找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

TZA3019AVH

型号:

TZA3019AVH

描述:

专用放大器|双| LLCC | 32引脚|塑料[ APPLICATION SPECIFIC AMPLIFIER|DUAL|LLCC|32PIN|PLASTIC ]

品牌:

ETC[ ETC ]

页数:

32 页

PDF大小:

183 K

INTEGRATED CIRCUITS  
DATA SHEET  
TZA3019  
2.5 Gbits/s dual  
postamplifier with level  
detectors and 2 × 2 switch  
Product specification  
2001 Jun 25  
Supersedes data of 2000 Apr 10  
File under Integrated Circuits, IC19  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
FEATURES  
APPLICATIONS  
Dual postamplifier  
Postamplifier for Synchronous Digital Hierarchy and  
Synchronous Optical Network (SDH/SONET)  
transponder  
Single 3.3 V power supply  
Wideband operation from 50 kHz to 2.5 GHz (typical  
value)  
SDH/SONET wavelength converter  
Crosspoint or channel switch  
PECL driver  
Fully differential  
Channels are delay matched  
Fibre channel arbitrated loop  
Protection ring  
On-chip DC-offset compensations without external  
capacitor  
Interfacing with positive or negative supplied logic  
Switching possibility between channels  
Monitoring  
Signal level detectors  
Positive Emitter Coupled Logic (PECL) or Current-Mode  
Logic (CML) compatible data outputs adjustable from  
200 to 800 mV (p-p) single-ended  
Swing converter CML 200 mV (p-p) to  
PECL 800 mV (p-p)  
Port bypass circuit  
Power-down capability for unused outputs and detectors  
Rise and fall times 80 ps (typical value)  
2.5 GHz clock amplification.  
Possibility to invert the output of each channel  
separately  
GENERAL DESCRIPTION  
The TZA3019 is a low gain postamplifier multiplexer with a  
dual RSSI and/or LOS detector that is designed for use in  
critical signal path control applications, such as  
loop-through, redundant channel switching or Wavelength  
Division Multiplexing (WDM). The signal path is  
unregistered, so no clock is required for the data inputs.  
The signal path is fully differential and delay matched. It is  
capable of operating from 50 kHz to 2.5 GHz.  
Input level-detection circuits for Received Signal  
Strength Indicator (RSSI) or Loss Of Signal (LOS)  
detection, programmable from 0.4 to 400 mV (p-p)  
single-ended, with open-drain comparator output for  
direct interfacing with positive or negative logic  
Reference voltage for output level and LOS adjustment  
Automatic strongest input signal switch possibility  
(TZA3019 version B)  
The TZA3019 HTQFP32 and HBCC32 packages can be  
delivered in three versions:  
HTQFP32 or HBCC32 plastic package with exposed  
pad.  
TZA3019AHT and TZA3019AVH with two RSSI signals  
TZA3019BHT and TZA3019BVH with one RSSI and  
one LOS signal  
TZA3019CHT and TZA3019CVH with two LOS signals.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TZA3019AHT  
TZA3019BHT  
TZA3019CHT  
TZA3019AVH  
TZA3019BVH  
TZA3019CVH  
TZA3019U  
HTQFP32 plastic, heatsink thin quad flat package; 32 leads; body 5 × 5 × 1.0 mm  
HTQFP32 plastic, heatsink thin quad flat package; 32 leads; body 5 × 5 × 1.0 mm  
HTQFP32 plastic, heatsink thin quad flat package; 32 leads; body 5 × 5 × 1.0 mm  
SOT547-2  
SOT547-2  
SOT547-2  
HBCC32  
HBCC32  
HBCC32  
plastic, heatsink bottom chip carrier; 32 terminals; body 5 × 5 × 0.65 mm SOT560-1  
plastic, heatsink bottom chip carrier; 32 terminals; body 5 × 5 × 0.65 mm SOT560-1  
plastic, heatsink bottom chip carrier; 32 terminals; body 5 × 5 × 0.65 mm SOT560-1  
bare die; 2.22 × 2.22 × 0.28 mm  
2001 Jun 25  
2
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
BLOCK DIAGRAM  
32  
25  
27  
GND1B  
RSSI1  
GND1A  
10  
LOSTH1  
LOS  
DETECTOR  
1×  
offset  
level  
TZA3019AHT  
TZA3019AVH  
12  
29  
31  
LEVEL1  
INV1  
S1  
24  
1
2
3
V
CC1B  
V
SWITCH  
CC1A  
23  
22  
21  
OUT1  
IN1  
IN1Q  
OUT1Q  
A1A A1B  
4
V
CC1B  
V
CC1A  
15  
8
14  
BAND GAP  
REFERENCE  
DFT  
V
TEST  
ref  
V
17  
18  
19  
CC2A  
V
A2A A2B  
CC2B  
7
6
5
OUT2Q  
OUT2  
IN2Q  
IN2  
V
20  
CC2A  
SWITCH  
V
CC2B  
30  
28  
13  
S2  
INV2  
level  
LEVEL2  
offset  
26  
1×  
RSSI2  
LOS  
DETECTOR  
11  
9
LOSTH2  
GND2A  
16  
GND2B  
MGT028  
Fig.1 Block diagram (TZA3019AHT and TZA3019AVH).  
3
2001 Jun 25  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
32  
25  
27  
GND1A  
GND1B  
LOS1  
10  
LOSTH1  
LOS  
DETECTOR  
5 kΩ  
offset  
level  
TZA3019BHT  
TZA3019BVH  
12  
LEVEL1  
29  
INV1  
31  
S1  
24  
V
1
CC1B  
V
V
SWITCH  
CC1A  
2
3
23  
22  
21  
OUT1  
IN1  
IN1Q  
OUT1Q  
A1A A1B  
V
4
CC1B  
CC1A  
TEST  
CC2A  
15  
8
14  
BAND GAP  
REFERENCE  
DFT  
V
ref  
V
V
17  
18  
19  
V
A2A A2B  
CC2B  
7
6
5
OUT2Q  
OUT2  
IN2Q  
IN2  
20  
CC2A  
SWITCH  
V
CC2B  
30  
28  
13  
S2  
INV2  
level  
LEVEL2  
offset  
26  
1×  
RSSI2  
LOS  
DETECTOR  
11  
9
LOSTH2  
GND2A  
16  
GND2B  
MGT027  
Fig.2 Block diagram (TZA3019BHT and TZA3019BVH).  
4
2001 Jun 25  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
32  
25  
27  
GND1B  
LOS1  
GND1A  
10  
LOSTH1  
LOS  
DETECTOR  
5 kΩ  
offset  
level  
TZA3019CHT  
TZA3019CVH  
12  
LEVEL1  
29  
INV1  
31  
S1  
24  
V
1
CC1B  
V
V
SWITCH  
CC1A  
IN1  
2
3
23  
22  
21  
OUT1  
IN1Q  
OUT1Q  
V
A1A A1B  
4
CC1B  
CC1A  
TEST  
15  
8
14  
BAND GAP  
REFERENCE  
DFT  
V
ref  
V
V
17  
18  
19  
CC2A  
V
CC2B  
A2A A2B  
7
6
5
OUT2Q  
OUT2  
IN2Q  
IN2  
20  
SWITCH  
CC2A  
S2  
V
CC2B  
30  
28  
13  
INV2  
level  
LEVEL2  
offset  
LOS  
DETECTOR  
5 kΩ  
26  
LOS2  
11  
9
LOSTH2  
GND2A  
16  
GND2B  
MGS553  
Fig.3 Block diagram (TZA3019CHT and TZA3019CVH).  
5
2001 Jun 25  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
PINNING  
PIN  
SYMBOL TZA3019xHT/xVH(1) PAD TYPE(2)  
DESCRIPTION  
A
B
C
VCC1A  
IN1  
1
2
1
2
1
2
1
2
S
I
supply voltage for input 1 and LOS1 circuits  
differential circuit 1 input; complimentary to pin IN1Q; DC bias  
level is set internally at approximately VCC 0.33 V  
IN1Q  
3
3
3
3
I
differential circuit 1 input; complimentary to pin IN1; DC bias level  
is set internally at approximately VCC 0.33 V  
VCC1A  
n.c.  
4
5
6
4
5
6
4
5
6
4
5
6
7
8
S
S
I
supply voltage for input 1 and LOS1 circuits  
not connected  
n.c.  
not connected  
VCC2A  
IN2  
supply voltage for input 2 and LOS2 circuits  
differential circuit 2 input; complimentary to pin IN2Q; DC bias  
level is set internally at approximately VCC 0.33 V  
IN2Q  
7
7
7
9
I
differential circuit 2 input; complimentary to pin IN2; DC bias level  
is set internally at approximately VCC 0.33 V  
VCC2A  
8
9
8
9
8
9
10  
11  
12  
S
S
I
supply voltage for input 2 and LOS2 circuits  
ground for input 2 and LOS2 circuits  
GND2A  
LOSTH1  
10  
10  
10  
input for level detector programming of input 1 circuit; threshold  
level is set by connecting external resistors between pins VCC1A  
and Vref; when forced to GND1A or not connected, the  
LOS1 circuit will be switched off  
LOSTH2  
11  
11  
11  
13  
I
input for level detector programming of input 2 circuit; threshold  
level is set by connecting external resistors between pins VCC2A  
and Vref; when forced to GND2A or not connected, the  
LOS2 circuit will be switched off  
n.c.  
14  
15  
not connected  
LEVEL1  
12  
12  
12  
I
input for programming output level of output 1 circuit; output level  
is set by connecting external resistors between  
pins VCC1A and Vref; when forced to VCC1A or not connected,  
pins OUT1 and OUT1Q will be switched off  
LEVEL2  
Vref  
13  
14  
13  
14  
13  
14  
16  
I
input for programming output level of output 2 circuit; output level  
is set by connecting external resistors between pins VCC2A  
and Vref; when forced to VCC2A or not connected, pins OUT2  
and OUT2Q will be switched off  
17  
O
reference voltage for level circuit and LOS threshold programming;  
typical value is VCC 1.6 V; no external capacitor allowed  
n.c.  
18  
19  
20  
21  
22  
I
not connected  
TEST  
GND2B  
VCC2B  
OUT2Q  
15  
16  
17  
18  
15  
16  
17  
18  
15  
16  
17  
18  
for test purposes only; to be left open-circuit in the application  
ground for output 2 circuit  
S
S
O
supply voltage for output 2 circuit  
PECL or CML compatible differential circuit 2 output;  
complimentary to pin OUT2  
2001 Jun 25  
6
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
PIN  
SYMBOL TZA3019xHT/xVH(1) PAD TYPE(2)  
DESCRIPTION  
A
B
C
OUT2  
19  
19  
19  
23  
O
PECL or CML compatible differential circuit 2 output;  
complimentary to pin OUT2Q  
VCC2B  
n.c.  
20  
20  
20  
24  
25  
26  
27  
28  
S
supply voltage for output 2 circuit  
not connected  
n.c.  
not connected  
VCC1B  
OUT1Q  
21  
22  
21  
22  
21  
22  
S
O
supply voltage for output 1 circuit  
PECL or CML compatible differential circuit 1 output;  
complimentary to pin OUT1  
OUT1  
23  
23  
23  
29  
O
PECL or CML compatible differential circuit 1 output;  
complimentary to pin OUT1Q  
VCC1B  
GND1B  
RSSI2  
LOS2  
24  
25  
26  
24  
25  
26  
24  
25  
30  
31  
32  
S
S
O
supply voltage for output 1 circuit  
ground for output 1 circuit  
output of received signal strength indicator of detector 2  
26  
33 O-DRN output loss of signal detector 2; detection of input 2 signal; direct  
drive of positive or negative supplied logic via internal 5 kΩ  
resistor  
RSSI1  
LOS1  
27  
34  
O
output of received signal strength indicator of detector 1  
27  
27  
35 O-DRN output loss of signal detector 1; detection of input 1 signal; direct  
drive of positive or negative supplied logic via internal 5 kΩ  
resistor  
INV2  
INV1  
S2  
28  
29  
30  
31  
28  
29  
30  
31  
28  
29  
30  
31  
36  
37  
38  
39  
TTL  
TTL  
TTL  
TTL  
input to invert the signal of pins OUT2 and OUT2Q; directly  
positive (inverted) or negative supplied logic driven  
input to invert the signal of pins OUT1 and OUT1Q; directly of  
positive (inverted) or negative supplied logic driven  
input selector output 2 circuit; directly positive (inverted) or  
negative supplied logic driven  
S1  
input selector output 1 circuit; directly positive (inverted) or  
negative supplied logic driven  
GND1A  
GNDp  
32  
32  
32  
40  
S
S
ground for input 1 and LOS1 circuits  
ground pad (exposed die pad)  
pad  
pad  
pad  
Notes  
1. The ‘x’ in TZA3019xHT/xVH represents versions A, B and C.  
2. Pin type abbreviations: O = output, I = input, S = power supply, TTL = logic input and O-DRN = open-drain output.  
2001 Jun 25  
7
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
V
V
CC1B  
CC1A  
IN1  
OUT1  
exposed pad  
IN1Q  
OUT1Q  
V
V
V
CC1A  
CC1B  
TZA3019xHT  
V
CC2A  
IN2  
CC2B  
OUT2  
GNDp  
IN2Q  
OUT2Q  
V
V
CC2A  
CC2B  
MGS554  
Fig.4 Pin configuration HTQFP32 package.  
V
1
32 31 30 29 28 27 26  
exposed pad  
25  
CC1A  
V
IN1  
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
CC1B  
IN1Q  
OUT1  
V
V
OUT1Q  
CC1A  
V
TZA3019xVH  
CC1B  
CC2A  
IN2  
V
CC2B  
IN2Q  
OUT2  
GNDp  
V
OUT2Q  
CC2A  
V
9
10 11 12 13 14 15 16  
17  
CC2B  
MGT029  
Fig.5 Pin configuration HBCC32 package.  
8
2001 Jun 25  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
FUNCTIONAL DESCRIPTION  
Matching the transmitting end to absorb reflections is only  
recommended for very sensitive applications.  
The TZA3019 is a dual postamplifier with multiplexer and  
loss of signal detection (see Figs 1, 2 and 3). The RF path  
starts with the multiplexer, which connects an amplifier to  
one of the two inputs. It is possible to invert the output for  
easy layout of the Printed-Circuit Board (PCB). The signal  
is amplified to a certain level. To guarantee this level with  
minimum distortion over the temperature range and level  
range, an active control part is added. The offset  
compensation circuit following the inverter minimizes the  
offset.  
In such cases, pull-up resistors of 100 should be  
connected as close as possible to the IC from pins OUT1  
and OUT1Q, and pins OUT2 and OUT2Q to GND1B and  
GND2B respectively. These matching resistors are not  
needed in most applications.  
V
V
handbook, halfpage  
CC1A,  
CC2A  
12 pF  
420 Ω  
50 Ω  
The Received Signal Strength Indicator (RSSI) or the Loss  
Of Signal (LOS) detector uses a 7-stage ‘successive  
detection’ circuit. It provides a logarithmic output. The LOS  
detector is followed by a comparator with a programmable  
threshold. The input signal level-detection is implemented  
to check if the input signal voltage is above the user  
programmed level. This can insure that data will only be  
transmitted when the input signal-to-noise ratio is sufficient  
for low bit error rate system operation. A second  
offset compensation circuit minimizes the offset of the  
logarithmic amplifier.  
50 Ω  
IN1, IN2  
IN1Q, IN2Q  
GND1A,  
GND2A  
MGS555  
Fig.6 RF input circuit.  
RF input circuit  
The input circuit contains internal 50 resistors  
decoupled to VCC via an internal common mode 12 pF  
capacitor (see Fig.6).  
Postamplifier level adjustment  
The postamplifier boosts the signal up to PECL levels. The  
output can be either CML- or PECL-level compatible,  
adjusted by means of the voltage on pins LEVEL1  
and LEVEL2. The DC voltages of pins OUT1 and OUT1Q,  
and pins OUT2 and OUT2Q match with the DC-levels  
on pins LEVEL1 and LEVEL2, respectively. Due to the  
receiving end 50 load resistance, it means that at the  
same level of Vo(p-p), VLEVEL1 and VLEVEL2 with  
The input pins are DC-biased at approximately  
VCC 0.33 V by an internal reference generator. The  
TZA3019 can be DC-coupled, but AC-coupling is  
preferred. In case of DC-coupling, the driving source must  
operate within the allowable input range  
(VCC 1.0 V to VCC + 0.3 V). A DC-offset voltage of more  
than a few millivolts should be avoided, since the internal  
DC-offset compensation circuit has a limited correction  
range. When AC-coupling is used, if no DC-compatibility is  
required, the values of the coupling capacitors must be  
large enough to pass the lowest input frequency of  
interest. Capacitor tolerance and resistor variation must be  
included for an accurate calculation. Do not use signal  
frequencies around the low cut-off circuit frequencies  
(f3dB(l) = 50 kHz for the postamplifiers and f3dB(l) = 1 MHz  
for the LOS circuits).  
AC-coupling are not equal to VLEVEL1 and VLEVEL2 with  
DC-coupling (see Figs 7 and 8).  
When pin LEVEL1 or LEVEL2 is connected to VCC or not  
connected, the postamplifier is in power-down state  
(see Fig.7).  
Postamplifier DC offset cancellation loop  
Offset control loops connected between the inputs of the  
buffers A1A and A2A and the outputs of the amplifiers A1B  
and A2B (see Figs 1, 2 and 3) will keep the input of both  
buffers at their toggle point during the absence of an input  
signal. The active offset compensation circuit is integrated,  
so no external capacitor is required. The loop time  
constant determines the lower cut-off frequency of the  
amplifier chain. The cut-off frequency of the offset  
RF output circuit  
Matching the main amplifier outputs (see Fig.7) is not  
mandatory. In most applications, the transmission line  
receiving end will be properly matched, while very little  
reflections occur.  
compensations is fixed internally at approximately 5 kHz.  
2001 Jun 25  
9
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
V
CC1A,  
V
V
CC1B,  
CC2B  
V
CC2A  
50  
50  
100 Ω  
100 Ω  
R1  
OUT1,  
OUT2  
V
o
OUT1Q,  
OUT2Q  
LEVEL1,  
LEVEL2  
V
level  
REG  
R2  
V
CC  
V
V
ref  
V
level  
o(se)(p-p)  
V
o
(V)  
MGS556  
Vlevel = 0.5 × Vo(se)(p-p)  
.
R1  
Vlevel = Vref  
×
.
----------------------  
R1 + R2  
Level detector in power-down mode: VLEVEL1 or VLEVEL2 = VCC  
.
a. DC-coupling.  
V
CC1A,  
V
CC1B,  
V
V
CC2A  
CC2B  
50  
50  
100  
100 Ω  
OUT1,  
OUT2  
V
o
R1  
OUT1Q,  
OUT2Q  
LEVEL1,  
LEVEL2  
V
level  
V
CC  
REG  
R2  
V
ref  
V
V
level  
o(se)(p-p)  
V
o
(V)  
MGL811  
Vlevel = 1.5 × Vo(se)(p-p)  
.
R1  
R1 + R2  
Vlevel = Vref  
×
.
----------------------  
Level detector in power-down mode: VLEVEL1 or VLEVEL2 = VCC  
.
b. AC-coupling.  
Fig.7 RF output configurations.  
2001 Jun 25  
10  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
MGS557  
1000  
V
o(se)(p-p)  
(mV)  
800  
DC-coupled  
AC-coupled  
600  
400  
200  
0
0
20  
40  
60  
80  
100  
V
(% of V  
)
ref  
level  
Fig.8 Output signal as a function of Vlevel  
.
TTL logic input of selector and inverter  
The logic levels are differently defined for positive or  
Table 2 OUT2 and OUT2Q as function of input S2  
S2  
OUT2  
OUT2Q  
negative logic (see Fig.9). It should be noted that positive  
logic levels are inverted if a negative supply voltage is  
used.  
0
1
IN2  
IN1  
IN2Q  
IN1Q  
Table 3 OUT1 and OUT1Q as function of input INV1  
Outputs as a function of switch input pins S1, S2,  
INV1 and INV2  
INV1  
OUT1  
OUT1Q  
IN1Q or IN2Q  
IN1 or IN2  
See Tables 1, 2, 3 and 4.  
0
1
IN1 or IN2  
The default value for the switch input pins S1, S2, INV1  
and INV2 if not connected, is zero.  
IN1Q or IN2Q  
Table 4 OUT2 and OUT2Q as function of input INV2  
Table 1 OUT1 and OUT1Q as function of input S1  
INV2  
OUT2  
OUT2Q  
S1  
0
OUT1  
IN1  
OUT1Q  
IN1Q  
0
1
IN1 or IN2  
IN1Q or IN2Q  
IN1 or IN2  
IN1Q or IN2Q  
1
IN2  
IN2Q  
2001 Jun 25  
11  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
logic  
level  
MGS560  
2.0 V  
(1)  
2.0 V  
1
0
TTL  
0.8 V  
0.8 V  
1.4 V  
1.4 V  
V
GND  
CC  
1  
0
+1  
+2  
+3  
+4  
+5  
+6  
V (V)  
I
a. Positive circuit supply voltage VCC and positive logic supply voltage VCC  
.
logic  
level  
MGS559  
2.0 V  
2.0 V  
1
0
(1)  
TTL  
0.8 V  
0.8 V  
1.4 V  
1.4 V  
V
V
CC  
EE  
GND  
4  
3  
2  
1  
0
+1  
+2  
+3  
V (V)  
I
b. Negative circuit supply voltage VEE and positive logic supply voltage VCC  
.
logic  
level  
MGS558  
2.0 V  
(1)  
2.0 V  
1
0
TTL  
0.8 V  
0.8 V  
1.4 V  
1.4 V  
V
GND  
EE  
4  
3  
2  
1  
0
+1  
+2  
+3  
V (V)  
I
c. Negative circuit supply voltage VEE and positive logic supply voltage VEE  
.
(1) Level not defined.  
Fig.9 Logic levels on pins S1, S2, INV1 and INV2 as a function of the input voltages.  
12  
2001 Jun 25  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
RSSI and LOS detection  
where SRSSI = sensitivity (see Chapter “Characteristics”).  
The TZA3019 allows AC-signal level detection. This can  
prevent the outputs from reacting to noise during the  
absence of a valid input signal, and can insure that data  
only will be transmitted when the signal-to-noise ratio of  
the input signal is sufficient to insure low bit error rate  
system operation.  
Example: a 200 mV (p-p) single-ended 1.2 GB/s PRBS  
signal has an VRSSI of VCC 1.013 V.  
ndbook, halfpage3  
MGS564  
10  
The RSSI detection circuit uses seven limiting amplifiers in  
a ‘successive detection’ topology to closely approximate  
logarithmic response over a total range of 70 dB. The  
detectors provide full-wave rectification of the AC signals  
presented at each previous amplifier stage. Their outputs  
are current drivers. Each cell incorporates a low-pass filter,  
being the first step in recovering the average value of the  
demodulated signal of the input frequency. The summed  
detector output currents are converted to a voltage by an  
internal load resistor. This voltage is buffered and  
V
i(se)(p-p)  
(mV)  
2
10  
LOS1,  
LOS2  
LOW-level  
(1)  
(2)  
10  
1
LOS1,  
LOS2  
HIGH-level  
(3)  
available in the A and B versions of the TZA3019. When  
VRSSI is used VLOSTH must not be connected to GND to  
prevent the LOS comparator from switching to the standby  
mode. The LOS comparator detects an input signal above  
a fixed threshold, resulting in a LOW-level at the LOS  
circuit output.The threshold level is determined by the  
voltage on pins LOSTH1 or LOSTH2 (see Fig.10). A filter  
with a time constant of 1 µs nominal is included to prevent  
noise spikes from triggering the level detector.  
1  
10  
10  
20  
30  
40  
, V  
50  
60  
70  
V
(% of V  
)
LOSTH1 LOSTH2  
ref  
V
0.16  
V
0.48  
V
0.8  
V
1.12  
CC  
CC  
CC  
CC  
V
, V  
(V)  
RSSI1 RSSI2  
The comparator (with internal 3 dB hysteresis) drives an  
open-drain circuit with an internal resistor (5 k) for direct  
interfacing to positive or negative logic (see Fig.11). Only  
available in the B and C versions of the TZA3019.  
(1) PRBS pattern input signal with a frequency <1 GHz.  
(2) Linearity error typically 0.5 dB.  
(3) ϕ = 1/12.5 dB/mV.  
The response is independent of the sign of the input signal  
because of the particular way the circuit has been built.  
This is part of the demodulating nature of the detector,  
which results in an alternating input voltage being  
transformed to a rectified and filtered quasi DC-output  
signal. For the TZA3019 the logarithmic voltage slope is  
ϕ = 1/12.5 dB/mV and is essentially temperature and  
supply independent through four feedback loops in the  
reference circuit. The internal LOS detector output voltage  
is based on Vref. The demodulator characteristic depends  
on the waveform and the response depends roughly on  
the input signal RMS value. This influences high  
frequencies, a square wave input of 2.4 GHz (LOS circuit  
bandwidth of 2.4 GHz) offsets the intercept voltage by  
20%. VLOSTH can be calculated using the following  
formula:  
Fig.10 Loss of signal assert level.  
A full understanding of the offset control loop is useful. The  
primary purpose of the loop is to extend the lower end of  
the dynamic range in any case where the offset voltage of  
the first stage might be high enough to cause later stages  
to prematurely enter limiting, caused by the high DC-gain  
of the amplifier system. The offset is automatically and  
continuously compensated via a feedback path from the  
last stage. An offset at the output of the logarithmic  
converter is equivalent to a change of amplitude at the  
input. Consequently, with DC-coupling, signal absence,  
either LOW-level or HIGH-level is detected as a full signal,  
only signals with an average value equal to zero give zero  
output. Version B can be used for an auto function, which  
switches the strongest input signal to output 1 and the  
weakest to output 2. To achieve this output VRSSI2 must be  
used as the reference voltage for input VLOSTH. Then the  
output LOS1 can switch S1 and S2.  
VLOSTH = VRSSI  
=
Vi(p-p)  
V
CC + 0.458 SRSSI × 20 log  
(1)  
-------------------  
26E 8  
2001 Jun 25  
13  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
V
V
handbook, halfpage  
handbook, halfpage  
CC  
CC  
GND  
56 kΩ  
5.6 kΩ  
LOS1,  
LOS2  
TZA3019  
LOS1,  
LOS2  
TZA3019  
5 kΩ  
5 kΩ  
GND1A,  
GND2A  
GND1A,  
GND2A  
I
LOS  
GND  
I
LOS  
V
EE  
MGS563  
MGS562  
a. Positive supply and positive logic.  
b. Negative supply and positive logic.  
GND  
handbook, halfpage  
56 kΩ  
LOS1,  
LOS2  
TZA3019  
5 kΩ  
GND1A,  
GND2A  
I
LOS  
V
EE  
MGS561  
VCC VEE < 7 V.  
c. Negative supply and negative logic.  
Fig.11 Loss of signal output pins LOS1 and LOS2.  
Supply current  
(1)  
60  
For the supply currents ICC1B and ICC2B, see Fig.0.  
58  
I
I
50  
Using a positive supply voltage  
CC1B,  
CC2B  
(mA)  
Although the TZA3019 has been designed to use a single  
+3.3 V supply voltage (see Fig.13), some care should be  
taken with respect to RF transmission lines. The on-chip  
signals refer to the various VCC pins. The external  
transmission lines will most likely be referred to the  
pins VGND1A, VGND2A, VGND1B and VGND2B, being the  
system ground. The RF signals will change from one  
reference plane to another when interfacing the RF inputs  
and outputs. A positive supply application is very  
vulnerable to interference with respect to this point. For a  
successful +3.3 V application, special care should be  
taken when designing the PCB layout in order to reduce  
the influence of interference and to keep the positive  
supply voltage as clean as possible.  
40  
30  
20  
17  
10  
5
0
0
0.2  
0.5  
V
0.8  
1
(V)  
o(se)(p-p)  
MGS566  
(1) ICC1B and ICC2B at Tamb = 25 °C.  
Fig.0 Supply current as a function of output  
voltage.  
2001 Jun 25  
14  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VCC  
Vn  
PARAMETER  
MIN.  
0.5  
MAX.  
+5.5  
UNIT  
supply voltage  
DC voltage  
V
V
pins IN1, IN1Q, IN2, IN2Q, LOSTH1, LOSTH2, LEVEL1, LEVEL2, 0.5  
VCC + 0.5  
Vref, TEST, OUT2Q, OUT2, OUT1Q, OUT1, GNDp, VCC1A, VCC2A  
,
VCC1B and VCC2B  
pins LOS1, LOS2, INV1, INV2, S1 and S2  
DC current  
0.5  
+7  
V
In  
pins IN1, IN1Q, IN2 and IN2Q  
pins LOSTH1, LOSTH2, LEVEL1 and LEVEL2  
pins Vref, TEST, LOS1 and LOS2  
pins OUT1, OUT1Q, OUT2 and OUT2Q  
pins INV1, INV2, S1 and S2  
total power dissipation  
20  
0
+20  
14  
mA  
µA  
mA  
mA  
µA  
W
1  
30  
0
+1  
+30  
20  
Ptot  
Tstg  
Tj  
1.2  
storage temperature  
65  
+150  
150  
+85  
°C  
junction temperature  
°C  
Tamb  
ambient temperature  
40  
°C  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-s)  
thermal resistance from junction to  
solder point (exposed die pad)  
note 1  
15  
K/W  
K/W  
K/W  
Rth(j-a)  
thermal resistance from junction to  
ambient  
1s2p multi-layer test board; notes 1  
and 2  
33  
18  
Rth(s-a)  
thermal resistance from solder point to 1s2p multi-layer test board; notes 1  
ambient (exposed die pad)  
and 2  
Rth(s-a)(req)  
required thermal resistance from  
solder point to ambient  
LOS circuits switched on  
Vo = 200 mV (p-p) single-ended;  
both output circuits  
60  
30  
K/W  
K/W  
Vo = 800 mV (p-p) single-ended;  
both output circuits  
Notes  
1. JEDEC standard.  
2. HTQFP32 and HBCC32 packages.  
2001 Jun 25  
15  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
CHARACTERISTICS  
Typical values at Tamb = 25 °C and VCC = 3.3 V; minimum and maximum values are valid over the entire ambient  
temperature range and supply voltage range; all voltages referenced to ground; note 1; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SUPPLY PINS VCC1A, VCC1B, VCC2A AND VCC2B  
VCC  
supply voltage  
3.13  
3.3  
24  
40  
6
3.47  
V
ICC1A  
ICC2A  
,
,
supply current A  
LOS circuit power-down  
LOS circuit switched on  
amplifier power-down  
14  
24  
2
34  
56  
10  
24  
mA  
mA  
mA  
mA  
ICC1B  
ICC2B  
supply current B  
Vo = 200 mV (p-p)  
single-ended; one output  
circuit  
11  
17  
Vo = 800 mV (p-p)  
single-ended; one output  
circuit  
43  
60  
77  
mA  
Ptot  
total power dissipation  
power-down  
100  
200  
300  
mW  
both LOS circuits switched  
on  
Vo = 200 mV (p-p)  
single-ended; both  
output circuits  
220  
450  
380  
660  
555  
925  
mW  
mW  
Vo = 800 mV (p-p)  
single-ended; both  
output circuits  
TC  
temperature coefficient  
LOS circuit switched on;  
80  
50  
50  
30  
30  
15  
µA/K  
µA/K  
ICC1A; ICC2A  
Vo = 800 mV (p-p)  
single-ended; ICC1B; ICC2B  
Tj  
junction temperature  
ambient temperature  
40  
40  
+125  
+85  
°C  
°C  
Tamb  
+25  
Inputs multiplexer and loss of signal detector  
PECL OR CML INPUT PINS IN1, IN1Q, IN2 AND IN2Q  
Vi(p-p)  
input voltage swing  
(peak-to-peak value)  
single-ended; notes 2  
and 3  
50  
500  
mV  
Vi(bias)  
VI  
DC input bias voltage  
V
CC 0.4  
CC 1.0  
V
CC 0.33 VCC 0.28 V  
DC and AC input window  
voltage  
note 3  
V
VCC + 0.3  
V
Ri  
Ci  
input resistance  
single-ended  
35  
50  
70  
input capacitance  
single-ended; note 3  
0.6  
0.8  
1.2  
pF  
2001 Jun 25  
16  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Postamplifier  
AMPLIFIERS A1A, A1B, A2A AND A2B  
Gv  
small signal voltage gain  
Vo = 200 mV (p-p)  
single-ended; note 4  
9
15  
29  
20  
34  
dB  
Vo = 800 mV (p-p)  
21  
dB  
single-ended; note 4  
fD  
signal path data rate  
notes 5 and 9  
2.5  
5
Gbits/s  
kHz  
f3dB(l)  
low 3 dB cut-off frequency note 3  
2
10  
DC compensation  
f3dB(h)  
high 3 dB cut-off  
2.0  
GHz  
frequency  
tPD  
propagation delay  
note 3  
150  
200  
0
250  
5
ps  
ps  
tPD  
propagation delay  
difference  
at the same signal levels;  
note 3  
J
total jitter  
20 bits of the 28.5 kbits  
pattern; notes 3 and 6  
8
ps  
αct  
crosstalk  
crosstalk of IC only  
110  
dB  
PECL OR CML OUTPUT PINS OUT1, OUT1Q, OUT2 AND OUT2Q  
Vo(se)(p-p)  
single-ended output  
voltage  
(peak-to-peak value)  
50 load  
200  
800  
+1  
mV  
TC  
temperature coefficient  
output level  
1  
0
mV/K  
tr  
rise time  
20% to 80%; notes 5 and 6  
80% to 20%; notes 5 and 6  
single-ended  
80  
ps  
ps  
tf  
fall time  
80  
Ro  
Co  
output resistance  
output capacitance  
70  
0.6  
100  
0.8  
130  
1.2  
single-ended; note 3  
pF  
LEVEL CONTROL INPUT PINS LEVEL1 AND LEVEL2  
Vi  
Ri  
input voltage  
V
CC Vref  
VCC  
600  
V
input resistance  
measured to VCC1A  
or VCC2A  
150  
350  
kΩ  
Multiplexer and inverter switch  
PECL OR CML INPUT PINS IN1, IN1Q, IN2 AND IN2Q  
αOS(red)  
input offset reduction  
Vo = 200 mV (p-p)  
single-ended; note 7  
3.8  
6
9
13.5  
22  
dB  
dB  
mV  
µV  
dB  
Vo = 800 mV (p-p)  
single-ended; note 7  
14  
Vio(cor)  
input offset voltage  
correction range  
peak-to-peak value;  
single-ended  
10  
+10  
170  
12  
Vn(i)(eq)(rms) equivalent input noise  
voltage (RMS value)  
Vo = 800 mV (p-p)  
single-ended; note 3  
75  
5
Fn  
noise factor  
note 3  
2001 Jun 25  
17  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SWITCH CIRCUIT  
ta  
td  
assert time  
de-assert time  
multiplexer and inverter  
multiplexer and inverter  
100  
ns  
80  
ns  
TTL INPUT PINS S1, S2, INV1 AND INV2  
VIL  
VIH  
Ri  
LOW-level input voltage  
HIGH-level input voltage  
input resistance  
positive logic; note 10  
positive logic; note 10  
0.3  
2.0  
+0.8  
V
VCC + 0.8  
400  
V
measured to GND1A  
or GND2A  
100  
180  
kΩ  
Ii  
input current  
40  
+40  
µA  
Received signal strength indicator and loss of signal detector  
RSSI AND LOS CIRCUIT  
Vi(se)(p-p)  
single-ended input voltage  
swing (peak-to-peak value)  
0.4  
400  
mV  
DR  
dynamic range  
LOS sensitivity  
57  
10  
10  
9
60  
63  
dB  
SRSSI  
50 MHz, square; note 8  
620 MHz, square; note 8  
1.2 GHz, square; note 8  
12.5  
12  
15  
mV/dB  
mV/dB  
mV/dB  
mV/dB  
14  
11  
13.5  
15  
100 MB/s PRBS (231 1);  
9
12.5  
note 8  
1.2 GB/s PRBS (231 1);  
note 8  
2.4 GB/s PRBS (231 1);  
note 8  
10  
10  
2  
12  
12  
0
14.5  
14  
mV/dB  
mV/dB  
µV/dBK  
TCsens  
temperature coefficient  
sensitivity  
+2  
LE  
linearity error  
see Fig.10; note 3  
notes 3 and 7  
0.5  
35  
1
dB  
dB  
mV  
αOS(red)  
Vio(cor)  
input offset reduction  
25  
5  
50  
+5  
on-chip DC-offset  
compensation correction  
range  
peak-to-peak value  
single-ended  
f3dB(l)  
f3dB(h)  
low 3 dB cut-off frequency  
0.5  
1.5  
1
2
2
MHz  
GHz  
high 3 dB cut-off  
note 8  
2.5  
frequency  
LOS CIRCUIT  
hysLOS  
LOS hysteresis  
input signal waveform  
dependency  
2.0  
3.0  
4.0  
dB  
ta  
td  
assert time  
note 3  
note 3  
5
5
µs  
µs  
de-assert time  
2001 Jun 25  
18  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
INPUT PINS LOSTH1 AND LOSTH2  
Vi  
Ri  
input voltage  
0
VCC  
V
input resistance  
measured to GND1A  
or GND2A  
150  
350  
600  
kΩ  
OUTPUT PINS LOS1 AND LOS2  
Io(sink)  
Ro  
output sink current  
output resistance  
1
mA  
internal output series  
resistance  
3.5  
5
6.5  
kΩ  
OUTPUT PINS RSSI1 AND RSSI2  
Vo  
Io  
output voltage  
output current  
V
CC 1.2  
VCC  
+1  
V
1  
mA  
Band gap reference circuit  
OUTPUT PIN Vref  
Vref  
reference voltage  
VCC 1.85 VCC 1.6  
VCC 1.45 V  
Cext  
allowed external  
capacitance  
10  
pF  
Io(sink)  
output sink current  
500  
µA  
Notes  
1. It is assumed that both CML inputs carry a complementary signal with the specified peak-to-peak value (true  
differential excitation).  
2. Minimum signal with limiting output.  
3. Guaranteed by design.  
Vo  
4. GV  
=
------  
Vi  
5. Based on 3dB cut-off frequency.  
6. Vi = 100 mV (p-p) single-ended and Vo = 200 mV (p-p) single-ended.  
G AC  
7. Input offset reduction =  
-----------  
GDC  
8. Sensitivity depends on the waveform and is therefore a function of 3 dB cut-off frequency see Equation (1).  
9. Low limit can go as low as DC if input signal overrides input offset voltage correction range.  
10. When using a negative supply voltage, positive or negative logic can be used. The values will be different (see Fig.9).  
2001 Jun 25  
19  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
APPLICATION INFORMATION  
To minimize low frequency switching noise in the vicinity of  
the TZA3019, the power supply line should be filtered once  
using a beaded capacitor circuit with a low cut-off  
frequency.  
RF input and output connections  
Striplines, or microstrips, with an odd mode characteristic  
impedance of Zo = 50 have to be used for the differential  
RF connections on the PCB. This applies to both the signal  
inputs and the signal outputs. The two lines in each pair  
should have the same length.  
The exposed die pad GNDp connection on the PCB also  
needs to be a large copper area to improve heat transfer  
to the PCB and thus support IC cooling (see Figs 13  
and 14).  
Grounding and power supply decoupling  
The ground connection on the PCB needs to be a large  
copper filled area connected to a common ground plane  
with an inductance as low as possible.  
2001 Jun 25  
20  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
2
Boundary of 200 mm area  
0
1
2
3
4
5 mm  
To central  
To central  
GND decoupling  
GND decoupling  
0603  
0603  
V
V
CC1A  
CC1B  
OUT1  
IN1  
IN1Q  
V
OUT1Q  
V
CC1A  
CC1B  
V
V
CC2A  
CC2B  
IN2  
OUT2  
IN2Q  
V
OUT2Q  
V
CC2A  
CC2B  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
To central  
GND decoupling  
To central  
GND decoupling  
0603  
0603  
0603  
HTQFP  
MGS568  
In order to enable heat flow out of the package, the following measures have to be taken:  
(1) Solder the 3 × 3 mm2 die pad to a plane with maximum size.  
(2) Add a plane with minimum 200 mm2 in an inner layer, surrounded by ground layers.  
(3) Use maximum amount of vias to connect two planes.  
(4) Use minimum of openings in heat transport area between hot plane and ground planes.  
Fig.13 PCB layout for positive supply voltage.  
2001 Jun 25  
21  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
2
Boundary of 200 mm area  
0
1
2
3
4
5 mm  
To central  
GND decoupling  
To central  
GND decoupling  
0603  
0603  
V
V
CC1A  
CC1B  
OUT1  
IN1  
IN1Q  
OUT1Q  
V
V
CC1A  
CC1B  
V
V
CC2A  
CC2B  
IN2  
OUT2  
IN2Q  
OUT2Q  
V
V
CC2A  
CC2B  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
To central  
GND decoupling  
To central  
GND decoupling  
0603  
0603  
0603  
HTQFP  
MGS567  
In order to enable heat flow out of the package, the following measures have to be taken:  
(1) Solder the 3 × 3 mm2 die pad to a plane with maximum size.  
(2) Add a plane with minimum 200 mm2 in an inner layer, surrounded by ground layers.  
(3) Use maximum amount of vias to connect two planes.  
(4) Use minimum of openings in heat transport area between hot plane and ground planes.  
Fig.14 PCB layout for negative supply voltage.  
2001 Jun 25  
22  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
BONDING PAD LOCATIONS  
COORDINATES(1)  
COORDINATES(1)  
SYMBOL  
OUT2  
PAD  
x
y
SYMBOL  
PAD  
x
y
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+707  
+550  
+393  
+236  
+79  
396  
239  
81  
VCC1A  
1
2
928  
928  
928  
928  
928  
928  
928  
928  
928  
928  
707  
550  
393  
236  
79  
+710  
+553  
+396  
+239  
+81  
VCC2B  
n.c.  
IN1  
IN1Q  
3
n.c.  
+81  
VCC1A  
n.c.  
4
VCC1B  
OUT1Q  
OUT1  
VCC1B  
GND1B  
RSSI2  
LOS2  
RSSI1  
LOS1  
INV2  
+239  
+396  
+553  
+710  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
5
n.c.  
6
81  
VCC2A  
IN2  
7
239  
396  
553  
710  
928  
928  
928  
928  
928  
928  
928  
928  
928  
928  
710  
553  
8
IN2Q  
9
VCC2A  
GND2A  
LOSTH1  
LOSTH2  
n.c.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
79  
INV1  
236  
393  
550  
707  
LEVEL1  
LEVEL2  
Vref  
S2  
+79  
S1  
+236  
+393  
+550  
+707  
+928  
+928  
GND1A  
n.c.  
Note  
TEST  
GND2B  
VCC2B  
OUT2Q  
1. All x and y coordinates represent the position of the  
centre of the pad in µm with respect to the centre of the  
die (see Fig.15).  
2001 Jun 25  
23  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
40 39 38 37 36 35 34 33 32 31  
V
V
V
V
V
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
CC1A  
IN1  
CC1B  
OUT1  
IN1Q  
3
OUT1Q  
V
4
CC1A  
n.c.  
CC1B  
5
n.c.  
n.c.  
x
0
6
n.c.  
0
y
V
7
CC2A  
IN2  
CC2B  
8
OUT2  
TZA3019U  
9
IN2Q  
OUT2Q  
V
10  
CC2A  
CC2B  
11 12 13 14 15 16 17 18 19 20  
MGT030  
Fig.15 Bonding pad locations TZA3019U.  
2001 Jun 25  
24  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
PACKAGE OUTLINES  
HTQFP32: plastic, heatsink thin quad flat package; 32 leads; body 5 x 5 x 1.0 mm  
SOT547-2  
c
y
heathsink side  
X
D
h
24  
17  
A
Z
25  
E
16  
e
H
E
E
E
(A )  
3
h
A
2
A
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
9
32  
detail X  
1
8
w M  
Z
v
M
A
B
D
b
p
e
D
B
H
v M  
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
h
h
D
E
p
D
max.  
0.15 1.05  
0.05 0.95  
0.27 0.20 5.1  
0.17 0.09 4.9  
3.1  
2.7  
5.1  
4.9  
3.1  
2.7  
7.1  
6.9  
7.1  
6.9  
0.75  
0.45  
0.89 0.89  
0.61 0.61  
7°  
0°  
mm  
1.2  
0.25  
0.5  
1.0  
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
SOT547-2  
99-06-15  
2001 Jun 25  
25  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
HBCC32: plastic, heatsink bottom chip carrier; 32 terminals; body 5 x 5 x 0.65 mm  
SOT560-1  
D
x
B
b
w M  
1
w M  
ball A1  
index area  
b
b
3
E
w M  
b
w M  
2
detail X  
x
C
A
B
C
e
1
e
y
v
A
E
e
4
e
2
1
1
32  
A
X
D
1
1
A
2
e
3
A
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
A
A
b
E
e
e
1
w
b
b
b
D
D
E
e
e
3
e
4
v
x
y
UNIT  
1
2
1
1
2
3
1
2
max.  
0.10 0.70 0.35 0.50 0.50 0.50 5.1  
0.05 0.60 0.20 0.30 0.35 0.35 4.9  
3.2 5.1  
3.0 4.9  
3.2  
3.0  
mm 0.80  
0.15 0.15 0.05  
0.5  
4.2  
4.2  
4.15 4.15  
0.2  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
EIAJ  
99-09-10  
00-02-01  
SOT560-1  
MO-217  
2001 Jun 25  
26  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2001 Jun 25  
27  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
not suitable  
REFLOW(1)  
BGA, HBGA, LFBGA, SQFP, TFBGA  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS  
PLCC(3), SO, SOJ  
suitable  
not suitable(2)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS(1)  
DEFINITIONS  
STATUS(2)  
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary data  
Product data  
Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
2001 Jun 25  
28  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
DEFINITIONS  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Short-form specification  
The data in a short-form  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Bare die  
All die are tested and are guaranteed to  
comply with all data sheet limits up to the point of wafer  
sawing for a period of ninety (90) days from the date of  
Philips' delivery. If there are data sheet limits not  
guaranteed, these will be separately indicated in the data  
sheet. There are no post packing tests performed on  
individual die or wafer. Philips Semiconductors has no  
control of third party procedures in the sawing, handling,  
packing or assembly of the die. Accordingly, Philips  
Semiconductors assumes no liability for device  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
functionality or performance of the die or systems after  
third party sawing, handling, packing or assembly of the  
die. It is the responsibility of the customer to test and  
qualify their application in which the die is used.  
DISCLAIMERS  
Life support applications  
These products are not  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
2001 Jun 25  
29  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
NOTES  
2001 Jun 25  
30  
Philips Semiconductors  
Product specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
NOTES  
2001 Jun 25  
31  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4728 6600, Fax. +33 1 4728 6638  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,  
Tel: +36 1 382 1700, Fax: +36 1 382 1800  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,  
Tel. +66 2 361 7910, Fax. +66 2 398 3447  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,  
The Netherlands, Fax. +31 40 27 24825  
Internet: http://www.semiconductors.philips.com  
72  
SCA  
© Philips Electronics N.V. 2001  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403510/200/02/pp32  
Date of release: 2001 Jun 25  
Document order number: 9397 750 08204  
厂商 型号 描述 页数 下载

RHOMBUS-IND

TZA1-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

NXP

TZA1000 QIC读写放大器[ QIC read-write amplifier ] 24 页

NXP

TZA1000T/N3 [ IC 1 CHANNEL READ WRITE AMPLIFIER CIRCUIT, PDSO24, 7.50 MM, PLASTIC, SOT-137-1, SOP-24, Drive Electronics ] 26 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.207408s