找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYS25G0101DX-AEXC

型号:

CYS25G0101DX-AEXC

品牌:

CYPRESS[ CYPRESS ]

页数:

22 页

PDF大小:

384 K

CYS25G0101DX  
SONET OC-48 Transceiver  
SONET OC-48 Transceiver  
Features  
Functional Description  
SONET OC-48 operation  
The CYS25G0101DX SONET OC-48 Transceiver is  
communications building block for high speed SONET data  
communications. It provides complete parallel-to-serial and  
serial-to-parallel conversion, clock generation, and clock and  
data recovery operations in a single chip optimized for full  
SONET compliance.  
a
Bellcore and ITU jitter compliance  
2.488 GBaud serial signaling rate  
Multiple selectable loopback or loop through modes  
Single 155.52 MHz reference clock  
Transmit Path  
Transmit FIFO for flexible data interface clocking  
16-bit parallel-to-serial conversion in transmit path  
Serial-to-16-bit parallel conversion in receive path  
New data is accepted at the 16-bit parallel transmit interface at  
a rate of 155.52 MHz. This data is passed to a small integrated  
FIFO to enable flexible transfer of data between the SONET  
processor and the transmit serializer. As each 16-bit word is read  
from the transmit FIFO, it is serialized and sent out to the high  
speed differential line driver at a rate of 2.488 Gbits per second.  
Synchronous parallel interface  
LVPECL compliant  
HSTL compliant  
Receive Path  
Internal transmit and receive phase-locked loops (PLLs)  
As serial data is received at the differential line receiver, it is  
passed to a clock and data recovery (CDR) PLL that extracts a  
precision low jitter clock from the transitions in the data stream.  
This bit rate clock is used to sample the data stream and receive  
the data. Every 16-bit times, a new word is presented at the  
receive parallel interface along with a clock.  
Differential CML serial input  
50 mV input sensitivity  
100internal termination and DC restoration  
Differential CML serial output  
Sourcematchedfor50transmissionlines(100differential  
transmission lines)  
Parallel Interface  
The parallel I/O interface supports high speed bus communica-  
tions using HSTL signaling levels to minimize both power  
consumption and board landscape. The HSTL outputs are  
capable of driving unterminated transmission lines of less than  
70 mm and terminated 50transmission lines of more than twice  
that length.  
Direct interface to standard fiber optic modules  
Less than 1.0W typical power  
120-pin 14 mm × 14 mm TQFP  
Standby power saving mode for inactive loops  
0.25BiCMOS technology  
The CYS25G0101DX Transceiver’s parallel HSTL I/O can also  
be configured to operate at LVPECL signaling levels. This is  
done externally by changing VDDQ, VREF and creating a simple  
circuit at the termination of the transceiver’s parallel output  
interface.  
Pb-free packages available  
Cypress Semiconductor Corporation  
Document Number: 38-02009 Rev. *O  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 24, 2013  
CYS25G0101DX  
Logic Block Diagram  
(155.52 MHz)  
RXCLK  
(155.52 MHz)  
(155.52 MHz)  
REFCLK  
TXCLKI  
TXD[15:0]  
16  
RXD[15:0]  
16  
FIFO_ERR TXCLKO  
FIFO_RST  
Input  
Register  
Output  
Register  
TX PLL  
X16  
16  
Shifter  
FIFO  
16  
Recovered  
Bit-Clock  
TX Bit-Clock  
Shifter  
RX CDR  
PLL  
Retimed  
Data  
Lock-to-Ref  
LOOPTIME  
DIAGLOOP  
Lock-to-Data/  
Clock Control  
Logic  
LINELOOP  
LOOPA  
OUT  
IN  
PWRDN LOCKREF SD LFI RESET  
Document Number: 38-02009 Rev. *O  
Page 2 of 22  
CYS25G0101DX  
Contents  
Clocking ............................................................................4  
Pin Configuration .............................................................5  
Pin Descriptions ...............................................................6  
CYS25G0101DX Operation ..............................................8  
CYS25G0101DX Transmit Data Path ...............................8  
Operating Modes .........................................................8  
Phase Align Buffer .......................................................8  
Transmit PLL Clock Multiplier ......................................8  
Serializer .....................................................................8  
Serial Output Driver .....................................................8  
CYS25G0101DX Receive Data Path ................................8  
Serial Line Receivers ..................................................8  
Lock to Data Control ....................................................8  
Clock Data Recovery ...................................................8  
External Filter ..............................................................8  
Deserializer .................................................................9  
Loopback Timing Modes .............................................9  
Reset Modes ...............................................................9  
Power Down Mode ......................................................9  
LVPECL Compliance ...................................................9  
Maximum Ratings ...........................................................10  
Power Up Requirements ...........................................10  
Operating Range .............................................................10  
DC Specifications ...........................................................10  
DC Specifications ...........................................................10  
DC Specifications ...........................................................11  
DC Specifications ...........................................................11  
DC Specifications ...........................................................12  
AC Test Loads and Waveforms .....................................12  
AC Specifications ...........................................................13  
AC Specifications ...........................................................13  
AC Specifications ...........................................................14  
Jitter Specifications .......................................................14  
Jitter Waveforms ............................................................15  
Switching Waveforms ....................................................16  
Typical IO Terminations .................................................17  
Ordering Information ......................................................19  
Ordering Code Definitions .........................................19  
Package Diagram ............................................................20  
Document History Page .................................................21  
Sales, Solutions, and Legal Information ......................22  
Worldwide Sales and Design Support .......................22  
Products ....................................................................22  
PSoC® Solutions ......................................................22  
Cypress Developer Community .................................22  
Technical Support .....................................................22  
Document Number: 38-02009 Rev. *O  
Page 3 of 22  
CYS25G0101DX  
Multiple loopback and loop through modes are available for both  
diagnostic and normal operation. For systems containing  
redundant SONET rings that are maintained in standby, the  
CYS25G0101DX may also be dynamically powered down to  
conserve system power.  
Clocking  
The source clock for the transmit data path is selectable from  
either the recovered clock or an external BITS (Building  
Integrated Timing Source) reference clock. The low jitter of the  
CDR PLL enables loop timed operation of the transmit data path  
meeting all Bellcore and ITU jitter requirements.  
Figure 1. CYS25G0101DX System Connections  
CYS25G0101DX  
TXD[15:0]  
16  
SONET Data  
Processor  
TXCLKI  
Transmit Data  
Interface  
FIFO_RST  
FIFO_ERR  
TXCLKO  
155.52 MHz  
BITS Time  
Reference  
2
REFCLK  
16  
Host Bus  
Interface  
RXD[15:0]  
RXCLK  
Receive Data  
Interface  
IN+  
IN–  
SD  
OUT–  
OUT+  
RD+  
RD–  
SD  
TD–  
TD+  
Serial Data  
Serial Data  
LOOPTIME  
DIAGLOOP  
LOOPA  
Data & Clock  
Direction  
Control  
Optical  
XCVR  
Optical  
Fiber Links  
LINELOOP  
RESET  
PWRDN  
LOCKREF  
LFI  
Status and  
System  
Control  
Document Number: 38-02009 Rev. *O  
Page 4 of 22  
CYS25G0101DX  
Pin Configuration  
Figure 2. 120-pin TQFP pinout [1, 2]  
Top View  
NC  
LFI  
RESET  
1
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
VCCQ  
2
VSSQ  
DIAGLOOP  
LINELOOP  
LOOPA  
3
REFCLK+  
REFCLK–  
NC  
4
5
VSSN  
6
LOOPTIME  
PWRDN  
VCCN  
7
VSSN  
8
VSSN  
SD  
9
VSSN  
VCCN  
VSSN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
LOCKREF  
RXD[0]  
RXD[1]  
RXD[2]  
RXD[3]  
VSSN  
VDDQ  
RXD[4]  
RXD[5]  
RXD[6]  
RXD[7]  
VSSN  
VDDQ  
RXCLK  
VSSN  
VDDQ  
NC  
TXCLKO  
VSSN  
CYS25G0101DX  
VDDQ  
TXD[0]  
TXD[1]  
TXD[2]  
TXD[3]  
VCCQ  
VSSQ  
VCCN  
VSSN  
23  
24  
TXD[4]  
TXD[5]  
TXD[6]  
TXD[7]  
TXD[8]  
TXD[9]  
25  
26  
27  
28  
29  
30  
NC  
NC  
TXD[10]  
TXD[11]  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60  
Notes  
1. No connect (NC) pins are left unconnected or floating. Connecting any of these pins to the positive or negative power supply causes improper operation or failure of  
the device.  
2. Pins 113 and 119 are either no connect or VSSQ. Use VSSQ for compatibility with next generation of OC-48 SERDES devices. Pin 116 are either no connect or VCCQ.  
Use VCCQ for compatibility with next generation of OC-48 SERDES devices.  
Document Number: 38-02009 Rev. *O  
Page 5 of 22  
 
 
CYS25G0101DX  
Pin Descriptions  
CYS25G0101DX OC-48 SONET Transceiver  
Pin Name  
I/O Characteristics  
Signal Description  
Transmit Path Signals  
TXD[15:0]  
TXCLKI  
HSTL inputs,  
sampled by TXCLKI  
Parallel Transmit Data Inputs. A 16-bit word, sampled by TXCLKI. TXD[15] is the most  
significant bit (the first bit transmitted).  
HSTL Clock input  
Parallel Transmit Data Input Clock. The TXCLKI is used to transfer the data into the input  
register of the serializer. The TXCLKI samples the data, TXD [15:0], on the rising edge of  
the clock cycle.  
TXCLKO  
VREF  
HSTL Clock output  
Transmit Clock Output. Divide by 16 of the selected transmit bit rate clock. It is used to  
coordinate byte wide transfers between upstream logic and the CYS25G0101DX.  
Input Analog Reference Reference Voltage for HSTL Parallel Input Bus. VDDQ/2.[3]  
Receive Path Signals  
RXD[15:0]  
HSTL output,  
synchronous  
Parallel Receive Data Output. These outputs change following RXCLK. RXD[15] is the  
most significant bit of the output word and is received first on the serial interface.  
RXCLK  
HSTL Clock output  
Receive Clock Output. Divide by 16 of the bit rate clock extracted from the received serial  
stream. RXD [15:0] is clocked out on the falling edge of the RXCLK.  
CM_SER  
RXCN1  
RXCN2  
RXCP1  
RXCP  
Analog  
Analog  
Analog  
Analog  
Analog  
Common Mode Termination. Capacitor shunt to VSS for common mode noise.  
Receive Loop Filter Capacitor (Negative).  
Receive Loop Filter Capacitor (Negative).  
Receive Loop Filter Capacitor (Positive).  
Receive Loop Filter Capacitor (Positive).  
Device Control and Status Signals  
REFCLK±  
Differential LVPECL  
input  
Reference Clock. This clock input is used as the timing reference for the transmit and  
receive PLLs. A derivative of this input clock is used to clock the transmit parallel interface.  
The reference clock is internally biased enabling for an AC coupled clock signal.  
LFI  
LVTTL output  
Line Fault Indicator. When LOW, this signal indicates that the selected receive data stream  
is detected as invalid by either a LOW input on SD or by the receive VCO operated outside  
its specified limits.  
RESET  
LVTTL input  
LVTTL input  
Reset for all logic functions except the transmit FIFO.  
LOCKREF  
Receive PLL Lock to Reference. When LOW, the receive PLL locks to REFCLK instead  
of the received serial data stream.  
SD  
LVTTL input  
Signal Detect. When LOW, the receive PLL locks to REFCLK instead of the received serial  
data stream. The SD needs to be connected to an external optical module to indicate a loss  
of received optical power.  
FIFO_ERR  
LVTTL output  
Transmit FIFO Error. When HIGH, the transmit FIFO has either underflowed or overflowed.  
When this occurs, the FIFO’s internal clearing mechanism clears the FIFO within nine clock  
cycles. In addition, FIFO_RST is activated at device power up to ensure that the in and out  
pointers of the FIFO are set to maximum separation.  
FIFO_RST  
LVTTL input  
LVTTL input  
Transmit FIFO Reset. When LOW, the in and out pointers of the transmit FIFO are set to  
maximum separation. FIFO_RST is activated at device power up to ensure that the in and  
out pointers of the FIFO are set to maximum separation. When the FIFO is reset, the output  
data is a 1010... pattern.  
PWRDN  
Device Power Down. When LOW, the logic and drivers are all disabled and placed into a  
standby condition where only minimal power is dissipated.  
Note  
3.  
V
equals to (V – 1.33V) if interfacing to a parallel LVPECL interface.  
REF CC  
Document Number: 38-02009 Rev. *O  
Page 6 of 22  
 
CYS25G0101DX  
Pin Descriptions (continued)  
CYS25G0101DX OC-48 SONET Transceiver  
Pin Name  
I/O Characteristics  
Signal Description  
Loop Control Signals  
DIAGLOOP LVTTL input  
Diagnostic Loopback Control. When HIGH, transmit data is routed through the receive  
clock and data recovery. It is then presented at the RXD[15:0] outputs. When LOW, received  
serial data is routed through the receive clock and data recovery. It is then presented at the  
RXD[15:0] outputs.  
LINELOOP  
LOOPA  
LVTTL input  
LVTTL input  
LVTTL input  
Line Loopback Control. When HIGH, received serial data is looped back from receive to  
transmit after being reclocked by a recovered clock. When LINELOOP is LOW, the data  
passed to the OUT± line driver is controlled by LOOPA. When both LINELOOP and LOOPA  
are LOW, the data passed to the OUT± line driver is generated in the transmit shifter.  
Analog Line Loopback. When LINELOOP is LOW and LOOPA is HIGH, received serial  
data is looped back from receive input buffer to transmit output buffer but is not routed  
through the clock and data recovery PLL. When LOOPA is LOW, the data passed to the  
OUT± line driver is controlled by LINELOOP.  
LOOPTIME  
Loop Time Mode. When HIGH, the extracted receive bit clock replaces transmit bit clock.  
When LOW, the REFCLK input is multiplied by 16 to generate the transmit bit clock.  
Serial I/O  
OUT±  
Differential CML  
output  
Differential Serial Data Output. This differential CML output (+3.3 V referenced) is capable  
of driving terminated 50transmission lines or commercial fiber optic transmitter modules.  
IN±  
Differential CML  
input  
Differential Serial Data Input. This differential input accepts the serial data stream for  
deserialization and clock extraction.  
Power  
VCCN  
VSSN  
Power  
Ground  
Power  
Ground  
Power  
+3.3 V supply (for digital and low speed IO functions)  
Signal and power ground (for digital and low speed IO functions)  
+3.3 V quiet power (for analog functions)  
VCCQ  
VSSQ  
VDDQ  
Quiet ground (for analog functions)  
+1.5 V supply for HSTL outputs[4]  
Note  
4.  
V
equals V if interfacing to a parallel LVPECL interface.  
DDQ CC  
Document Number: 38-02009 Rev. *O  
Page 7 of 22  
 
CYS25G0101DX  
CYS25G0101DX Operation  
CYS25G0101DX Receive Data Path  
The CYS25G0101DX is a highly configurable device designed  
to support reliable transfer of large quantities of data using high  
speed serial links. It performs necessary clock and data  
recovery, clock generation, serial-to-parallel conversion, and  
parallel-to-serial conversion. CYS25G0101DX also provides  
various loopback functions.  
Serial Line Receivers  
A differential line receiver, IN±, is available for accepting the input  
serial data stream. The serial line receiver inputs accommodate  
high wire interconnect and filtering losses or transmission line  
attenuation (VSE > 25 mV, or 50 mV peak-to-peak differential). It  
can be AC coupled to +3.3V or +5V powered fiber optic interface  
modules. The common mode tolerance of these line receivers  
accommodates a wide range of signal termination voltages.  
CYS25G0101DX Transmit Data Path  
Operating Modes  
The transmit path of the CYS25G0101DX supports 16-bit wide  
data paths.  
Lock to Data Control  
Line Receiver routed to the clock and data recovery PLL is  
monitored for:  
Phase Align Buffer  
Data from the input register is passed to a phase align buffer  
(FIFO). This buffer is used to absorb clock phase differences  
between the transmit input clock and the internal character clock.  
status of signal detect (SD) pin  
status of LOCKREF pin.  
This status is presented on the Line Fault Indicator (LFI) output,  
that changes asynchronously in the cases in which SD or  
LOCKREF go from HIGH to LOW. Otherwise, it changes  
synchronously to the REFCLK.  
Initialization of the phase align buffer takes place when the  
FIFO_RST input is asserted LOW. When FIFO_RST is returned  
HIGH, the present input clock phase, relative to TXCLKO, is set.  
Once set, the input clock is enabled to skew in time up to half a  
character period in either direction relative to REFCLK (that is,  
±180. This time shift enables the delay path of the character  
clock (relative to REFLCK) to change due to operating voltage  
and temperature not affecting the desired operation. FIFO_RST  
is an asynchronous input. FIFO_ERR is the transmit FIFO Error  
indicator. When HIGH, the transmit FIFO has either underflowed  
or overflowed. The FIFO is externally reset to clear the error  
indication; or if no action is taken, the internal clearing  
mechanism clears the FIFO in nine clock cycles. When the FIFO  
is being reset, the output data is 1010.  
Clock Data Recovery  
The extraction of a bit rate clock and recovery of data bits from  
received serial stream is performed by a Clock Data Recovery  
(CDR) block. The clock extraction function is performed by high  
performance embedded phase-locked loop (PLL) that tracks the  
frequency of the incoming bit stream and aligns the phase of the  
internal bit rate clock to the transitions in the selected serial data  
stream.  
CDR accepts a character rate (bit rate * 16) reference clock on  
the REFCLK input. This REFCLK input is used to ensure that the  
VCO (within the CDR) is operating at the correct frequency  
(rather than some harmonic of the bit rate), to improve PLL  
acquisition time and to limit unlocked frequency excursions of the  
CDR VCO when no data is present at the serial inputs.  
Regardless of the type of signal present, the CDR attempts to  
recover a data stream from it. If the frequency of the recovered  
data stream is outside the limits set by the range controls, the  
CDR PLL tracks REFCLK instead of the data stream. When the  
frequency of the selected data stream returns to a valid  
frequency, the CDR PLL is allowed to track the received data  
stream. The frequency of REFCLK must be within ±100 ppm of  
the frequency of the clock that drives the REFCLK signal of the  
remote transmitter to ensure a lock to the incoming data stream.  
For systems using multiple or redundant connections, the LFI  
output can be used to select an alternate data stream. When an  
LFI indication is detected, external logic toggles selection of the  
input device. When such a port switch takes place, it is  
necessary for the PLL to reacquire lock to the new serial stream.  
Transmit PLL Clock Multiplier  
The Transmit PLL Clock Multiplier accepts a 155.52 MHz  
external clock at the REFCLK input. It multiplies that clock by 16  
to generate a bit rate clock for use by the transmit shifter. The  
operating serial signaling rate and allowable range of REFCLK  
frequencies is listed in Table on page 13. The REFCLK phase  
noise limits to meet SONET compliancy are shown in Figure 8  
on page 15. The REFCLK± input is a standard LVPECL input.  
Serializer  
The parallel data from the phase align buffer is passed to the  
Serializer that converts the parallel data to serial data. It uses the  
bit rate clock generated by the Transmit PLL clock multiplier.  
TXD[15] is the most significant bit of the output word and is  
transmitted first on the serial interface.  
Serial Output Driver  
The Serial Interface Output Driver makes use of high  
performance differential Current Mode Logic (CML) to provide a  
source matched driver for the transmission lines. This driver  
receives its data from the Transmit Shifters or the receive  
loopback data. The outputs have signal swings equivalent to that  
of standard LVPECL drivers and are capable of driving AC  
coupled optical modules or transmission lines.  
External Filter  
The CDR circuit uses external capacitors for the PLL filter. A  
0.1 F capacitor needs to be connected between RXCN1 and  
RXCP1. Similarly a 0.1 F capacitor needs to be connected  
between RXCN2 and RXCP2. The recommended packages and  
dielectric material for these capacitors are 0805 X7R or 0603  
X7R.  
Document Number: 38-02009 Rev. *O  
Page 8 of 22  
CYS25G0101DX  
Loop Timing Mode  
Deserializer  
When the LOOPTIME signal is set HIGH, the TX PLL is  
bypassed and the receive bit rate clock is used for the transmit  
side shifter.  
The CDR circuit extracts bits from the serial data stream and  
clocks these bits into the Deserializer at the bit clock rate. The  
Deserializer converts serial data into parallel data. RXD[15] is the  
most significant bit of the output word and is received first on the  
serial interface.  
Reset Modes  
ALL logic circuits in the device are reset using RESET and  
FIFO_RST signals. When RESET is set LOW, all logic circuits  
except FIFO are internally reset. When FIFO_RST is set LOW,  
the FIFO logic is reset.  
Loopback Timing Modes  
CYS25G0101DX supports various loopback modes, as  
described in the following sections.  
Power Down Mode  
Facility Loopback (Line Loopback with Retiming)  
When the LINELOOP signal is set HIGH, the Facility Loopback  
mode is activated and the high speed serial receive data (IN±) is  
presented to the high speed transmit output (OUT±) after  
retiming. In Facility Loopback mode, the high speed receive data  
(IN±) is also converted to parallel data and presented to the low  
speed receive data output pins (RXD[15:0]). The receive  
recovered clock is also divided down and presented to the low  
speed clock output (RXCLK).  
CYS25G0101DX provides a global power down signal PWRDN.  
When LOW, this signal powers down the entire device to a  
minimal power dissipation state. RESET and FIFO_RST signals  
should be asserted LOW along with PWRDN signal to ensure  
low power dissipation.  
LVPECL Compliance  
The CYS25G0101DX HSTL parallel I/O can be configured to  
LVPECL compliance with slight termination modifications. On  
the transmit side of the transceiver, the TXD[15:0] and TXCLKI  
are made LVPECL compliant by setting VREF (reference voltage  
of a LVPECL signal) to VCC – 1.33 V. To emulate an LVPECL  
signal on the receiver side, set the VDDQ to 3.3 V and the  
transmission lines needs to be terminated with the Thévenin  
equivalent of Zat LVPECL ref. The signal is then attenuated  
using a series resistor at the driver end of the line to reduce the  
3.3 V swing level to a LVPECL swing level (see Figure 14 on  
page 17). This circuit needs to be used on all 16 RXD[15:0] pins,  
TXCLKO, and RXCLK. The voltage divider is calculated  
assuming the system is built with 50transmission lines.  
Equipment Loopback (Diagnostic Loopback with Retiming)  
When the DIAGLOOP signal is set HIGH, transmit data is looped  
back to the RX PLL, replacing IN±. Data is looped back from the  
parallel TX inputs to the parallel RX outputs. The data is looped  
back at the internal serial interface and goes through transmit  
shifter and the receive CDR. SD is ignored in this mode.  
Line Loopback Mode (Non-retimed Data)  
When the LOOPA signal is set HIGH, the RX serial data is  
directly buffered out to the transmit serial data. The data at the  
serial output is not retimed.  
Document Number: 38-02009 Rev. *O  
Page 9 of 22  
CYS25G0101DX  
Latch up Current ....................................................> 200 mA  
Maximum Ratings  
Power Up Requirements  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Power supply sequencing is not required if you are configuring  
VDDQ = 3.3 V and all power supplies pins are connected to the  
same 3.3 V power supply.  
Storage Temperature ............................... –65 °C to +150 °C  
Ambient Temperature with  
Power supply sequencing is required if you are configuring  
VDDQ = 1.5 V. Power is applied in the following sequence: VCC  
(3.3) followed by VDDQ (1.5). Power supply ramping may occur  
simultaneously as long as the VCC/VDDQ relationship is  
maintained.  
Power Applied ......................................... –55 °C to +125 °C  
VCC Supply Voltage to Ground Potential .....–0.5 V to +4.2 V  
VDDQ Supply Voltage to Ground Potential ...–0.5 V to +4.2 V  
DC Voltage Applied to HSTL Outputs  
in High Z State ..................................0.5 V to VDDQ + 0.5 V  
Operating Range  
DC Voltage Applied to Other Outputs  
in High Z State ....................................0.5 V to VCC + 0.5 V  
Ambient  
Range  
VDDQ  
VCC  
Temperature  
Output Current into LVTTL Outputs (LOW) ................ 30 mA  
DC Input Voltage ................................ –0.5 V to VCC + 0.5 V  
Commercial  
Industrial  
0 °C to +70 °C 1.4 V to 1.6 V [5] 3.3 V ± 10%  
–40 °C to +85 °C 1.4 V to 1.6 V [5] 3.3 V ± 10%  
Static Discharge Voltage  
(MIL-STD-883, Method 3015) ................................. > 1100 V  
DC Specifications  
LVTTL  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
LVTTL Outputs  
VOHT  
Output HIGH Voltage  
Output LOW Voltage  
VCC = Min, IOH = –10.0 mA  
2.4  
V
V
VOLT  
VCC = Min, IOL = 10.0 mA  
VOUT = 0 V  
0.4  
–90  
IOS  
Output Short Circuit Current  
–20  
mA  
LVTTL Inputs  
VIHT  
Input HIGH Voltage  
Input LOW Voltage  
Input HIGH Current  
Input LOW Current  
Low = 2.1 V, High = VCC + 0.5 V  
Low = –3.0 V, High = 0.8  
VCC = Max, VIN = VCC  
2.1  
–0.3  
VCC – 0.3  
0.8  
V
V
VILT  
IIHT  
50  
A  
A  
IILT  
VCC = Max, VIN = 0 V  
–50  
Capacitance  
CIN  
Input Capacitance  
VCC = Max, at f = 1 MHz  
5
pF  
DC Specifications  
Power  
Parameter  
Power  
Description  
Test Conditions  
Typ  
Max  
Unit  
ICC1  
ISB  
Active Power Supply Current  
Standby Current  
300  
347  
5
mA  
mA  
Note  
5.  
V
equals V if interfacing to a parallel LVPECL interface.  
DDQ CC  
Document Number: 38-02009 Rev. *O  
Page 10 of 22  
 
CYS25G0101DX  
DC Specifications  
Differential LVPECL Compatible Inputs (REFCLK) [6]  
Parameter  
VINSGLE  
Description  
Input Single-ended Swing  
Input Differential Voltage  
Highest Input HIGH Voltage  
Lowest Input LOW Voltage  
Input HIGH Current  
Test Conditions  
Min  
200  
400  
Max  
600  
Unit  
mV  
mV  
V
VDIFFE  
VIEHH  
VIELL  
1200  
VCC – 1.2 VCC – 0.3  
VCC – 2.0 VCC – 1.45  
V
IIEH  
VIN = VIEHH Max.  
VIN = VIELL Min.  
750  
A  
A  
IIEL  
Input LOW Current  
–200  
Capacitance  
CINE  
Input Capacitance  
4
pF  
DC Specifications  
Differential CML [6]  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
Transmitter CML compatible Outputs  
VOHC  
Output HIGH Voltage  
(VCC Referenced)  
100 differential load  
100 differential load  
VCC – 0.5 VCC – 0.15  
VCC – 1.2 VCC – 0.7  
V
V
VOLC  
Output LOW Voltage  
(VCC Referenced)  
VDIFFOC  
VSGLCO  
Output Differential Swing  
100 differential load  
100 differential load  
560  
280  
1600  
800  
mV  
mV  
Output Single-ended Voltage  
Receiver CML compatible Inputs  
VINSGLC  
VDIFFC  
VICHH  
Input Single-ended Swing  
Input Differential Voltage  
Highest Input HIGH Voltage  
Lowest Input LOW Voltage  
25  
50  
1000  
2000  
VCC  
mV  
mV  
V
VICLL  
1.2  
V
Figure 3. Differential Waveform Definition  
VSGL  
V(+)  
V(-)  
VD  
VDIFF=V(+)-V(-)  
0.0V  
Note  
6. See Figure 3 for differential waveform definition.  
Document Number: 38-02009 Rev. *O  
Page 11 of 22  
 
 
CYS25G0101DX  
DC Specifications  
HSTL  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
HSTL Outputs  
VOHH  
Output HIGH Voltage  
Output LOW Voltage  
VCC = min, IOH= –4.0 mA  
VDDQ – 0.4  
V
V
VOLH  
VCC = min, IOL= 4.0 mA  
VOUT = 0V  
0.4  
IOSH  
Output Short Circuit Current  
100  
mA  
HSTL Inputs  
VIHH  
Input HIGH Voltage  
Input LOW Voltage  
Input HIGH Current  
Input LOW Current  
VREF + 0.13 VDDQ + 0.3  
V
V
VILH  
–0.3  
VREF – 0.1  
50  
IIHH  
VDDQ = max, VIN = VDDQ  
VDDQ = max, VIN = 0V  
A  
A  
IILH  
–40  
Capacitance  
CINH  
Input Capacitance  
VDDQ = max, at f = 1 MHz  
5
pF  
AC Test Loads and Waveforms  
Figure 4. AC Waveforms  
VICHH  
3.0V  
3.0V  
Vth = 1.4V  
GND  
2.0V  
0.8V  
2.0V  
0.8V  
80%  
80%  
Vth = 1.4V  
20%  
< 150 ps  
20%  
< 150 ps  
VICLL  
< 1 ns  
< 1 ns  
(a) LVTTL Input Test Waveform  
(b) CML Input Test Waveform  
VIHH  
VIEHH  
80%  
80%  
80%  
20%  
80%  
20%  
Vth = 0.75V  
Vth = 0.75V  
< 1 ns  
20%  
< 1.0 ns  
20%  
< 1.0 ns  
VIHL  
VIELL  
< 1 ns  
(d) LVPECL Input Test Waveform  
(c) HSTL  
Input Test Waveform  
Figure 5. AC Test Loads  
1.5V  
3.3V  
R1  
R1  
R2  
OUTPUT  
OUTPUT  
R = 100  
L
R1 = 100  
R1 = 330  
C
L
R2 = 100  
OUT+  
OUT–  
C
L
R2 = 510  
CL 7 pF  
CL 10 pF  
R
L
R2  
(Includes fixture and  
probe capacitance)  
(Includes fixture and  
probe capacitance)  
(c) HSTL  
AC Test Load  
(a) TTL AC Test Load  
(b) CML AC Test Load  
Document Number: 38-02009 Rev. *O  
Page 12 of 22  
CYS25G0101DX  
AC Specifications  
Parallel Interface  
Parameter  
Description  
Min  
154.5  
6.38  
40  
Max  
156.5  
6.47  
60  
Unit  
MHz  
ns  
tTS  
TXCLKI Frequency (must be frequency coherent to REFCLK)  
TXCLKI Period  
tTXCLKI  
tTXCLKID  
tTXCLKIR  
tTXCLKIF  
tTXDS  
TXCLKI Duty Cycle  
%
TXCLKi Rise Time  
0.3  
1.5  
1.5  
ns  
TXCLKi Fall Time  
0.3  
ns  
Write Data Setup toof TXCLKI  
Write Data Hold fromof TXCLKI  
TXCLKO Frequency  
1.5  
ns  
tTXDH  
0.5  
ns  
tTOS  
154.5  
6.38  
43  
156.5  
6.47  
57  
MHz  
ns  
tTXCLKO  
tTXCLKOD  
tTXCLKOR  
tTXCLKOF  
tRS  
TXCLKO Period  
TXCLKO Duty Cycle  
%
TXCLKO Rise Time  
0.3  
1.5  
1.5  
156.5  
6.47  
57  
ns  
TXCLKO Fall Time  
0.3  
ns  
RXCLK Frequency  
154.5  
6.38  
43  
MHz  
ns  
tRXCLK  
tRXCLKD  
tRXCLKR  
tRXCLKF  
tRXDS  
RXCLK Period  
RXCLK Duty Cycle  
RXCLK Rise Time[7]  
RXCLK Fall Time[7]  
%
0.3  
1.5  
1.5  
ns  
0.3  
ns  
Recovered Data Setup with reference to of RXCLK  
Recovered Data Hold with reference to of RXCLK  
Valid Propagation Delay  
2.2  
ns  
tRXDH  
2.2  
ns  
tRXPD  
–1.0  
1.0  
ns  
AC Specifications  
REFCLK [8]  
Parameter  
Description  
Min  
154.5  
6.38  
35  
Max  
156.5  
6.47  
65  
Unit  
MHz  
ns  
tREF  
REFCLK Input Frequency  
tREFP  
tREFD  
tREFT  
tREFR  
tREFF  
REFCLK Period  
REFCLK Duty Cycle  
%
REFCLK Frequency Tolerance — (relative to received serial data)[9]  
–100  
0.3  
+100  
1.5  
ppm  
ns  
REFCLK Rise Time  
REFCLK Fall Time  
0.3  
1.5  
ns  
Notes  
7. RXCLk rise time and fall times are measured at the 20 to 80 percentile region of the rising and falling edge of the clock signal.  
8. The 155.52 MHz Reference Clock Phase Noise Limits for the CYS25G0101DX are shown in Figure 8.  
9. +20 ppm is required to meet the SONET output frequency specification.  
Document Number: 38-02009 Rev. *O  
Page 13 of 22  
 
 
 
CYS25G0101DX  
AC Specifications  
CML Serial Outputs  
Parameter  
Description  
Min  
60  
Typ  
Max  
170  
170  
Unit  
ps  
tRISE  
tFALL  
CML Output Rise Time (20–80%, 100 balanced load)  
CML Output Fall Time (80–20%, 100 balanced load)  
60  
ps  
Jitter Specifications  
Parameter  
Description  
Total Output Jitter for TX PLL (p-p) [11]  
Min  
Typ [10]  
0.03  
Max [10]  
0.04  
Unit  
UI  
tTJ-TXPLL  
Total Output Jitter for TX PLL (rms) [11, 12]  
Total Output Jitter for RX CDR PLL (p-p) [11]  
Total Output Jitter for RX CDR PLL (rms) [11, 12]  
0.007  
0.035  
0.008  
0.008  
0.05  
UI  
tTJ-RXPLL  
UI  
0.01  
UI  
Notes  
10. Typical values are measured at room temperature and the Max values are measured at 0 °C.  
11. The RMS and P-to-P jitter values are measured using a 12 KHz to 20 MHz SONET filter.  
12. This device passes the Bellcore specification from -10 °C to 85 °C.  
Document Number: 38-02009 Rev. *O  
Page 14 of 22  
 
 
CYS25G0101DX  
Jitter Waveforms  
Figure 6. Jitter Transfer Waveform of CYS25G0101DX [13]  
Figure 7. Jitter Tolerance Waveform of CYS25G0101DX [13]  
Figure 8. CYS25G0101DX Reference Clock Phase Noise Limits  
Notes  
13. The bench jitter measurements are performed using an Agilent Omni bert SONET jitter tester.  
Document Number: 38-02009 Rev. *O  
Page 15 of 22  
 
CYS25G0101DX  
Switching Waveforms  
Figure 9. Transmit Interface Timing  
tTXCLKI  
tTXCLKIDH  
tTXCLKIDL  
TXCLKI  
tTXDS tTXDH  
TXD[15:0]  
TXCLKO  
tTXCLKO  
tTXCLKODH  
tTXCLKODL  
Figure 10. Receive Interface Timing  
tRXCLK  
tRXCLKDL  
tRXCLKDH  
RXCLK  
tRXPD  
tRXDS  
tRXDH  
RXD[15:0]  
Document Number: 38-02009 Rev. *O  
Page 16 of 22  
CYS25G0101DX  
Typical IO Terminations  
Figure 11. Serial Input Termination  
CYS25G0101DX  
Limiting Amp  
F  
0.1  
Zo=50  
IN+  
IN–  
OUT+  
OUT–  
100  
Zo=50  
0.1 F  
Figure 12. Serial Output termination [14]  
Optical Module  
CYS25G0101DX  
F  
0.1  
Zo=50  
IN+  
IN–  
OUT+  
OUT–  
100  
Zo=50  
0.1 F  
Figure 13. TXCLKO/ RXCLK Termination  
CYS25G0101DX  
FRAMER  
VDDQ=1.5V  
HSTL  
INPUT  
HSTL  
OUTPU  
T
Zo=50  
100  
100  
Figure 14. RXD[15:0] Termination  
CYS25G0101DX  
FRAMER  
HSTL  
INPUT  
HSTL  
OUTPU  
T
Zo=50  
Figure 15. LVPECL Compliant Output Termination  
VDDQ=3.3V  
FRAMER  
VDDQ=3.3V  
RXD[15;0],  
RXCLK,  
TXCLKO  
137  
Zo=50  
80.6  
LVPECL INPUT  
OUTPUT  
121  
CYS25G0101DX  
Note  
14. Serial output of CYS25G0101DX is source matched to 50 transmission lines (100 differential transmission lines).  
Document Number: 38-02009 Rev. *O  
Page 17 of 22  
 
CYS25G0101DX  
Typical IO Terminations (continued)  
Figure 16. AC Coupled Clock Oscillator Termination  
Clock Oscillator  
CYS25G0101DX  
VCC  
Zo=50  
0.1uF  
130  
VCC  
130  
LVPEC L  
OUTPUT  
82  
RefclockInter nall y  
Biased  
0.1uF  
Zo=50  
82  
Figure 17. Clock Oscillator Termination  
Clock Oscillator  
CYS25G0101DX  
VCC  
Zo=50  
130  
VCC  
LVPEC L  
OUTPUT  
82  
130  
Reference Cloc k Input  
Zo=50  
82  
Document Number: 38-02009 Rev. *O  
Page 18 of 22  
CYS25G0101DX  
Ordering Information  
Package  
Name  
Operating  
Range  
Speed  
Ordering Code  
CYS25G0101DX-AEXC  
Package Type  
120-pin TQFP (Pb-free)  
Standard  
AE120  
Commercial  
Ordering Code Definitions  
CY S 25G 01 01 DX - AE X  
C
Temperature Range: C = Commercial  
Pb-free  
Package Type: AE = 120-pin TQFP  
Integrated Tx/Rx Channel  
Parallel 16 I/O Bus  
Single Channel  
2.5 Gbps Support  
Technology Code: S = SONET  
Company ID: CY = Cypress  
Document Number: 38-02009 Rev. *O  
Page 19 of 22  
 
CYS25G0101DX  
Package Diagram  
Figure 18. 120-pin TQFP (14 × 14 × 1.0 mm) AE120A (6.5 × 6.5 E-Pad) Package Outline, 001-48723  
001-48723 *B  
Document Number: 38-02009 Rev. *O  
Page 20 of 22  
 
CYS25G0101DX  
Document History Page  
Document Title: CYS25G0101DX SONET OC-48 Transceiver  
Document Number: 38-02009  
Submission  
Date  
Orig. of  
Change  
Rev.  
ECN No.  
Description of Change  
**  
105847  
108024  
111834  
03/22/01  
06/20/01  
12/18/01  
SZV  
AMV  
CGX  
Change from Specification number: 38-00894 to 38-02009.  
Changed Marketing part number.  
*A  
*B  
Updated power specification in features and DC specifications section.  
Changed pinout for compatibility with CYS25G0102DX in pin diagram and  
descriptions. Verbiage added or changed for clarity in pin descriptions section.  
Changed input sensitivity in Receive Data Path section, page 6. RXCLK rise  
time corrected to 0.3 nSec min CML and LVPECL input waveforms updated in  
test load and waveform section. Diagrams replaced for clarity Figures 1-10.  
Added two Refclock diagrams Figures 9 and 10.  
*C  
*D  
112712  
113791  
02/06/02  
04/24/02  
TME  
CGX  
Updated temperature range, static discharge voltage, and max total RMS jitter.  
Updated the single ended swing and differential swing voltage for Receiver  
CML compatible inputs. Created a separate table showing peak to peak and  
RMS jitter for both TX PLL and RX PLL.  
*E  
*F  
115940  
117906  
05/22/02  
09/06/02  
TME  
CGX  
Added Industrial temperature specification to pages 8, 11, and 15.  
Added differential waveform definition.  
Added BGA pinout and package information.  
Changed LVTTL VIHT min from 2.0 to 2.1 volts.  
*G  
119267  
10/17/02  
CGX  
Added phase noise limits data.  
Removed BGA pinout and package information.  
Removed references to CYS25G0102DX.  
*H  
*I  
121019  
122319  
124438  
1309983  
11/06/02  
12/30/02  
02/13/03  
07/27/07  
CGX  
RBI  
Removed “Preliminary” from datasheet  
Added power up requirements to Maximum Ratings information  
Revised power up requirements  
*J  
*K  
WAI  
IUS / SFV Added Pb-free logo  
Added Pb-free parts to the Ordering Information:  
CYS25G0101DX-ATXC, CYS25G0101DX-ATXI  
*L  
2647349  
2897889  
01/26/09  
03/23/10  
AAE /  
PYRS  
Revised the ordering information to only reflect the new marketing part  
numbers defined for the new 120AE (e-pad) package.  
Updated the package diagram per spec 001-48723.  
*M  
CGX  
Removed inactive parts from Ordering Information.  
Updated Package Diagram.  
*N  
*O  
3051122  
4173317  
10/07/10  
NVNS  
NVNS  
Added Ordering Code Definitions.  
10/24/2013  
Updated Package Diagram:  
spec 001-48723 – Changed revision from *A to *B.  
Updated in new template.  
Completing Sunset Review.  
Document Number: 38-02009 Rev. *O  
Page 21 of 22  
CYS25G0101DX  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Lighting & Power Control  
Community | Forums | Blogs | Video | Training  
Technical Support  
Memory  
cypress.com/go/memory  
cypress.com/go/psoc  
cypress.com/go/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2001-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-02009 Rev. *O  
Revised October 24, 2013  
Page 22 of 22  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
厂商 型号 描述 页数 下载

CRYSTEKMICROWAVE

CYS1A11A-20.000 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11A-FREQ 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11AS-20.000 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11AS-FREQ 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11B-20.000 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11B-FREQ 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11BS-20.000 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11BS-FREQ 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11C-20.000 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

CRYSTEKMICROWAVE

CYS1A11C-FREQ 石英晶体薄型HC49S含铅水晶[ Quartz Crystal Low Profile HC49S Leaded Crystal ] 1 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.260961s