CYRF89435
Analog Multiplexer System
On-chip transmit and receive FIFO registers are available to
buffer the data transfer with MCU. Over-the-air data rate is
always 1 Mbps even when connected to a slow, low-cost MCU.
Built-in CRC, FEC, data whitening, and automatic
retry/acknowledge are all available to simplify and optimize
performance for individual applications.
The Analog Mux Bus can connect to every GPIO pin. Pins are
connected to the bus individually or in any combination. The bus
also connects to the analog system for analysis with the
CapSense block comparator.
Switch control logic enables selected pins to precharge
continuously under hardware control. This enables capacitive
measurement for applications such as touch sensing. Other
multiplexer applications include:
For more details on the radio’s implementation details and timing
requriements, please go through the WirelessUSB NL datasheet
in www.cypress.com.
Figure 2. WirelessUSB NL logic Block Diagram
■ Complex capacitive sensing interfaces, such as sliders and
touchpads.
■ Chip-wide mux that allows analog input from any I/O pin.
■ Crosspoint connection between any I/O pin combinations.
WirelessUSB NL System
WirelessUSB NL, optimized to operate in the 2.4-GHz ISM band,
is Cypress's third generation of 2.4-GHz low-power RF
technology. WirelessUSB NL implements
a
Gaussian
frequency-shift keying (GFSK) radio using a differentiated
single-mixer, closed-loop modulation design that optimizes
power efficiency and interference immunity. Closed-loop
modulation effectively eliminates the problem of frequency drift,
enabling WirelessUSB NL to transmit up to 255-byte payloads
without repeatedly having to pay power penalties for re-locking
the phase-locked loop (PLL) as in open-loop designs
Among the advantages of WirelessUSB NL are its fast lock times
and channel switching, along with the ability to transmit larger
payloads. Use of longer payload packets, compared to multiple
short payload packets, can reduce overhead, improve overall
power efficiency, and help alleviate spectrum crowding.
Combined with Cypress's Capacitive touch sense controllers,
WirelessUSB NL also provides the lowest bill of materials (BOM)
cost solution for sophisticated PC peripheral applications such
as wireless keyboards and mice, as well as best-in-class
wireless performance in other demanding applications. such as
toys, remote controls, fitness, automation, presenter tools, and
gaming.
Transmit Power Control
The following table lists recommended settings for register 9 for
short-range applications, where reduced transmit RF power is a
desirable trade off for lower current.
With PRoC-CS, the WirelessUSB NL transceiver can add
wireless capability to a wide variety of CapSense applications.
Table 1. Transmit Power Control
Power Setting
Description
TypicalTransmit
Power (dBm)
Register 9
The WirelessUSB NL is a fully-integrated CMOS RF transceiver,
GFSK data modem, and packet framer, optimized for use in the
2.4-GHz ISM band. It contains transmit, receive, RF synthesizer,
and digital modem functions, with few external components. The
transmitter supports digital power control. The receiver uses
extensive digital processing for excellent overall performance,
even in the presence of interference and transmitter
impairments.
PA0 - Highest power
PA2 - High power
PA4 - High power
PA8 - Low power
PA12 - Lower power
+1
0
0x1820
0x1920
0x1A20
0x1C20
0x1E20
–3
–7.5
–11.2
The product transmits GFSK data at approximately 0-dBm
output power. Sigma-Delta PLL delivers high-quality DC-coupled
transmit data path.
Power-on and Register Initialization Sequence
For proper initialization at power up, VIN must ramp up at the
minimum overall ramp rate no slower than shown by TVIN
specification in the following figure. During this time, the RST_n
line must track the VIN voltage ramp-up profile to within
approximately 0.2 V. Since most MCU GPIO pins automatically
default to a high-Z condition at power up, it only requires a pull-up
resistor. When power is stable and the MCU POR releases, and
MCU begins to execute instructions, RST_n must then be pulsed
The low-IF receiver architecture produces good selectivity and
image rejection, with typical sensitivity of –87 dBm or better on
most channels. Sensitivity on channels that are integer multiples
of the crystal reference oscillator frequency (12 MHz) may show
approximately 5 dB degradation. Digital RSSI values are
available to monitor channel quality.
Document Number: 001-76581 Rev. *D
Page 5 of 40