz.  
If a specific frequency noise component is known, such as switching  
power supply frequencies, it is recommended that component values  
be adjusted and if required, additional filtering be added. Additionally,  
good general design practices for power plane voltage stability  
suggests adding bulk capacitances in the local area of all devices.  
As with any high speed analog circuitry, the power supply pins are  
vulnerable to noise. To achieve optimum jitter performance, power  
supply isolation is required. The IDT8T49N004I provides separate  
power supplies to isolate from coupling into the internal PLL.  
The schematic example focuses on functional connections and is not  
configuration specific. Refer to the pin description and functional  
tables in the datasheet to ensure the logic control inputs are properly  
set.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
28  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Figure 9. IDT8T49N004I Application Schematic  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
29  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
LVPECL Power Considerations  
This section provides information on power dissipation and junction temperature for the IDT8T49N004I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the IDT8T49N004I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 192mA = 665.28mW  
Power (outputs)MAX = 31.55mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 31.55mW = 126.2mW  
Total Power_MAX (3.465V, with all outputs switching) = 665.28W + 126.2mW = 791.48W  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 33.1°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.791W * 33.1°C/W = 111.2°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance for 32-Lead VFQFN, Forced Convection  
JA  
JA by Velocity  
0
Meters per Second  
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
33.1°C/W  
28.1°C/W  
25.4°C/W  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
30  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 12.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 10. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.75V  
(VCCO_MAX – VOH_MAX) = 0.75V  
For logic low, VOUT = VOL_MAX = VCCO_MAX 1.6V  
(VCCO_MAX – VOL_MAX) = 1.6V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX – VOH_MAX) =  
[(2V – 0.75V)/50] * 0.75V = 18.75mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX – VOL_MAX) =  
[(2V – 1.6V)/50] * 1.6V = 12.80mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 31.55mW  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
31  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
LVDS Power Considerations  
This section provides information on power dissipation and junction temperature for the IDT8T49N004I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the IDT8T49N004I is the sum of the core power plus the analog power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V +5% = 3.465V, which gives worst case results.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.465V * (125mA + 32mA) = 544mW  
Power (outputs)MAX = VDDO_MAX * IDDO_MAX = 3.465V * 85mA = 294.525mW  
Total Power_MAX = 544mW + 294.525mW = 876.645mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 33.1°C/W per Table 8 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.877W * 33.1°C/W = 112.8°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 8. Thermal Resistance for 32-Lead VFQFN, Forced Convection  
JA  
JA by Velocity  
0
Meters per Second  
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
33.1°C/W  
28.1°C/W  
25.4°C/W  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
32  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Reliability Information  
Table 9. vs. Air Flow Table for a 32-Lead VFQFN  
JA  
JA vs. Air Flow  
Meters per Second  
0
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
33.1°C/W  
28.1°C/W  
25.4°C/W  
Transistor Count  
The transistor count for IDT8T49N004I is: 26,856  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
33  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
32-Lead VFQFN Package Outline and Dimensions  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
34  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
8T49N004A-dddNLGI  
8T49N004A-dddNLGI8  
Marking  
Package  
Shipping Packaging  
Tray  
Temperature  
-40C to 85C  
-40C to 85C  
IDT8T49N004A-dddNLGI “Lead-Free” 32-Lead VFQFN  
IDT8T49N004A-dddNLGI “Lead-Free” 32-Lead VFQFN  
Tape & Reel  
NOTE: For the specific -ddd order codes, refer to the document Programmable FemtoClock® NG Product Ordering Guide.  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
35  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
Changed name of the IDT8T49N00xI Programmable FemtoClock® NG Product Ordering  
Information document to Programmable FemtoClock® Ordering Product Information  
Deleted quantity from Tape & Reel, Deleted Lead Free note.  
9, 35  
A
8/20/2013  
T10  
35  
1
Changed title to Programmable FemtoClock® NG LVPECL/LVDS Clock Generator with  
4-Outputs.  
Changed text from ‘Programmable FemtoClock® Ordering Product Information’ to  
Programmable FemtoClock® NG Product Ordering Guide’.  
Changed Note from ‘Programmable FemtoClock® Ordering Product Information’ to  
Programmable FemtoClock® NG Product Ordering Guide’.  
9
A
A
9/26/13  
T10  
T5  
35  
12  
changed the min load capacitance from 12pF to 10pF  
10/22/13  
IDT8T49N004ANLGI REVISION A OCTOBER 15, 2013  
36  
©2013 Integrated Device Technology, Inc.  
IDT8T49N004I Data Sheet  
PROGRAMMABLE FEMTOCLOCK® NG LVPECL/LVDS CLOCK GENERATOR WITH 4-OUTPUTS  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support Sales  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to signifi-  
cantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2013. All rights reserved.  
厂商 型号 描述 页数 下载

HUTSON

8T44A [ TRIAC, 400V V(DRM), 4A I(T)RMS, TO-202, ] 2 页

TECCOR

8T44HA 晶闸管产品目录[ Thyristor Product Catalog ] 223 页

HUTSON

8T44HA [ TRIAC, 400V V(DRM), 4A I(T)RMS, TO-202, ] 2 页

TECCOR

8T44SH 晶闸管产品目录[ Thyristor Product Catalog ] 223 页

HUTSON

8T44SH [ 4 Quadrant Logic Level TRIAC, 400V V(DRM), 4A I(T)RMS, TO-202, ] 2 页

HUTSON

8T44TH [ TRIAC, 400V V(DRM), 4A I(T)RMS, TO-202, ] 2 页

HUTSON

8T46HA [ TRIAC, 400V V(DRM), 6A I(T)RMS, TO-202, ] 2 页

HUTSON

8T46SH [ 4 Quadrant Logic Level TRIAC, 400V V(DRM), 6A I(T)RMS, TO-202 ] 2 页

HUTSON

8T46TH [ TRIAC, 400V V(DRM), 6A I(T)RMS, TO-202, ] 2 页

VISHAY

8T4702A5 [ RESISTOR, TEMPERATURE DEPENDENT, NTC, 47000 ohm, CHASSIS MOUNT, RADIAL LEADED ] 4 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.200955s