找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

PZ3128-S12A84

型号:

PZ3128-S12A84

品牌:

PHILIPS[ PHILIPS SEMICONDUCTORS ]

页数:

22 页

PDF大小:

180 K

INTEGRATED CIRCUITS  
PZ3128  
128 macrocell CPLD  
Product specification  
1997 Aug 12  
Supersedes data of 1997 Apr 28  
IC27 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
FEATURES  
Table 1. PZ3128 Features  
Industry’s first TotalCMOS PLD – both CMOS design and  
PZ3128  
4000  
100  
process technologies  
Usable gates  
Fast Zero Power (FZP ) design technique provides ultra-low  
Maximum inputs  
Maximum I/Os  
power and very high speed  
96  
IEEE 1149.1–compliant, JTAG Testing Capability  
4 pin JTAG interface (TCK, TMS, TDI, TDO)  
IEEE 1149.1 TAP Controller  
Number of macrocells  
Propagation delay (ns)  
128  
10.0  
84-pin PLCC, 100-pin PQFP,  
100-pin TQFP, 128-pin LQFP,  
160-pin PQFP  
JTAG commands include: Bypass, Sample/Preload, Extest,  
Usercode, Idcode, HighZ  
Packages  
3.3 Volt, In–System Programmable (ISP) using the JTAG interface  
On–chip supervoltage generation  
DESCRIPTION  
ISP commands include: Enable, Erase, Program, Verify  
Supported by multiple ISP programming platforms  
The PZ3128 CPLD (Complex Programmable Logic Device) is the  
third in a family of Fast Zero Power (FZP ) CPLDs from Philips  
Semiconductors. These devices combine high speed and zero  
power in a 128 macrocell CPLD. With the FZP design technique,  
the PZ3128 offers true pin-to-pin speeds of 10ns, while  
High speed pin-to-pin delays of 10ns  
Ultra-low static power of less than 100µA  
simultaneously delivering power that is less than 100µA at standby  
without the need for ‘turbo bits’ or other power down schemes. By  
replacing conventional sense amplifier methods for implementing  
product terms (a technique that has been used in PLDs since the  
bipolar era) with a cascaded chain of pure CMOS gates, the  
dynamic power is also substantially lower than any competing CPLD  
– 70% lower at 50MHz. These devices are the first TotalCMOS  
PLDs, as they use both a CMOS process technology and the  
patented full CMOS FZP design technique. For 5V applications,  
Philips also offers the high speed PZ5128 CPLD that offers these  
features in a full 5V implementation.  
Dynamic power that is 70% lower at 50MHz than competing  
devices  
100% routable with 100% utilization while all pins and all  
macrocells are fixed  
Deterministic timing model that is extremely simple to use  
4 clocks with programmable polarity at every macrocell  
Support for complex asynchronous clocking  
Innovative XPLA architecture combines high speed with  
extreme flexibility  
The Philips FZP CPLDs introduce the new patent-pending XPLA  
(eXtended Programmable Logic Array) architecture. The XPLA  
architecture combines the best features of both PLA and PAL type  
structures to deliver high speed and flexible logic allocation that  
results in superior ability to make design changes with fixed pinouts.  
The XPLA structure in each logic block provides a fast 10ns PAL  
path with 5 dedicated product terms per output. This PAL path is  
joined by an additional PLA structure that deploys a pool of 32  
product terms to a fully programmable OR array that can allocate  
the PLA product terms to any output in the logic block. This  
1000 erase/program cycles guaranteed  
20 years data retention guaranteed  
Logic expandable to 37 product terms  
PCI compliant  
Advanced 0.5µ E CMOS process  
Security bit prevents unauthorized access  
2
Design entry and verification using industry standard and Philips  
combination allows logic to be allocated efficiently throughout the  
logic block and supports as many as 37 product terms on an output.  
The speed with which logic is allocated from the PLA array to an  
output is only 2.5ns, regardless of the number of PLA product terms  
CAE tools  
Reprogrammable using industry standard device programmers  
Innovative Control Term structure provides either sum terms or  
product terms in each logic block for:  
used, which results in worst case t ’s of only 12.5ns from any pin  
PD  
Programmable 3-State buffer  
to any other pin. In addition, logic that is common to multiple outputs  
can be placed on a single PLA product term and shared across  
multiple outputs via the OR array, effectively increasing design  
density.  
Asynchronous macrocell register preset/reset  
Programmable global 3-State pin facilitates ‘bed of nails’ testing  
without using logic resources  
The PZ3128 CPLDs are supported by industry standard CAE tools  
(Cadence, Mentor, Synopsys, Synario, Viewlogic, MINC), using text  
(Abel, VHDL, Verilog) and/or schematic entry. Design verification  
uses industry standard simulators for functional and timing  
simulation. Development is supported on personal computer, Sparc,  
and HP platforms. Device fitting uses either MINC or Philips  
Semiconductors-developed tools.  
Available in PLCC, TQFP, and PQFP packages  
Available in both Commercial and Industrial grades  
The PZ3128 CPLD is electrically reprogrammable using industry  
standard device programmers from vendors such as Data I/O, BP  
Microsystems, SMS, and others. The PZ3128 also includes an  
industry-standard, IEEE 1149.1, JTAG interface through which  
in-system programming (ISP) and reprogramming of the device is  
supported.  
PAL is a registered trademark of Advanced Micro Devices, Inc.  
2
1997 Aug 12  
853–2022 18270  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
ORDERING INFORMATION  
ORDER CODE  
PZ3128–S10A84  
PZ3128-S12A84  
PZ3128-S15A84  
PZ3128IS12A84  
PZ3128IS15A84  
PZ3128–S10BB1  
PZ3128-S12BB1  
PZ3128-S15BB1  
PZ3128IS12BB1  
PZ3128IS15BB1  
PZ3128–S10BP  
PZ3128-S12BP  
PZ3128-S15BP  
PZ3128IS12BP  
PZ3128IS15BP  
PZ3128–S10BE  
PZ3128-S12BE  
PZ3128-S15BE  
PZ3128IS12BE  
PZ3128IS15BE  
PZ3128–S10BB2  
PZ3128-S12BB2  
PZ3128-S15BB2  
PZ3128IS12BB2  
PZ3128IS15BB2  
DESCRIPTION  
84–pin PLCC, 10ns T  
DESCRIPTION  
DRAWING NUMBER  
SOT189–3  
SOT189-3  
SOT189-3  
SOT189–3  
SOT189-3  
SOT382–1  
SOT382-1  
SOT382-1  
SOT382–1  
SOT382-1  
SOT386–1  
SOT386-1  
SOT386-1  
SOT386–1  
SOT386-1  
SOT425–1  
SOT425-1  
SOT425-1  
SOT425–1  
SOT425-1  
SOT322–2  
SOT322-2  
SOT322-2  
SOT322–2  
SOT322-2  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Commercial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
Industrial temp range, 3.3 volt power supply, ± 10%  
PD  
84-pin PLCC, 12ns t  
84-pin PLCC, 15ns t  
PD  
PD  
84–pin PLCC, 12ns t  
PD  
PD  
84-pin PLCC, 15ns t  
100–pin PQFP, 10ns t  
PD  
PD  
PD  
100-pin PQFP, 12ns t  
100-pin PQFP, 15ns t  
100–pin PQFP, 12ns t  
PD  
PD  
100-pin PQFP, 15ns t  
100–pin TQFP, 10ns t  
PD  
PD  
PD  
100-pin TQFP, 12ns t  
100-pin TQFP, 15ns t  
100–pin TQFP, 12ns t  
PD  
PD  
100-pin TQFP, 15ns t  
128–pin LQFP, 10ns t  
PD  
PD  
PD  
128-pin LQFP, 12ns t  
128-pin LQFP, 15ns t  
128–pin LQFP, 12ns t  
PD  
128-pin LQFP, 15ns t  
PD  
160–pin PQFP, 10ns t  
PD  
PD  
PD  
160-pin PQFP, 12ns t  
160-pin PQFP, 15ns t  
160–pin PQFP, 12ns t  
PD  
PD  
160-pin PQFP, 15ns t  
3
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
From this point of view, this architecture looks like many other CPLD  
architectures. What makes the CoolRunner family unique is what  
is inside each logic block and the design technique used to  
implement these logic blocks. The contents of the logic block will be  
described next.  
XPLA ARCHITECTURE  
Figure 1 shows a high level block diagram of a 128 macrocell device  
implementing the XPLA architecture. The XPLA architecture  
consists of logic blocks that are interconnected by a Zero-power  
Interconnect Array (ZIA). The ZIA is a virtual crosspoint switch. Each  
logic block is essentially a 36V16 device with 36 inputs from the ZIA  
and 16 macrocells. Each logic block also provides 32 ZIA feedback  
paths from the macrocells and I/O pins.  
MC0  
MC0  
MC1  
MC1  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MC15  
MC15  
16  
16  
16  
16  
MC0  
MC1  
MC0  
MC1  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
MC15  
MC15  
16  
16  
16  
16  
ZIA  
MC0  
MC1  
MC0  
MC1  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
MC15  
MC15  
16  
16  
16  
16  
MC0  
MC1  
MC0  
MC1  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
MC15  
MC15  
16  
16  
16  
16  
SP00464  
Figure 1. Philips XPLA CPLD Architecture  
4
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
Each macrocell has 5 dedicated product terms from the PAL array.  
Logic Block Architecture  
The pin-to-pin t of the PZ3128 device through the PAL array is  
PD  
Figure 2 illustrates the logic block architecture. Each logic block  
contains control terms, a PAL array, a PLA array, and 16 macrocells.  
the 6 control terms can individually be configured as either SUM or  
PRODUCT terms, and are used to control the preset/reset and  
output enables of the 16 macrocells’ flip-flops. The PAL array  
consists of a programmable AND array with a fixed OR array, while  
the PLA array consists of a programmable AND array with a  
programmable OR array. The PAL array provides a high speed path  
through the array, while the PLA array provides increased product  
term density.  
10ns. If a macrocell needs more than 5 product terms, it simply gets  
the additional product terms from the PLA array. The PLA array  
consists of 32 product terms, which are available for use by all 16  
macrocells. The additional propagation delay incurred by a  
macrocell using 1 or all 32 PLA product terms is just 2.5ns. So the  
total pin-to-pin t for the PZ3128 using 6 to 37 product terms is  
PD  
12.5ns (10ns for the PAL + 2.5ns for the PLA).  
36 ZIA INPUTS  
6
CONTROL  
5
PAL  
ARRAY  
PLA  
ARRAY  
(32)  
SP00435  
Figure 2. Philips Logic Block Architecture  
5
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
to control the Output Enable of the macrocell’s output buffers. The  
reason there are as many control terms dedicated for the Output  
Enable of the macrocell is to insure that all CoolRunner devices  
are PCI compliant. The macrocell’s output buffers can also be  
always enabled or disabled. All CoolRunner devices also provide a  
Global Tri-State (GTS) pin, which, when pulled Low, will 3-State all  
the outputs of the device. This pin is provided to support “In-Circuit  
Testing” or “Bed-of-Nails Testing”.  
Macrocell Architecture  
Figure 3 shows the architecture of the macrocell used in the  
CoolRunner family. The macrocell consists of a flip-flop that can be  
configured as either a D or T type. A D-type flip-flop is generally  
more useful for implementing state machines and data buffering. A  
T-type flip-flop is generally more useful in implementing counters. All  
CoolRunner family members provide both synchronous and  
asynchronous clocking and provide the ability to clock off either the  
falling or rising edges of these clocks. These devices are designed  
such that the skew between the rising and falling edges of a clock  
are minimized for clocking integrity. There are 4 clocks available on  
the PZ3128 device. Clock 0 (CLK0) is designated as the  
There are two feedback paths to the ZIA: one from the macrocell,  
and one from the I/O pin. The ZIA feedback path before the output  
buffer is the macrocell feedback path, while the ZIA feedback path  
after the output buffer is the I/O pin ZIA path. When the macrocell is  
used as an output, the output buffer is enabled, and the macrocell  
feedback path can be used to feedback the logic implemented in the  
macrocell. When the I/O pin is used as an input, the output buffer  
will be 3-Stated and the input signal will be fed into the ZIA via the  
I/O feedback path, and the logic implemented in the buried  
macrocell can be fed back to the ZIA via the macrocell feedback  
path. It should be noted that unused inputs or I/Os should be  
properly terminated.  
“synchronous” clock and must be driven by an external source.  
Clock 1 (CLK1), Clock 2 (CLK2), and Clock 3 (CLK3) can either be  
used as a synchronous clock (driven by an external source) or as an  
asynchronous clock (driven by a macrocell equation).  
Two of the control terms (CT0 and CT1) are used to control the  
Preset/Reset of the macrocell’s flip-flop. The Preset/Reset feature  
for each macrocell can also be disabled. Note that the Power-on  
Reset leaves all macrocells in the “zero” state when power is  
properly applied. The other 4 control terms (CT2–CT5) can be used  
TO ZIA  
D/T  
Q
INIT  
(P or R)  
GTS  
CLK0  
CLK0  
GND  
CT0  
CT1  
CT2  
CT3  
CT4  
CT5  
CLK1  
CLK1  
CLK2  
CLK2  
GND  
CLK3  
CLK3  
V
CC  
GND  
SP00457  
Figure 3. PZ3128 Macrocell Architecture  
6
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
Simple Timing Model  
Figure 4 shows the CoolRunner Timing Model. The CoolRunner  
timing model looks very much like a 22V10 timing model in that  
there are three main timing parameters, including t , t , and t  
In other competing architectures, the user may be able to fit the  
design into the CPLD, but is not sure whether system timing  
requirements can be met until after the design has been fit into the  
device. This is because the timing models of competing  
architectures are very complex and include such things as timing  
dependencies on the number of parallel expanders borrowed,  
sharable expanders, varying number of X and Y routing channels  
used, etc. In the XPLA architecture, the user knows up front  
whether the design will meet system timing requirements. This is  
due to the simplicity of the timing model.  
TotalCMOS Design Technique  
for Fast Zero Power  
Philips is the first to offer a TotalCMOS CPLD, both in process  
technology and design technique. Philips employs a cascade of  
CMOS gates to implement its Sum of Products instead of the  
traditional sense amp approach. This CMOS gate implementation  
allows Philips to offer CPLDs which are both high performance and  
low power, breaking the paradigm that to have low power, you must  
.
PD SU  
CO  
have low performance. Refer to Figure 5 and Table 2 showing the I  
vs. Frequency of our PZ3128 TotalCMOS CPLD (data taken w/eight  
up/down, loadable 16 bit counters @ 3.3V, 25°C).  
DD  
t
= COMBINATORIAL PAL ONLY  
= COMBINATORIAL PAL + PLA  
PD_PAL  
t
PD_PLA  
INPUT PIN  
INPUT PIN  
OUTPUT PIN  
OUTPUT PIN  
REGISTERED  
= PAL ONLY  
t
t
REGISTERED  
SU_PAL  
= PAL + PLA  
t
SU_PLA  
CO  
D
Q
CLOCK  
SP00441  
Figure 4. CoolRunner Timing Model  
140  
120  
100  
80  
I
DD  
(mA)  
60  
40  
20  
0
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
SP00471  
Figure 5.  
I vs. Frequency @ V = 3.3V, 25°C  
DD DD  
Table 2. I vs. Frequency  
DD  
V
DD  
= 3.3V  
FREQUENCY (MHz)  
0
1
20  
12  
40  
24  
60  
35  
80  
46  
100  
63  
Typical I (mA)  
.03  
.06  
DD  
7
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
specification: TCK, TMS, TDI, and TDO. The fifth signal defined by  
the JTAG specification is TRST* (Test Reset). TRST* is considered  
an optional signal, since it is not actually required to perform BST or  
ISP. The Philips PZ3128 saves an I/O pin for general purpose use  
by not implementing the optional TRST* signal in the JTAG  
interface. Instead, the Philips PZ3128 supports the test reset  
functionality through the use of its power up reset circuit, which is  
included in all Philips CPLDs. The pins associated with the power up  
reset circuit should connect to an external pull-up resistor to keep  
the JTAG signals from floating when they are not being used.  
JTAG Testing Capability  
JTAG is the commonly-used acronym for the Boundary Scan Test  
(BST) feature defined for integrated circuits by IEEE Standard  
1149.1. This standard defines input/output pins, logic control  
functions, and commands which facilitate both board and device  
level testing without the use of specialized test equipment. BST  
provides the ability to test the external connections of a device, test  
the internal logic of the device, and capture data from the device  
during normal operation. BST provides a number of benefits in each  
of the following areas:  
Testability  
In the Philips PZ3128, the four mandatory JTAG pins each require a  
unique, dedicated pin on the device. However, if JTAG and ISP are  
not desired in the end-application, these pins may instead be used  
as additional general I/O pins. The decision as to whether these pins  
are used for JTAG/ISP or as general I/O is made when the JEDEC  
file is generated. If the use of JTAG/ISP is selected, the dedicated  
pins are not available for general purpose use. However, unlike  
competing CPLD’s, the Philips PZ3128 does allow the macrocell  
logic associated with these dedicated pins to be used as buried logic  
even when JTAG/ISP is selected. Table 4 defines the dedicated pins  
used by the four mandatory JTAG signals for each of the PZ3128  
package types.  
Allows testing of an unlimited number of interconnects on the  
printed circuit board  
Testability is designed in at the component level  
Enables desired signal levels to be set at specific pins (Preload)  
Data from pin or core logic signals can be examined during  
normal operation  
Reliability  
Eliminates physical contacts common to existing test fixtures  
(e.g., “bed-of-nails”)  
Degradation of test equipment is no longer a concern  
The JTAG specifications defines two sets of commands to support  
boundary-scan testing: high-level commands and low-level  
commands. High-level commands are executed via board test  
software on an a user test station such as automated test  
equipment, a PC, or an engineering workstation (EWS). Each  
high-level command comprises a sequence of low level commands.  
These low-level commands are executed within the component  
under test, and therefore must be implemented as part of the TAP  
Controller design. The set of low-level boundary-scan commands  
implemented in the Philips PZ3128 is defined in Table 5. By  
supporting this set of low-level commands, the PZ3128 allows  
execution of all high-level boundary-scan commands.  
Facilitates the handling of smaller, surface-mount components  
Allows for testing when components exist on both sides of the  
printed circuit board  
Cost  
Reduces/eliminates the need for expensive test equipment  
Reduces test preparation time  
Reduces spare board inventories  
The Philips PZ3128’s JTAG interface includes a TAP Port and a TAP  
Controller, both of which are defined by the IEEE 1149.1 JTAG  
Specification. As implemented in the Philips PZ3128, the TAP Port  
includes four of the five pins (refer to Table 3) described in the JTAG  
Table 3. JTAG Pin Description  
PIN  
NAME  
DESCRIPTION  
TCK  
Test Clock Output  
Clock pin to shift the serial data and instructions in and out of the TDI and TDO pins, respectively.  
TCK is also used to clock the TAP Controller state machine.  
TMS  
Test Mode Select  
Serial input pin selects the JTAG instruction mode. TMS should be driven high during user mode  
operation.  
TDI  
Test Data Input  
Serial input pin for instructions and test data. Data is shifted in on the rising edge of TCK.  
TDO  
Test Data Output  
Serial output pin for instructions and test data. Data is shifted out on the falling edge of TCK. The  
signal is tri-stated if data is not being shifted out of the device.  
Table 4. PZ3128 JTAG Pinout by Package Type  
(PIN NUMBER / MACROCELL #)  
DEVICE  
TCK  
TMS  
TDI  
TDO  
PZ3128  
84-pin PLCC  
100-pin PQFP  
100-pin TQFP  
128-pin LQFP  
160-pin PQFP  
62 / 96 (F15)  
64 / 96 (F15)  
62 / 96 (F15)  
82 / 96 (F15)  
99 / 96 (F15)  
23 / 48 (C15)  
17 / 48 (C15)  
15 / 48 (C15)  
21 / 48 (C15)  
22 / 48 (C15)  
14 / 32 (B15)  
6 / 32 (B15)  
4 / 32 (B15)  
8 / 32 (B15)  
9 / 32 (B15)  
71 / 112 (G15)  
75 / 112 (G15)  
73 / 112 (G15)  
95 / 112 (G15)  
112/ 112 (G15)  
8
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
Table 5. PZ3128 Low-Level JTAG Boundary-Scan Commands  
INSTRUCTION  
(Instruction Code)  
Register Used  
DESCRIPTION  
Sample/Preload  
(0010)  
Boundary–Scan Register  
The mandatory SAMPLE/PRELOAD instruction allows a snapshot of the normal operation of the component  
to be taken and examined. It also allows data values to be loaded onto the latched parallel outputs of the  
Boundary-Scan Shift-Register prior to selection of the other boundary-scan test instructions.  
Extest  
(0000)  
Boundary-Scan Register  
The mandatory EXTEST instruction allows testing of off-chip circuitry and board level interconnections. Data  
would typically be loaded onto the latched parallel outputs of Boundary-Scan Shift-Register using the  
Sample/Preload instruction prior to selection of the EXTEST instruction.  
Bypass  
(1111)  
Bypass Register  
Places the 1 bit bypass register between the TDI and TDO pins, which allows the BST data to pass  
synchronously through the selected device to adjacent devices during normal device operation. The Bypass  
instruction can be entered by holding TDI at a constant high value and completing an Instruction-Scan cycle.  
Idcode  
(0001)  
Boundary-Scan Register  
Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted  
out of TDO. The IDCODE instruction permits blind interrogation of the components assembled onto a printed  
circuit board. Thus, in circumstances where the component population may vary, it is possible to determine  
what components exist in a product.  
HighZ  
(0101)  
Bypass Register  
The HIGHZ instruction places the component in a state in which all of its system logic outputs are placed in  
an inactive drive state (e.g., high impedance). In this state, an in-circuit test system may drive signals onto  
the connections normally driven by a component output without incurring the risk of damage to the  
component. The HighZ instruction also forces the Bypass Register between TDI and TDO.  
3.3-Volt, In-System Programming (ISP)  
Field Support  
ISP is the ability to reconfigure the logic and functionality of a  
device, printed circuit board, or complete electronic system before,  
during, and after its manufacture and shipment to the end customer.  
ISP provides substantial benefits in each of the following areas:  
Easy remote upgrades and repair  
Support for field configuration, re-configuration, and  
customization  
The Philips PZ3128 allows for 3.3-Volt, in-system  
Design  
programming/reprogramming of its EEPROM cells via its JTAG  
interface. An on-chip charge pump eliminates the need for  
externally-provided supervoltages, so that the PZ3128 may be  
easily programmed on the circuit board using only the 3.3-volt  
supply required by the device for normal operation. A set of low-level  
ISP basic commands implemented in the PZ3128 enable this  
feature. The ISP commands implemented in the Philips PZ3128 are  
specified in Table 6. Please note that an ENABLE command must  
precede all ISP commands unless an ENABLE command has  
already been given for a preceding ISP command and the device  
has not gone through a Test-Logic/Rest TAP Controller State.  
Faster time-to-market  
Debug partitioning and simplified prototyping  
Printed circuit board reconfiguration during debug  
Better device and board level testing  
Manufacturing  
Multi-Functional hardware  
Reconfiguarability for Test  
Eliminates handling of “fine lead-pitch” components for  
programming  
Reduced Inventory and manufacturing costs  
Improved quality and reliability  
Table 6. Low Level ISP Commands  
INSTRUCTION  
(Register Used)  
INSTRUCTION  
CODE  
DESCRIPTION  
Enable  
(ISP Shift Register)  
1001  
Enables the Erase, Program, and Verify commands. Using the ENABLE instruction before the  
Erase, Program, and Verify instructions allows the user to specify the outputs the device using  
the JTAG Boundary–Scan SAMPLE/PRELOAD command.  
Erase  
(ISP Shift Register)  
1010  
1011  
1100  
Erases the entire EEPROM array. The outputs during this operation can be defined by user by  
using the JTAG SAMPLE/PRELOAD command.  
Program  
(ISP Shift Register)  
Programs the data in the ISP Shift Register into the addressed EEPROM row. The outputs  
during this operation can be defined by user by using the JTAG SAMPLE/PRELOAD command.  
Verify  
(ISP Shift Register)  
Transfers the data from the addressed row to the ISP Shift Register. The data can then be  
shifted out and compared with the JEDEC file. The outputs during this operation can be defined  
by user by using the JTAG SAMPLE/PRELOAD command.  
9
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
JTAG and ISP Interfacing  
Automated Test Equipment  
Third party Programmers  
High-End JTAG and ISP Tools  
A number of industry-established methods exist for JTAG/ISP  
interfacing with CPLD’s and other integrated circuits. The Philips  
PZ3128 supports the following methods:  
PC Parallel Port  
Workstation or PC Serial Port  
Embedded Processor  
A Boundary-Scan Description Language (BSDL) description of the  
PZ3128 is also available from Philips for use in test program  
development. For more details on JTAG and ISP for the PZ3128,  
refer to the related application note: JTAG and ISP in Philips CPLDs.  
Table 7. Programming Specifications  
SYMBOL  
PARAMETER  
MIN.  
3.0  
MAX.  
UNIT  
DC Parameters  
V
V
supply program/verify  
3.6  
V
mA  
V
CCP  
CCP  
CC  
I
I
limit program/verify  
200  
CC  
V
V
V
V
Input voltage (High)  
Input voltage (Low)  
Output voltage (Low)  
Output voltage (High)  
Output current (Low)  
Output current (High)  
2.0  
IH  
0.8  
0.5  
V
IL  
V
SOL  
SOH  
2.4  
8
V
TDO_I  
TDO_I  
mA  
mA  
OL  
–8  
OH  
AC Parameters  
f
CLK maximum frequency  
Pulse width erase  
10  
100  
10  
MHz  
ms  
ms  
µs  
MAX  
PWE  
PWP  
Pulse width program  
PWV  
Pulse width verify  
10  
INIT  
Initialization time  
100  
10  
µs  
TMS_SU  
TDI_SU  
TMS_H  
TDI_H  
TDO_CO  
TMS setup time before TCK ↑  
TDI setup time before TCK ↑  
TMS hold time after TCK ↑  
TDI hold time after TCK ↑  
TDO valid after TCK ↓  
ns  
10  
ns  
25  
ns  
25  
ns  
40  
ns  
1
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
MIN.  
–0.5  
–1.2  
–0.5  
–30  
MAX.  
UNIT  
V
V
V
V
Supply voltage  
7.0  
DD  
I
Input voltage  
V
DD  
V
DD  
+0.5  
V
Output voltage  
+0.5  
V
OUT  
I
I
Input current  
30  
mA  
mA  
°C  
°C  
IN  
OUT  
Output current  
–100  
–40  
100  
150  
150  
T
J
Maximum junction temperature  
Storage temperature  
T
str  
–65  
NOTE:  
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at  
these or any other condition above those indicated in the operational and programming specification is not implied.  
OPERATING RANGE  
PRODUCT GRADE  
Commercial  
TEMPERATURE  
0 to +70°C  
VOLTAGE  
3.3 ±10% V  
3.3 ±10% V  
Industrial  
–40 to +85°C  
10  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
DC ELECTRICAL CHARACTERISTICS FOR COMMERCIAL GRADE DEVICES  
Commercial: 0°C T  
+70°C; 3.0V V 3.6V  
amb  
DD  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN.  
MAX.  
UNIT  
V
V
V
V
V
V
Input voltage low  
V
= 3.0V  
= 3.6V  
0.8  
IL  
DD  
DD  
Input voltage high  
V
2.0  
V
IH  
I
Input clamp voltage  
Output voltage low  
V
= 3.0V, I = 18mA  
–1.2  
0.5  
V
DD  
IN  
V
DD  
= 3.0V, I = 8mA  
V
OL  
OH  
OL  
Output voltage high  
Input leakage current  
3-Stated output leakage current  
Standby current  
V
= 3.0V, I = 8mA  
2.4  
–10  
–10  
V
DD  
OH  
I
I
I
V
IN  
V
IN  
= 0 to V  
= 0 to V  
10  
10  
60  
2
µA  
µA  
µA  
mA  
mA  
mA  
pF  
pF  
pF  
I
DD  
DD  
OZ  
V
DD  
= 3.6V, T  
= 0°C  
DDQ  
amb  
V
= 3.6V, T  
= 0°C @ 1MHz  
= 0°C @ 50MHz  
amb  
DD  
amb  
1
I
I
Dynamic current  
DDD  
V
DD  
= 3.6V, T  
50  
–100  
8
2
Short circuit output current  
1 pin at a time for no longer than 1 second  
–50  
5
OS  
2
C
C
C
Input pin capacitance  
T
= 25°C, f = 1MHz  
= 25°C, f = 1MHz  
= 25°C, f = 1MHz  
IN  
amb  
2
Clock input capacitance  
T
amb  
12  
10  
CLK  
I/O  
2
I/O pin capacitance  
T
amb  
NOTES:  
1. This parameter measured with a 16-bit, loadable up/down counter loaded into every logic block, with all outputs disabled and unloaded.  
Inputs are tied to V or ground. This parameter guaranteed by design and characterization, not testing.  
DD  
2. Typical values, not tested.  
1
AC ELECTRICAL CHARACTERISTICS FOR COMMERCIAL GRADE DEVICES  
Commercial: 0°C T  
+70°C; 3.0V V 3.6V  
amb  
DD  
–10  
MAX.  
–12  
MAX.  
–15  
MAX.  
SYMBOL  
PARAMETER  
UNIT  
MIN.  
MIN.  
MIN.  
Propagation delay time, input (or feedback node) to output  
through PAL  
t
t
2
10  
2
12  
2
15  
ns  
ns  
PD_PAL  
Propagation delay time, input (or feedback node) to output  
through PAL & PLA  
3
12.5  
7
3
14.5  
8
3
17.5  
9
PD_PLA  
t
t
t
t
t
t
t
t
f
f
f
t
Clock to out delay time  
2
6
2
7
2
8
ns  
ns  
CO  
Setup time (from input or feedback node) through PAL  
SU_PAL  
SU_PLA  
H
Setup time (from input or feedback node) through PAL + PLA  
8.5  
9.5  
10.5  
ns  
Hold time  
0
0
0
ns  
Clock High time  
Clock Low time  
Input Rise time  
3
3
4
4
4
4
ns  
CH  
ns  
CL  
20  
20  
20  
20  
20  
20  
ns  
R
Input Fall time  
ns  
F
2
Maximum FF toggle rate  
Maximum internal frequency  
Maximum external frequency  
Output buffer delay time  
1/(t + t )  
167  
87  
125  
74  
125  
65  
MHz  
MHz  
MHz  
ns  
MAX1  
MAX2  
MAX3  
BUF  
CH  
CL  
2
1/(t  
+ t  
)
SUPAL  
CF  
2
1/(t  
+ t  
)
77  
66  
59  
SUPAL  
CO  
1.5  
0.5  
1.5  
1.5  
Input (or feedback node) to internal feedback node delay time  
through PAL  
t
t
2
3
2
3
10.5  
2
3
13.5  
ns  
ns  
PDF_PAL  
Input (or feedback node) to internal feedback node delay time  
through PAL+PLA  
11  
13  
16  
PDF_PLA  
t
t
t
t
t
t
Clock to internal feedback node delay time  
5.5  
50  
6.5  
50  
14  
14  
16  
16  
7.5  
50  
17  
17  
19  
19  
ns  
µs  
ns  
ns  
ns  
ns  
CF  
INIT  
ER  
EA  
RP  
RR  
Delay from valid V to valid reset  
DD  
3
Input to output disable  
12.5  
12.5  
14  
Input to output valid  
Input to register preset  
Input to register reset  
14  
11  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
NOTES:  
1. Specifications measured with one output switching. See Figure 6 and Table 8 for derating.  
2. This parameter guaranteed by design and characterization, not by test.  
3. Output C = 5pF.  
L
DC ELECTRICAL CHARACTERISTICS FOR INDUSTRIAL GRADE DEVICES  
Industrial:  
–40°C T  
+85°C; 3.0V V 3.6V  
amb  
DD  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN.  
MAX.  
UNIT  
V
V
V
V
V
V
Input voltage low  
V
DD  
V
DD  
= 3.0V  
= 3.6V  
0.8  
IL  
Input voltage high  
2.0  
V
IH  
I
Input clamp voltage  
Output voltage low  
Output voltage high  
Input leakage current  
3-Stated output leakage current  
Standby current  
V
= 3.0V, I = 18mA  
–1.2  
0.5  
V
DD  
IN  
V
DD  
= 3.0V, I = 8mA  
V
OL  
OH  
OL  
V
= 3.0V, I = 8mA  
2.4  
–10  
–10  
V
DD  
OH  
I
I
I
V
IN  
V
IN  
= 0 to V  
= 0 to V  
10  
10  
75  
2
µA  
µA  
µA  
mA  
mA  
mA  
pF  
pF  
pF  
I
DD  
OZ  
DD  
V
= 3.6V, T = 40°C  
amb  
DDQ  
DD  
V
= 3.6V, T  
= –40°C @ 1MHz  
= –40°C @ 50MHz  
amb  
DD  
amb  
1
I
I
Dynamic current  
DDD  
V
DD  
= 3.6V, T  
50  
–130  
8
2
Short circuit output current  
1 pin at a time for no longer than 1 second  
–50  
5
OS  
2
C
C
C
Input pin capacitance  
T
= 25°C, f = 1MHz  
= 25°C, f = 1MHz  
= 25°C, f = 1MHz  
IN  
amb  
2
Clock input capacitance  
T
amb  
12  
10  
CLK  
I/O  
2
I/O pin capacitance  
T
amb  
NOTES:  
1. This parameter measured with a 16–bit, loadable up/down counter loaded into every logic block, with all outputs DISabled and unloaded.  
Inputs are tied to V or ground. This parameter guaranteed by design and characterization, not testing.  
DD  
2. Typical values, not tested.  
1
AC ELECTRICAL CHARACTERISTICS FOR INDUSTRIAL GRADE DEVICES  
Industrial:  
–40°C T +85°C; 3.0V V 3.6V  
amb DD  
112  
I15  
SYMBOL  
PARAMETER  
UNIT  
MIN.  
MAX.  
MIN.  
MAX.  
t
Propagation delay time, input (or feedback node) to output through PAL  
2
12  
2
15  
ns  
PD_PAL  
t
t
t
t
t
t
t
t
t
f
f
f
t
t
t
t
t
t
t
t
t
Propagation delay time, input (or feedback node) to output through PAL & PLA  
3
2
14.5  
7.5  
3
2
17.5  
9
ns  
ns  
PD_PLA  
Clock to out delay time  
CO  
Setup time (from input or feedback node) through PAL  
7
8
ns  
SU_PAL  
SU_PLA  
H
Setup time (from input or feedback node) through PAL + PLA  
9.5  
10.5  
ns  
Hold time  
0
0
ns  
Clock High time  
Clock Low time  
Input Rise time  
3
3
4
4
ns  
CH  
ns  
CL  
20  
20  
20  
20  
ns  
R
Input Fall time  
ns  
F
2
Maximum FF toggle rate  
Maximum internal frequency  
Maximum external frequency  
Output buffer delay time  
1/(t + t )  
167  
77  
125  
65  
MHz  
MHz  
MHz  
ns  
MAX1  
MAX2  
MAX3  
BUF  
PDF_PAL  
PDF_PLA  
CF  
CH  
CL  
2
1/(t  
+ t  
)
SUPAL  
CF  
2
1/(t  
+ t  
)
69  
59  
SUPAL  
CO  
1.5  
10.5  
13  
6
1.5  
13.5  
16  
Input (or feedback node) to internal feedback node delay time through PAL  
Input (or feedback node) to internal feedback node delay time through PAL+PLA  
Clock to internal feedback node delay time  
2
3
2
3
ns  
ns  
7.5  
50  
ns  
Delay from valid V to valid reset  
50  
13  
13  
15  
15  
µs  
INIT  
DD  
3
Input to output disable  
15.5  
15.5  
17  
ns  
ER  
Input to output valid  
Input to register preset  
Input to register reset  
ns  
EA  
ns  
RP  
17  
ns  
RR  
NOTES:  
1. Specifications measured with one output switching. See Figure 6 and Table 8 for derating.  
2. This parameter guaranteed by design and characterization, not by test.  
3. Output C = 5pF.  
L
12  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
V
= 3.3V, 25°C  
DD  
9.1  
8.7  
8.3  
7.9  
7.5  
t
PD_PAL  
(ns)  
1
2
4
8
12  
16  
NUMBER OF OUTPUTS SWITCHING  
SP00466A  
Figure 6.  
t
vs. Outputs Switching  
PD_PAL  
Table 8. t  
DD  
vs. Number of Outputs Switching  
PD_PAL  
V
= 3.3V  
NUMBER OF  
OUTPUTS  
1
2
4
8
12  
16  
Typical (ns)  
7.9  
8
8.1  
8.3  
8.4  
8.6  
13  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
PIN DESCRIPTIONS  
84-Pin Plastic Leaded Chip Carrier  
100-Pin Plastic Quad Flat Package  
100  
81  
11  
1
75  
80  
1
12  
32  
74  
QFP  
PLCC  
54  
30  
51  
33  
53  
31  
50  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IN1  
IN3  
V
DD  
I/O-A15/CLK3  
I/O-A13  
I/O-A12  
GND  
I/O-A10  
I/O-A7  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
I/O-C5  
I/O-C4  
I/O-C2  
GND  
I/O-D15  
I/O-D12  
I/O-D10  
I/O-D8  
I/O-D7  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
I/O-F7  
I/O-F10  
GND  
I/O-F12  
I/O-F13  
I/O-F15 (TCK)  
I/O-G0  
I/O-G2  
I/O-G4  
V
DD  
I/O-G7  
1
2
3
4
5
6
7
8
9
I/O-A5  
I/O-A4  
I/O-A2  
I/O-A0  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
I/O-D5  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
I/O-G5  
V
I/O-G7  
DD  
I/O-D4  
I/O-D2  
I/O-B0/CLK2  
GND  
I/O-G8  
I/O-G10  
I/O-G12  
I/O-G13  
I/O-G15 (TDO)  
GND  
V
DD  
I/O-B15 (TDI)  
I/O-B13  
I/O-B12  
I/O-B10  
I/O-B8  
I/O-B7  
I/O-B5  
GND  
I/O-B4  
I/O-B2  
I/O-B0  
I/O-C15 (TMS)*  
I/O-C13  
I/O-C12  
V
DD  
I/O-E0/CLK1  
I/O-E2  
I/O-E4  
GND  
I/O-E5  
I/O-E7  
I/O-E8  
I/O-E10  
I/O-E12  
I/O-E13  
I/O-E15  
I/O-H0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I/O-A5  
I/O-A4  
I/O-A2  
V
DD  
I/O-H2  
I/O-D4  
I/O-D2  
I/O-D0/CLK2  
GND  
I/O-H4  
I/O-G8  
I/O-H5  
V
I/O-G10  
I/O-G12  
I/O-G15 (TDO)  
GND  
I/O-H2  
I/O-H4  
I/O-H5  
I/O-H7  
I/O-H10  
DD  
I/O-H7  
I/O-B15 (TDI)  
I/O-B12  
I/O-B10  
I/O-B8  
I/O-B7  
GND  
I/O-B4  
I/O-B2  
I/O-B0  
I/O-H8  
V
DD  
I/O-H10  
I/O-E0/CLK1  
I/O-E2  
I/O-E4  
GND  
I/O-E7  
V
DD  
I/O-H12  
I/O-H13  
I/O-H15  
GND  
V
DD  
V
DD  
I/O-F0  
I/O-F2  
I/O-F4  
I/O-F5  
I/O-F7  
I/O-F8  
I/O-F10  
GND  
I/O-F12  
I/O-F13  
I/O-F15 (TCK)  
I/O-G0  
I/O-G2  
I/O-G4  
I/O-C10  
I/O-C8  
I/O-C7  
I/O-C5  
I/O-B9  
I/O-C2  
I/O-C0  
GND  
I/O-D15  
I/O-D13  
I/O-D12  
I/O-D10  
I/O-D8  
I/O-D7  
I/O-E8  
I/O-E10  
I/O-E12  
I/O-E15  
V
IN0/CLK0  
IN2-gtsn  
IN1  
DD  
I/O-C15 (TMS)*  
I/O-C13  
I/O-C12  
I/O-H12  
I/O-H13  
I/O-H15  
GND  
IN0/CLK0  
IN2-gtsn  
V
DD  
IN3  
V
I/O-F2  
I/O-F4  
I/O-F5  
DD  
V
DD  
I/O-C10  
I/O-C7  
I/O-A15/CLK3  
I/O-A13  
I/O-A12  
GND  
*
THE TEST MODE SELECT (TMS) FUNCTION IS  
INACTIVE ON NON-ISR ARCHITECTURES.  
I/O-A10  
I/O-A8  
SP00467  
V
100 I/O-A7  
DD  
*
THE TEST MODE SELECT (TMS) FUNCTION IS  
INACTIVE ON NON-ISR ARCHITECTURES.  
SP00468  
14  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
100-Pin Thin Quad Flat Package  
128-Pin Low Profile Quad Flat Package  
128  
103  
100  
76  
1
102  
75  
1
TQFP  
LQFP  
25  
51  
38  
65  
26  
50  
39  
Pin Function  
64  
Pin Function  
Pin Function  
Pin Function  
1
2
I/O-A2  
I/O-A0  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
I/O-D4  
I/O-D2  
I/O-D0/CLK2  
GND  
V
DD  
I/O-E0/CLK1  
I/O-E2  
I/O-E4  
GND  
I/O-E5  
I/O-E7  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
I/O-G8  
Pin Function  
Pin Function  
87  
I/O-G10  
I/O-G12  
I/O-G13  
I/O-G15 (TDO)  
GND  
1
2
3
I/O-A3  
I/O-A2  
I/O-A0  
NC  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
I/O-D7  
I/O-D5  
V
DD  
3
V
DD  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
I/O-G5  
I/O-G7  
I/O-G8  
I/O-G10  
I/O-G11  
I/O-G12  
I/O-G13  
I/O-G15 (TDO)  
GND  
4
5
6
7
I/O-B15 (TDI)  
I/O-B13  
I/O-B12  
I/O-B10  
I/O-B8  
V
DD  
4
I/O-D4  
I/O-D3  
I/O-D2  
I/O-D0/CLK2  
GND  
V
DD  
I/O-E0/CLK1  
I/O-E2  
I/O-E3  
I/O-E4  
GND  
I/O-E5  
5
NC  
6
NC  
I/O-H0  
8
7
V
I/O-H2  
DD  
9
I/O-B7  
8
9
I/O-B15 (TDI)  
I/O-B13  
I/O-B12  
I/O-B11  
I/O-B10  
I/O-B8  
I/O-B7  
I/O-B5  
GND  
I/O-B4  
I/O-B3  
I/O-B2  
I/O-B0  
I/O-C15 (TMS)*  
I/O-C13  
I/O-H4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I/O-B5  
GND  
I/O-B4  
I/O-B2  
I/O-H5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
I/O-H7  
I/O-E8  
NC  
NC  
NC  
I/O-H8  
I/O-E10  
I/O-E12  
I/O-E13  
I/O-E15  
I/O-H10  
I/O-B0  
V
I/O-C15 (TMS)*  
I/O-C13  
I/O-C12  
DD  
100 I/O-H0  
101 I/O-H2  
102 I/O-H3  
103 I/O-H4  
104 I/O-H5  
105 I/O-H7  
106 I/O-H8  
107 I/O-H10  
I/O-H12  
I/O-H13  
I/O-H15  
GND  
V
DD  
I/O-E7  
I/O-E8  
V
I/O-F0  
I/O-F2  
I/O-F4  
I/O-F5  
I/O-F7  
I/O-F8  
I/O-F10  
GND  
I/O-F12  
I/O-F13  
I/O-F15 (TCK)  
I/O-G0  
I/O-G2  
I/O-G4  
DD  
I/O-C10  
I/O-C8  
I/O-C7  
I/O-C5  
I/O-C4  
I/O-C2  
I/O-C0  
GND  
I/O-D15  
I/O-D13  
I/O-D12  
I/O-D10  
I/O-D8  
I/O-D7  
I/O-D5  
I/O-E10  
I/O-E11  
I/O-E12  
I/O-E13  
I/O-E15  
IN0/CLK0  
IN2-gtsn  
IN1  
IN3  
108  
V
DD  
I/O-C12  
I/O-C11  
V
V
DD  
DD  
109 I/O-H11  
110 I/O-H12  
111 I/O-H13  
112 I/O-H15  
113 GND  
114 IN0/CLK0  
115 IN2-gtsn  
116 IN1  
I/O-F0  
NC  
NC  
I/O-A15/CLK3  
I/O-A13  
I/O-A12  
GND  
V
DD  
I/O-C10  
I/O-C8  
I/O-C7  
I/O-C5  
I/O-C4  
I/O-C3  
I/O-C2  
NC  
NC  
NC  
I/O-C0  
GND  
I/O-D15  
I/O-D13  
I/O-D12  
I/O-D11  
I/O-D10  
I/O-D8  
NC  
I/O-F2  
I/O-F3  
I/O-F4  
I/O-F5  
I/O-F7  
I/O-F8  
I/O-F10  
GND  
I/O-F11  
I/O-F12  
I/O-F13  
I/O-F15(TCK)  
I/O-G0  
I/O-G2  
I/O-G3  
I/O-G4  
I/O-A10  
I/O-A8  
I/O-A7  
V
DD  
I/O-A5  
I/O-G5  
I/O-G7  
117 IN3  
V
100 I/O-A4  
118  
V
DD  
DD  
119 I/O-A15/CLK3  
120 I/O-A13  
121 I/O-A12  
122 I/O-A11  
123 GND  
124 I/O-A10  
125 I/O-A8  
126 I/O-A7  
127 I/O-A5  
128 I/O-A4  
*
THE TEST MODE SELECT (TMS) FUNCTION IS  
INACTIVE ON NON-ISR ARCHITECTURES.  
SP00485  
*
THE TEST MODE SELECT (TMS) FUNCTION IS  
INACTIVE ON NON-ISR ARCHITECTURES.  
SP00469A  
15  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
160-Pin Plastic Quad Flat Package  
Package Thermal Characteristics  
Philips Semiconductors uses the Temperature Sensitive Parameter  
(TSP) method to test thermal resistance. This method meets  
Mil-Std-883C Method 1012.1 and is described in Philips 1995 IC  
Package Databook. Thermal resistance varies slightly as a function  
of input power. As input power increases, thermal resistance  
changes approximately 5% for a 100% change in power.  
160  
121  
1
120  
81  
PQFP  
Figure 7 is a derating curve for the change in Θ with airflow based  
JA  
on wind tunnel measurements. It should be noted that the wind flow  
dynamics are more complex and turbulent in actual applications  
than in a wind tunnel. Also, the test boards used in the wind tunnel  
contribute significantly to forced convection heat transfer, and may  
not be similar to the actual circuit board, especially in size.  
40  
41  
80  
Pin Function  
Pin Function  
I/O-D5  
Pin Function  
1
2
3
4
5
NC  
NC  
NC  
NC  
NC  
NC  
NC  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
107 I/O-G8  
108 I/O-G10  
109 I/O-G11  
110 I/O-G12  
111 I/O-G13  
112 I/O-G15 (TDO)  
113 GND  
114 NC  
115 NC  
116 NC  
117 NC  
118 NC  
119 NC  
120 NC  
121 I/O-H0  
122 I/O-H2  
123 I/O-H3  
124 NC  
125 NC  
126 NC  
127 NC  
V
DD  
I/O-D4  
I/O-D3  
I/O-D2  
I/O-D0/CLK2  
GND  
Package  
84-pin PLCC  
Θ
JA  
32.8°C/W  
41.2°C/W  
47.4°C/W  
45.0°C/W  
31.9°C/W  
6
7
100-pin PQFP  
100-pin TQFP  
128-pin LQFP  
160-pin PQFP  
8
V
V
DD  
DD  
9
I/O-B15 (TDI)  
I/O-B13  
I/O-B12  
I/O-B11  
I/O-B10  
I/O-B8  
I/O-B7  
I/O-B5  
GND  
I/O-B4  
I/O-B3  
I/O-B2  
I/O-B0  
I/O-C15 (TMS)  
I/O-C13  
I/O-E0/CLK1  
I/O-E2  
I/O-E3  
I/O-E4  
GND  
I/O-E5  
I/O-E7  
I/O-E8  
I/O-E10  
I/O-E11  
I/O-E12  
I/O-E13  
NC  
NC  
NC  
NC  
I/O-E15  
V
DD  
I/O-F0  
NC  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
0
10  
20  
30  
40  
50  
PERCENTAGE  
REDUCTION IN  
Θ
(%)  
JA  
128 I/O-H4  
129 I/O-H5  
130 I/O-H7  
131 I/O-H8  
132 I/O-H10  
I/O-C12  
I/O-C11  
V
DD  
133  
V
DD  
I/O-C10  
I/O-C8  
I/O-C7  
I/O-C5  
I/O-C4  
I/O-C3  
I/O-C2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O-C0  
GND  
I/O-D15  
NC  
NC  
NC  
NC  
134 I/O-H11  
135 I/O-H12  
136 I/O-H13  
137 I/O-H15  
138 GND  
139 IN0/CLK0  
140 IN2-gtsn  
141 IN1  
NC  
NC  
NC  
NC  
PLCC/  
QFP  
I/O-F2  
I/O-F3  
I/O-F4  
I/O-F5  
I/O-F7  
I/O-F8  
I/O-F10  
GND  
I/O-F11  
I/O-F12  
I/O-F13  
I/O-F15 (TCK)  
142 IN3  
0
1
2
3
4
5
143  
V
DD  
AIR FLOW (m/s)  
144 I/O-A15/CLK3  
145 I/O-A13  
146 I/O-A12  
147 I/O-A11  
148 GND  
149 I/O-A10  
150 I/O-A8  
151 I/O-A7  
152 I/O-A5  
153 I/O-A4  
154 NC  
155 NC  
156 NC  
157 NC  
158 I/O-A3  
159 I/O-A2  
160 I/O-A0  
SP00419A  
Figure 7. Average Effect of Airflow on Θ  
JA  
100 I/O-G0  
101 I/O-G2  
102 I/O-G3  
103 I/O-G4  
I/O-D13  
I/O-D12  
I/O-D11  
I/O-D10  
I/O-D8  
I/O-D7  
104  
V
DD  
105 I/O-G5  
106 I/O-G7  
*
THE TEST MODE SELECT (TMS) FUNCTION IS  
INACTIVE ON NON-ISR ARCHITECTURES.  
SP00470A  
16  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
PLCC84: plastic leaded chip carrier; 84 leads; pedestal  
SOT189-3  
17  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
QFP100: plastic quad flat package; 100 leads (lead length 1.6 mm); body 14 x 20 x 2.8 mm  
SOT382-1  
18  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
TQFP100: plastic thin quad flat package; 100 leads; body 14 x 14 x 1.0 mm  
SOT386-1  
19  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
LQFP128: plastic low profile quad flat package; 128 leads; body 14 x 20 x 1.4 mm  
SOT425-1  
20  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
QFP160: plastic quad flat package;  
160 leads (lead length 1.6 mm); body 28 x 28 x 3.4 mm; high stand-off height  
SOT322-2  
21  
1997 Aug 12  
Philips Semiconductors  
Product specification  
128 macrocell CPLD  
PZ3128  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
Preproduction Product  
Full Production  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes  
only. PhilipsSemiconductorsmakesnorepresentationorwarrantythatsuchapplicationswillbesuitableforthespecifiedusewithoutfurthertesting  
or modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
orsystemswheremalfunctionofaPhilipsSemiconductorsandPhilipsElectronicsNorthAmericaCorporationProductcanreasonablybeexpected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1997  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
12NC–9397 750 02646  
Philips  
Semiconductors  
厂商 型号 描述 页数 下载

NXP

PZ3032 32宏单元CPLD[ 32 macrocell CPLD ] 14 页

ETC

PZ3032-10(TBD) ASIC[ ASIC ] 12 页

NXP

PZ3032-10A44 32宏单元CPLD[ 32 macrocell CPLD ] 14 页

XILINX

PZ3032-10A44 [ EE PLD, 10ns, 32-Cell, CMOS, PQCC44 ] 13 页

NXP

PZ3032-10A44-T [ 暂无描述 ] 14 页

NXP

PZ3032-10BC 32宏单元CPLD[ 32 macrocell CPLD ] 14 页

ETC

PZ3032-10BC-S 电可擦除可编程逻辑器件复杂\n[ Electrically-Erasable Complex PLD ] 13 页

NXP

PZ3032-10BC-T [ EE PLD, 17ns, PQFP44 ] 14 页

ETC

PZ3032-12(TBD) ASIC[ ASIC ] 12 页

NXP

PZ3032-12A44 32宏单元CPLD[ 32 macrocell CPLD ] 14 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.216780s