找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYRF89435

型号:

CYRF89435

描述:

PROCA ?? ¢ - CapSense®[ PRoC™ - CapSense® ]

品牌:

CYPRESS[ CYPRESS ]

页数:

40 页

PDF大小:

598 K

CYRF89435  
PRoC™ - CapSense®  
PRoC™ - CapSense®  
Precision, programmable clocking  
Internal main oscillator (IMO): 6/12/24 MHz ± 5%  
Internal low-speed oscillator (ILO) at 32 kHz for watchdog  
and sleep timers  
PRoC-CS Features  
Single Device, Two functions  
8-bit flash based capacitive touch controller MCU function  
and 2.4-GHz WirelessUSB™ NL radio transceiver function  
in a single device  
Precision 32 kHz oscillator for optional external crystal  
Programmable pin configurations  
Wide operating range: 1.9 V to 3.6 V  
Configurable capacitive sensing elements  
7 μA per sensor at 500 ms scan rate  
Supports SmartSense™ Auto-tuning  
Up to 13 general-purpose I/Os (GPIOs)  
Dual mode GPIO: All GPIOs support digital I/O and analog  
inputs  
25-mA sink current on each GPIO  
• 120 mA total sink current on all GPIOs  
Pull-up, high Z, open-drain modes on all GPIOs  
CMOS drive mode –5 mA source current on ports 0 and 1  
and 1 mA on port 2  
20 mA total source current on all GPIOs  
Supports a combination of CapSense® buttons, sliders,  
touchpads, touchscreens, and proximity sensors  
SmartSense_EMC offers superior noise immunity for  
applications with challenging conducted and radiated noise  
conditions  
2.4-GHz WirelessUSB NL Transceiver function  
Operates in the 2.4-GHz ISM Band (2.402 GHz - 2.479 GHz)  
1-Mbps over-the-air data rate  
Versatile analog system  
Low-dropout voltage regulator for all analog resources  
Receive sensitivity typical: –87 dBm  
Below 1 μA typical current consumption in sleep state  
Closed-loop frequency synthesis  
Common internal analog bus enabling capacitive sensing on  
all pins  
High power supply rejection ratio (PSRR) comparator  
8 to 10-bit incremental analog-to-digital converter (ADC)  
Supports frequency-hopping spread spectrum  
On-chip packet framer with 64-byte first in first out (FIFO)  
Additional system resources  
data buffer  
I2C slave:  
Built-in auto-retry-acknowledge protocol simplifies usage  
Built-in cyclic redundancy check (CRC), forward error  
correction (FEC), data whitening  
Additional outputs for interrupt request (IRQ) generation  
Digital readout of received signal strength indication (RSSI)  
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
SPI master and slave: Configurable 46.9 kHz to 12 MHz  
Three 16-bit timers  
Watchdog and sleep timers  
Integrated supervisory circuit  
Emulated E2PROM using flash memory  
Powerful Harvard-architecture processor  
M8C CPU Up to 4 MIPS with 24 MHz Internal clock, external  
crystal resonator or clock signal  
Complete development tools  
Free development tool (PSoC Designer™)  
Full-featured, in-circuit emulator (ICE) and programmer  
Full-speed emulation  
Complex breakpoint structure  
128 KB trace memory  
Low power at high speed  
Temperature range: 0 °C to +70 °C  
Flexible on-chip memory  
• 32 KB Flash/2 KB SRAM  
50,000 flash erase/write cycles  
Partial flash updates  
Flexible protection modes  
In-system serial programming (ISSP)  
Package option  
40-pin 6 mm × 6 mm QFN  
Cypress Semiconductor Corporation  
Document Number: 001-76581 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 18, 2012  
CYRF89435  
Logical Block Diagram  
Document Number: 001-76581 Rev. *D  
Page 2 of 40  
CYRF89435  
Contents  
PSoC® Functional Overview ............................................4  
PSoC Core ..................................................................4  
CapSense System .......................................................4  
WirelessUSB NL System .............................................5  
Transmit Power Control ...............................................5  
Power-on and Register Initialization Sequence ...........5  
Getting Started ..................................................................6  
CapSense Design Guides ...........................................6  
Development Kits ........................................................6  
Training .......................................................................6  
CYPros Consultants ....................................................6  
Solutions Library ..........................................................6  
Technical Support .......................................................6  
Development Tools ..........................................................7  
PSoC Designer Software Subsystems ........................7  
Designing with PSoC Designer .......................................8  
Select User Modules ...................................................8  
Configure User Modules ..............................................8  
Organize and Connect ................................................8  
Generate, Verify, and Debug .......................................8  
Pinouts ..............................................................................9  
Pin Definitions ................................................................10  
Absolute Maximum Ratings ..........................................11  
Operating Temperature ..................................................11  
Electrical Specifications – PSoC Core .........................12  
DC Chip-Level Specifications ....................................13  
DC GPIO Specifications ............................................14  
Analog DC Mux Bus Specifications ...........................15  
DC Low Power Comparator Specifications ...............15  
Comparator User Module Electrical Specifications ...16  
ADC Electrical Specifications ....................................17  
DC POR and LVD Specifications ..............................18  
DC Programming Specifications ...............................18  
DC I2C Specifications ...............................................19  
DC Reference Buffer Specifications ..........................19  
DC IDAC Specifications ............................................19  
AC Chip-Level Specifications ....................................20  
AC GPIO Specifications ............................................21  
AC Comparator Specifications ..................................22  
AC External Clock Specifications ..............................22  
AC Programming Specifications ................................23  
AC I2C Specifications ................................................24  
SPI Master AC Specifications ...................................25  
SPI Slave AC Specifications .....................................26  
Electrical Specifications – RF Section .........................28  
Packaging Information ...................................................33  
Thermal Impedances .................................................34  
Capacitance on Crystal Pins .....................................34  
Solder Reflow Specifications .....................................34  
Development Tool Selection .........................................35  
Software ....................................................................35  
Development Kits ......................................................35  
Evaluation Tools ........................................................35  
Device Programmers .................................................35  
Accessories (Emulation and Programming) ..............36  
Third Party Tools .......................................................36  
Ordering Information ......................................................36  
Ordering Code Definitions .........................................36  
Acronyms ........................................................................37  
Reference Documents ....................................................37  
Document Conventions .................................................37  
Units of Measure .......................................................37  
Numeric Naming ........................................................38  
Glossary ..........................................................................38  
Document History Page .................................................39  
Sales, Solutions, and Legal Information ......................40  
Worldwide Sales and Design Support .......................40  
Products ....................................................................40  
PSoC Solutions .........................................................40  
Document Number: 001-76581 Rev. *D  
Page 3 of 40  
CYRF89435  
®
from prototyping to mass production without re-tuning for  
manufacturing variations in PCB and/or overlay material  
properties.  
PSoC Functional Overview  
The PSoC family consists of on-chip controller devices, which  
are designed to replace multiple traditional microcontroller unit  
(MCU)-based components with one, low cost single-chip  
SmartSense_EMC  
programmable component.  
A
PSoC device includes  
In addition to the SmartSense auto-tuning algorithm to remove  
manual tuning of CapSense applications, SmartSense_EMC  
user module incorporates a unique algorithm to improve  
robustness of capacitive sensing algorithm/circuit against high  
frequency conducted and radiated noise. Every electronic device  
must comply with specific limits for radiated and conducted  
external noise and these limits are specified by regulatory bodies  
(for example, FCC, CE, U/L and so on). A very good PCB layout  
design, power supply design and system design is a mandatory  
for a product to pass the conducted and radiated noise tests. An  
ideal PCB layout, power supply design or system design is not  
often possible because of cost and form factor limitations of the  
product. SmartSense_EMC with superior noise immunity is well  
suited and handy for such applications to pass radiated and  
conducted noise test.  
configurable analog and digital blocks, and programmable  
interconnect. This architecture allows the user to create  
customized peripheral configurations, to match the requirements  
of each individual application. Additionally, a fast CPU, flash  
program memory, SRAM data memory, and configurable I/O are  
included in a range of convenient pinouts.  
The architecture for this device family, as shown in the Logical  
Block Diagram on page 2, consists of three main areas:  
The Core  
CapSense Analog System  
WirelessUSB NL System  
System Resources.  
Figure 1. CapSense System Block Diagram  
A common, versatile bus allows connection between I/O and the  
analog system.  
CS1  
Each CYRF89435 device includes a dedicated CapSense block  
that provides sensing and scanning control circuitry for  
capacitive sensing applications. The 13 GPIOs provide access  
to the MCU and analog mux.  
IDAC  
CS2  
PSoC Core  
CSN  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO and  
ILO. The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit  
Harvard-architecture microprocessor.  
Vr  
Reference  
Buffer  
Cinternal  
CapSense System  
Cexternal (P0[1]  
or P0[3])  
Comparator  
Mux  
Mux  
The analog system contains the capacitive sensing hardware.  
Several hardware algorithms are supported. This hardware  
performs capacitive sensing and scanning without requiring  
external components. The analog system is composed of the  
CapSense PSoC block and an internal 1 V or 1.2 V analog  
reference, which together support capacitive sensing of up to  
13 inputs. Capacitive sensing is configurable on each GPIO pin.  
Scanning of enabled CapSense pins are completed quickly and  
easily across multiple ports.  
Refs  
Cap Sense Counters  
CSCLK  
CapSense  
Clock Select  
SmartSense  
IMO  
Oscillator  
SmartSense is an innovative solution from Cypress that removes  
manual tuning of CapSense applications. This solution is easy to  
use and provides a robust noise immunity. It is the only  
auto-tuning solution that establishes, monitors, and maintains all  
required tuning parameters. SmartSense allows engineers to go  
Document Number: 001-76581 Rev. *D  
Page 4 of 40  
CYRF89435  
Analog Multiplexer System  
On-chip transmit and receive FIFO registers are available to  
buffer the data transfer with MCU. Over-the-air data rate is  
always 1 Mbps even when connected to a slow, low-cost MCU.  
Built-in CRC, FEC, data whitening, and automatic  
retry/acknowledge are all available to simplify and optimize  
performance for individual applications.  
The Analog Mux Bus can connect to every GPIO pin. Pins are  
connected to the bus individually or in any combination. The bus  
also connects to the analog system for analysis with the  
CapSense block comparator.  
Switch control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
For more details on the radio’s implementation details and timing  
requriements, please go through the WirelessUSB NL datasheet  
in www.cypress.com.  
Figure 2. WirelessUSB NL logic Block Diagram  
Complex capacitive sensing interfaces, such as sliders and  
touchpads.  
Chip-wide mux that allows analog input from any I/O pin.  
Crosspoint connection between any I/O pin combinations.  
WirelessUSB NL System  
WirelessUSB NL, optimized to operate in the 2.4-GHz ISM band,  
is Cypress's third generation of 2.4-GHz low-power RF  
technology. WirelessUSB NL implements  
a
Gaussian  
frequency-shift keying (GFSK) radio using a differentiated  
single-mixer, closed-loop modulation design that optimizes  
power efficiency and interference immunity. Closed-loop  
modulation effectively eliminates the problem of frequency drift,  
enabling WirelessUSB NL to transmit up to 255-byte payloads  
without repeatedly having to pay power penalties for re-locking  
the phase-locked loop (PLL) as in open-loop designs  
Among the advantages of WirelessUSB NL are its fast lock times  
and channel switching, along with the ability to transmit larger  
payloads. Use of longer payload packets, compared to multiple  
short payload packets, can reduce overhead, improve overall  
power efficiency, and help alleviate spectrum crowding.  
Combined with Cypress's Capacitive touch sense controllers,  
WirelessUSB NL also provides the lowest bill of materials (BOM)  
cost solution for sophisticated PC peripheral applications such  
as wireless keyboards and mice, as well as best-in-class  
wireless performance in other demanding applications. such as  
toys, remote controls, fitness, automation, presenter tools, and  
gaming.  
Transmit Power Control  
The following table lists recommended settings for register 9 for  
short-range applications, where reduced transmit RF power is a  
desirable trade off for lower current.  
With PRoC-CS, the WirelessUSB NL transceiver can add  
wireless capability to a wide variety of CapSense applications.  
Table 1. Transmit Power Control  
Power Setting  
Description  
TypicalTransmit  
Power (dBm)  
Register 9  
The WirelessUSB NL is a fully-integrated CMOS RF transceiver,  
GFSK data modem, and packet framer, optimized for use in the  
2.4-GHz ISM band. It contains transmit, receive, RF synthesizer,  
and digital modem functions, with few external components. The  
transmitter supports digital power control. The receiver uses  
extensive digital processing for excellent overall performance,  
even in the presence of interference and transmitter  
impairments.  
PA0 - Highest power  
PA2 - High power  
PA4 - High power  
PA8 - Low power  
PA12 - Lower power  
+1  
0
0x1820  
0x1920  
0x1A20  
0x1C20  
0x1E20  
–3  
–7.5  
–11.2  
The product transmits GFSK data at approximately 0-dBm  
output power. Sigma-Delta PLL delivers high-quality DC-coupled  
transmit data path.  
Power-on and Register Initialization Sequence  
For proper initialization at power up, VIN must ramp up at the  
minimum overall ramp rate no slower than shown by TVIN  
specification in the following figure. During this time, the RST_n  
line must track the VIN voltage ramp-up profile to within  
approximately 0.2 V. Since most MCU GPIO pins automatically  
default to a high-Z condition at power up, it only requires a pull-up  
resistor. When power is stable and the MCU POR releases, and  
MCU begins to execute instructions, RST_n must then be pulsed  
The low-IF receiver architecture produces good selectivity and  
image rejection, with typical sensitivity of –87 dBm or better on  
most channels. Sensitivity on channels that are integer multiples  
of the crystal reference oscillator frequency (12 MHz) may show  
approximately 5 dB degradation. Digital RSSI values are  
available to monitor channel quality.  
Document Number: 001-76581 Rev. *D  
Page 5 of 40  
CYRF89435  
low as shown in Figure 13 on page 32, followed by writing Reg[27  
= 0x4200. During or after this SPI transaction, the State Machine  
status can be read to confirm FRAMER_ST= 1, indicating a  
proper initialization.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device datasheets on the web  
at www.cypress.com/psoc.  
CapSense Design Guides  
Additional System Resources  
Design Guides are an excellent introduction to the wide variety  
of possible CapSense designs. They are located at  
www.cypress.com/go/CapSenseDesignGuides.  
System resources provide additional capability, such as  
configurable I2C slave, SPI master/slave communication  
interface, three 16-bit programmable timers, and various system  
resets supported by the M8C.  
Refer Getting Started with CapSense design guide for  
information on CapSense design and CY8C20XX6A/H/AS  
CapSense® Design Guide for specific information on PRoC-CS  
controllers.  
These system resources provide additional capability useful to  
complete systems. Additional resources include low voltage  
detection and power-on reset. The merits of each system  
resource are listed here:  
Development Kits  
The I2C slave/SPI master-slave module provides  
50/100/400 kHz communication over two wires. SPI  
communication over three or four wires runs at speeds of  
46.9 kHz to 3 MHz (lower for a slower system clock).  
PSoC Development Kits are available online from and through a  
growing number of regional and global distributors, which  
include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and  
Newark.  
Low-voltage detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced  
power-on reset (POR) circuit eliminates the need for a system  
supervisor.  
Training  
Free PSoC technical training (on demand, webinars, and  
workshops), which is available online via www.cypress.com,  
covers a wide variety of topics and skill levels to assist you in  
your designs.  
An internal reference provides an absolute reference for  
capacitive sensing.  
CYPros Consultants  
A register-controlled bypass mode allows the user to disable  
Certified PSoC consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC consultant go to the CYPros Consultants web site.  
the LDO regulator.  
Getting Started  
Solutions Library  
The quickest way to understand the PRoC-CS silicon is to read  
this datasheet and then use the PSoC Designer Integrated  
Development Environment (IDE). This datasheet is an overview  
of the PSoC integrated circuit and presents specific pin, register,  
and electrical specifications.  
Visit our growing library of solution focused designs. Here you  
can find various application designs that include firmware and  
hardware design files that enable you to complete your designs  
quickly.  
For in depth information, along with detailed programming  
details, see the Technical Reference Manual for the CapSense  
devices.  
Technical Support  
Technical support – including a searchable Knowledge Base  
articles and technical forums – is also available online. If you  
cannot find an answer to your question, call our Technical  
Support hotline at 1-800-541-4736.  
Document Number: 001-76581 Rev. *D  
Page 6 of 40  
CYRF89435  
Code Generation Tools  
Development Tools  
The code generation tools work seamlessly within the  
PSoC Designer interface and have been tested with a full range  
of debugging tools. You can develop your design in C, assembly,  
or a combination of the two.  
PSoC Designer™ is the revolutionary integrated design  
environment (IDE) that you can use to customize PSoC to meet  
your specific application requirements. PSoC Designer software  
accelerates system design and time to market. Develop your  
applications using a library of precharacterized analog and digital  
peripherals (called user modules) in a drag-and-drop design  
environment. Then, customize your design by leveraging the  
dynamically generated application programming interface (API)  
libraries of code. Finally, debug and test your designs with the  
integrated debug environment, including in-circuit emulation and  
standard software debug features. PSoC Designer includes:  
Assemblers. The assemblers allow you to merge assembly  
code seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all of the features of C, tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Application editor graphical user interface (GUI) for device and  
user module configuration and dynamic reconfiguration  
Extensive user module catalog  
Integrated source-code editor (C and assembly)  
Free C compiler with no size restrictions or time limits  
Built-in debugger  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow you to read and program and  
read and write data memory, and read and write I/O registers.  
You can read and write CPU registers, set and clear breakpoints,  
and provide program run, halt, and step control. The debugger  
also lets you to create a trace buffer of registers and memory  
locations of interest.  
In-circuit emulation  
Built-in support for communication interfaces:  
Hardware and software I2C slaves and masters  
SPI master and slave, and wireless  
PSoC Designer supports the entire library of PSoC 1 devices and  
runs on Windows XP, Windows Vista, and Windows 7.  
Online Help System  
The online help system displays online, context-sensitive help.  
Designed for procedural and quick reference, each functional  
subsystem has its own context-sensitive help. This system also  
provides tutorials and links to FAQs and an Online Support  
Forum to aid the designer.  
PSoC Designer Software Subsystems  
Design Entry  
In the chip-level view, choose a base device to work with. Then  
select different onboard analog and digital components that use  
the PSoC blocks, which are called user modules. Examples of  
user modules are analog-to-digital converters (ADCs),  
digital-to-analog converters (DACs), amplifiers, and filters.  
Configure the user modules for your chosen application and  
connect them to each other and to the proper pins. Then  
generate your project. This prepopulates your project with APIs  
and libraries that you can use to program your application.  
In-Circuit Emulator  
A
low-cost, high-functionality in-circuit emulator (ICE) is  
available for development support. This hardware can program  
single devices.  
The emulator consists of a base unit that connects to the PC  
using a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full-speed  
(24 MHz) operation.  
The tool also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration makes it possible to change configurations at run  
time. In essence, this lets you to use more than 100 percent of  
PSoC’s resources for an application.  
Document Number: 001-76581 Rev. *D  
Page 7 of 40  
CYRF89435  
internal operation of the user module and provide performance  
specifications. Each datasheet describes the use of each user  
module parameter, and other information that you may need to  
successfully implement your design.  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed-function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and lowering inventory costs. These  
configurable resources, called PSoC blocks, have the ability to  
implement a wide variety of user-selectable functions. The PSoC  
development process is:  
Organize and Connect  
Build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. Perform the selection,  
configuration, and routing so that you have complete control over  
all on-chip resources.  
1. Select user modules.  
Generate, Verify, and Debug  
2. Configure user modules.  
3. Organize and connect.  
4. Generate, verify, and debug.  
When you are ready to test the hardware configuration or move  
on to developing code for the project, perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides APIs with high-level functions to control  
and respond to hardware events at run time, and interrupt  
service routines that you can adapt as needed.  
Select User Modules  
PSoC Designer provides a library of prebuilt, pretested hardware  
peripheral components called “user modules”. User modules  
make selecting and implementing peripheral devices, both  
analog and digital, simple.  
A complete code development environment lets you to develop  
and customize your applications in C, assembly language, or  
both.  
Configure User Modules  
Each user module that you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a PWM  
User Module configures one or more digital PSoC blocks, one  
for each eight bits of resolution. Using these parameters, you can  
establish the pulse width and duty cycle. Configure the  
parameters and properties to correspond to your chosen  
application. Enter values directly or by selecting values from  
drop-down menus. All of the user modules are documented in  
datasheets that may be viewed directly in PSoC Designer or on  
the Cypress website. These user module datasheets explain the  
The last step in the development process takes place inside  
PSoC Designer’s Debugger (accessed by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full-speed. PSoC Designer debugging  
capabilities rival those of systems costing many times more. In  
addition to traditional single-step, run-to-breakpoint, and  
watch-variable features, the debug interface provides a large  
trace buffer. The interface lets you to define complex breakpoint  
events that include monitoring address and data bus values,  
memory locations, and external signals.  
Document Number: 001-76581 Rev. *D  
Page 8 of 40  
CYRF89435  
Pinouts  
The CYRF89435 PRoC-CS device is available in a 40-pin QFN package, which is illustrated in the following table. Every port pin  
(labeled with a “P”) is capable of Digital I/O and connection to the common analog bus. However, VDD, and XRES are not capable of  
Digital I/O.  
Figure 3. 40-pin QFN pinout  
40 39 38 37 36 35 34 33 32 31  
P1[3]  
P1[1]  
GND  
VDD  
DNU  
DNU  
FIFO  
DNU  
P1[0]  
1
2
3
4
5
6
7
8
9
30 P0[1]  
29 P0[3]  
28 P0[7]  
27 XTALi  
26 XTALo  
25 VDD  
24 VIN  
QFN  
(Top View)  
23 P0[4]  
22 VOUT  
21 VIN  
VIN 10  
11 12 13 14 15 16 17 18 19 20  
Document Number: 001-76581 Rev. *D  
Page 9 of 40  
CYRF89435  
Pin Definitions  
Pin No  
Pin name  
P1[3]/SCLK [2] Digital I/O, Analog I/O, SPI CLK  
P1[1]/MOSI [1] Digital I/O, Analog I/O, TC CLK, I2C SCL, SPI MOSI  
Pin Description  
1
2
3
GND  
VDD  
Ground connection  
4, 20, 25, 33,  
34, 37, 40  
Core power supply voltage. Connect all VDD pins to VOUT pin.  
5
DNU  
DNU  
Do not use  
6
Do not use  
7
FIFO  
FIFO status indicator bit  
8
DNU  
Do not use  
9
P1[0] [1]  
Analog I/O, Digital I/O, TC DATA, I2C SDA  
Unregulated input voltage to the on-chip low drop out (LDO) voltage regulator  
Analog I/O, Digital I/O  
10, 21, 24  
VIN  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P1[2]  
P1[4]  
Analog I/O, Digital I/O, EXT CLK  
Active high external reset with internal pull-down  
Enable input for SPI, active low. Also used to bring device out of sleep state.  
Transmit/receive packet status indicator bit  
Clock input for SPI interface  
XRES  
SPI_SS  
PKT  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
RST_n  
Data input for the SPI bus  
Data output (tristate when not active)  
RST_n Low: Chip shutdown to conserve power. Register values lost  
RST_n High: Turn on chip, registers restored to default value  
22  
23  
26  
27  
28  
29  
30  
31  
32  
35  
36  
38  
39  
VOUT  
P0[4]  
1.8 V output from on-chip LDO. Connect to all VDD pins, do not connect to external loads.  
Analog I/O, Digital I/O, VREF  
XTALO  
XTALI  
Output of the crystal oscillator gain block  
Input to the crystal oscillator gain block  
P0[7]  
Analog I/O, Digital I/O,SPI CLK  
P0[3]  
Analog I/O, Digital I/O, Integrating input  
P0[1]  
Analog I/O, Digital I/O, Integrating input  
P2[5]  
Analog I/O, Digital I/O, XTAL Out  
P2[3]  
Analog I/O, Digital I/O, XTAL In  
ANTb  
Differential RF input/output. Each of these pins must be DC grounded, 20 kor less  
Differential RF input/output. Each of these pins must be DC grounded, 20 kor less  
Digital I/O, Analog I/O, I2C SCL, SPI SS  
ANT  
P1[7]/SS_N  
P1[5]/MISO  
Digital I/O, Analog I/O, I2C SDA, SPI MISO  
Notes  
1. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
2. Alternate SPI clock.  
Document Number: 001-76581 Rev. *D  
Page 10 of 40  
CYRF89435  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 2. Absolute Maximum Ratings  
Symbol  
TSTG  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Storage temperature  
Higher storage temperatures reduce data  
retention time. Recommended Storage  
Temperature is +25 °C ± 25 °C. Extended  
duration storage temperatures above 85 °C  
degrades reliability.  
TBD  
TBD  
TBD  
°C  
[3]  
VIN  
1.9  
3.63  
1.98  
V
V
VDD  
VIO  
Supply voltage  
–0.5  
–0.5  
–0.5  
TBD  
DC input voltage  
VDD + 0.5  
VDD + 0.5  
TBD  
V
[4]  
VIOZ  
IMIO  
DC voltage applied to tristate  
Maximum current into any port pin –  
Electrostatic discharge voltage  
V
TBD  
mA  
V
ESD  
LU  
Human body model ESD  
i) RF pins (ANT, ANTb)  
ii) Analog pins (XTALi, XTALo)  
iii) Remaining pins  
500  
500  
2000  
Latch-up current  
In accordance with JESD78 standard  
140  
mA  
Operating Temperature  
Table 3. Operating Temperature  
Symbol  
TA  
Description  
Ambient temperature  
Conditions  
Min  
0
Typ  
Max  
70  
Units  
°C  
TJ  
Operational die temperature  
The temperature rise from ambient to  
junction is package specific. Refer the  
Thermal Impedances on page 34. The user  
must limit the power consumption to comply  
with this requirement.  
TBD  
TBD  
TBD  
°C  
Notes  
3. Program the device at 3.3 V only. Hence use MiniProg3 only as MiniProg1 does not support programming at 3.3 V.  
4. Port1 pins are hot-swap capable with I/O configured in High-Z mode, and pin input voltage above V  
.
IN  
Document Number: 001-76581 Rev. *D  
Page 11 of 40  
CYRF89435  
Electrical Specifications – PSoC Core  
This section presents the DC and AC electrical specifications of the CYRF89435 PSoC devices. For the latest electrical specifications,  
confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.  
Figure 4. Voltage versus CPU Frequency  
3.6 V  
1.9V  
750kHz  
3 MHz  
24MHz  
CPU Frequency  
Document Number: 001-76581 Rev. *D  
Page 12 of 40  
CYRF89435  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 4. DC Chip-Level Specifications  
Symbol  
[5, 6, 7, 8]  
Description  
Supply voltage  
Conditions  
Min  
Typ  
Max  
Units  
VIN  
Refer the table DC POR and LVD  
Specifications on page 18  
1.9  
3.6  
V
IDD24  
IDD12  
IDD6  
Supply current, IMO = 24 MHz  
Supply current, IMO = 12 MHz  
Supply current, IMO = 6 MHz  
Conditions are VIN 3.0 V,  
TA = 25 °C, CPU = 24 MHz.  
CapSense running at 12 MHz,  
no I/O sourcing current  
2.88  
1.71  
1.16  
4.00  
2.60  
1.80  
mA  
mA  
mA  
Conditions are VIN 3.0 V,  
TA = 25 °C, CPU = 12 MHz.  
CapSense running at 12 MHz,  
no I/O sourcing current  
Conditions are VIN 3.0 V,  
TA = 25 °C, CPU = 6 MHz.  
CapSense running at 6 MHz,  
no I/O sourcing current  
IDDAVG10  
IDDAVG100  
IDDAVG500  
ISB0  
Average supply current per  
sensor  
One sensor scanned at 10 ms rate  
250  
25  
A  
A  
A  
A  
A  
A  
Average supply current per  
sensor  
One sensor scanned  
at 100 ms rate  
Average supply current per  
sensor  
One sensor scanned  
at 500 ms rate  
7
Deep sleep current  
VIN 3.0 V, TA = 25 °C,  
I/O regulator turned off  
0.10  
1.07  
1.64  
1.05  
1.50  
ISB1  
Standby current with POR, LVD VIN 3.0 V, TA = 25 °C,  
and sleep timer I/O regulator turned off  
Standby current with I2C enabled Conditions are VIN = 3.3 V,  
TA = 25 °C and CPU = 24 MHz  
ISBI2C  
Notes  
5. If powering down in standby sleep mode, to properly detect and recover from a V brown out condition any of the following actions must be taken:  
IN  
Bring the device out of sleep before powering down.  
Assure that V falls below 100 mV before powering back up.  
IN  
Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.  
Increase the buzz rate to assure that the falling edge of V is captured. The rate is configured through the PSSDC bits in the SLP_CFG register.  
IN  
For the referenced registers, refer to the CY8C20X36 Technical Reference Manual. In deep sleep mode, additional low power voltage monitoring circuitry allows V  
IN  
brown out conditions to be detected for edge rates slower than 1V/ms.  
6. Always greater than 50 mV above V  
7. Always greater than 50 mV above V  
8. Always greater than 50 mV above V  
voltage for falling supply.  
voltage for falling supply.  
voltage for falling supply.  
PPOR1  
PPOR2  
PPOR3  
Document Number: 001-76581 Rev. *D  
Page 13 of 40  
CYRF89435  
DC GPIO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 3.0 V and  
0 °C TA 70 °C, or 1.9 V to 2.4 V and 0 °C TA °C, respectively. Typical parameters apply to 3.3 V at 25 °C and are for design  
guidance only.  
Table 5. 2.4 V to 3.0 V DC GPIO Specifications  
Symbol  
RPU  
Description  
Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max  
8
Units  
k  
4
VOH1  
VOH2  
VOH3  
High output voltage Port 2 or 3 or IOH < 10 A, maximum of 10 mA VIN – 0.20  
4 pins source current in all I/Os  
V
High output voltage Port 2 or 3 or IOH = 0.2 mA, maximum of 10 mA VIN – 0.40  
4 pins source current in all I/Os  
V
V
High output voltage Port 0 or 1 IOH < 10 A, maximum of 10 mA VIN – 0.20  
pins with LDO regulator Disabled source current in all I/Os  
for port 1  
VOH4  
High output voltage Port 0 or 1 IOH = 2 mA, maximum of 10 mA  
pins with LDO regulator Disabled source current in all I/Os  
for Port 1  
VIN – 0.50  
V
VOH5A  
VOH6A  
VOL  
High output voltage Port 1 pins IOH < 10 A, VIN > 2.4 V, maximum  
1.50  
1.20  
1.80  
2.10  
V
V
V
with LDO enabled for 1.8 V out of 20 mA source current in all I/Os  
High output voltage Port 1 pins IOH = 1 mA, VIN > 2.4 V, maximum  
with LDO enabled for 1.8 V out of 20 mA source current in all I/Os  
Low output voltage  
IOL = 10 mA, maximum of 30 mA  
sink current on even port pins (for  
example, P0[2] and P1[4]) and 30  
mA sink current on odd port pins  
(for example, P0[3] and P1[5])  
0.75  
VIL  
VIH  
VH  
Input low voltage  
1.40  
0.72  
V
V
Input high voltage  
Input hysteresis voltage  
Input leakage (absolute value)  
Capacitive load on pins  
80  
1
1000  
7
mV  
nA  
pF  
IIL  
CPIN  
Package and  
0.50  
1.70  
pin dependent Temp = 25 C  
VILLVT2.5  
Input Low Voltage with low  
threshold enable set, Enable for threshold voltage of Port1 input  
Port1  
Bit3 of IO_CFG1 set to enable low  
0.7  
1.2  
V
V
VIHLVT2.5  
Input High Voltage with low  
Bit3 of IO_CFG1 set to enable low  
threshold enable set, Enable for threshold voltage of Port1 input  
Port1  
Document Number: 001-76581 Rev. *D  
Page 14 of 40  
CYRF89435  
Table 6. 1.9 V to 2.4 V DC GPIO Specifications  
Symbol Description  
RPU Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max  
8
Units  
k  
4
VOH1  
VOH2  
VOH3  
High output voltage Port 2 or 3 or IOH = 10 A, maximum of 10 mA VIN – 0.20  
4 pins source current in all I/Os  
V
High output voltage Port 2 or 3 or IOH = 0.5 mA, maximum of 10 mA VIN – 0.50  
4 pins source current in all I/Os  
V
V
High output voltage Port 0 or 1 IOH = 100 A, maximum of 10 mA VIN – 0.20  
pins with LDO regulator Disabled source current in all I/Os  
for Port 1  
VOH4  
High output voltage Port 0 or 1 IOH = 2 mA, maximum of 10 mA VIN – 0.50  
V
V
Pins with LDO Regulator  
Disabled for Port 1  
source current in all I/Os  
VOL  
Low output voltage  
IOL = 5 mA, maximum of 20 mA  
sink current on even port pins (for  
example, P0[2] and P1[4]) and  
30 mA sink current on odd port  
pins (for example, P0[3] and  
P1[5])  
0.40  
VIL  
VIH  
VH  
Input low voltage  
0.30 × VIN  
V
V
Input high voltage  
0.65 × VIN  
Input hysteresis voltage  
Input leakage (absolute value)  
Capacitive load on pins  
80  
1
mV  
nA  
pF  
IIL  
1000  
7
CPIN  
Package and  
0.50  
1.70  
pin dependent temp = 25 °C  
Analog DC Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 7. DC Analog Mux Bus Specifications  
Symbol  
RSW  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Switch resistance to common  
analog bus  
800  
RGND  
Resistanceofinitializationswitch –  
to GND  
800  
The maximum pin voltage for measuring R  
and R  
is 1.8 V  
GND  
SW  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 8. DC Comparator Specifications  
Symbol  
VLPC  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Low power comparator (LPC)  
common mode  
Maximum voltage limited to VIN  
0.0  
1.8  
V
ILPC  
LPC supply current  
LPC voltage offset  
10  
3
40  
30  
A  
VOSLPC  
mV  
Document Number: 001-76581 Rev. *D  
Page 15 of 40  
CYRF89435  
Comparator User Module Electrical Specifications  
The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the  
entire device voltage and temperature operating range: 0 °C TA 70 °C, 1.9 V VIN 3.6 V.  
Table 9. Comparator User Module Electrical Specifications  
Symbol  
tCOMP  
Description  
Conditions  
50 mV overdrive  
Min  
Typ  
70  
Max  
100  
30  
Units  
ns  
Comparator response time  
Offset  
Valid from 0.2 V to VIN – 0.2 V  
2.5  
20  
mV  
µA  
Current  
Average DC current, 50 mV  
overdrive  
80  
Supply voltage > 2 V  
Supply voltage < 2 V  
Power supply rejection ratio  
0
80  
40  
dB  
dB  
V
PSRR  
Power supply rejection ratio  
Input range  
1.5  
Document Number: 001-76581 Rev. *D  
Page 16 of 40  
CYRF89435  
ADC Electrical Specifications  
Table 10. ADC User Module Electrical Specifications  
Symbol  
Input  
Description  
Conditions  
Min  
Typ  
Max  
Units  
VIN  
CIIN  
RIN  
Input voltage range  
0
VREFADC  
5
V
pF  
Input capacitance  
Input resistance  
Equivalent switched cap input  
resistance for 8-, 9-, or 10-bit  
resolution  
1/(500fF × 1/(400fF × 1/(300fF ×  
dataclock) dataclock) dataclock)  
Reference  
VREFADC  
ADC reference voltage  
1.14  
2.25  
1.26  
6
V
Conversion Rate  
FCLK Data clock  
Source is chip’s internal main  
oscillator. See AC Chip-Level  
Specifications for accuracy  
MHz  
S8  
8-bit sample rate  
10-bit sample rate  
Data clock set to 6 MHz.  
Sample rate =  
0.001 / (2^Resolution/Data Clock)  
23.43  
5.85  
ksps  
ksps  
S10  
Data clock set to 6 MHz.  
Sample rate =  
0.001 / (2^resolution/data clock)  
DC Accuracy  
RES  
Resolution  
Can be set to 8-, 9-, or 10-bit  
8
–1  
–2  
0
10  
+2  
bits  
LSB  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
INL  
+2  
LSB  
EOFFSET  
8-bit resolution  
10-bit resolution  
For any resolution  
3.20  
12.80  
19.20  
76.80  
+5  
LSB  
0
LSB  
EGAIN  
Power  
IADC  
Gain error  
–5  
%FSR  
Operating current  
2.10  
24  
2.60  
mA  
dB  
dB  
PSRR  
Power supply rejection ratio  
PSRR (VIN > 3.0 V)  
PSRR (VIN < 3.0 V)  
30  
Document Number: 001-76581 Rev. *D  
Page 17 of 40  
CYRF89435  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 11. DC POR and LVD Specifications  
Symbol  
VPOR1  
Description  
Conditions  
Min  
Typ  
2.36  
2.60  
2.82  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
Max  
2.41  
2.66  
2.95  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
Units  
2.36 V selected in PSoC Designer VIN must be greater than or equal  
V
to 1.9 V during startup, reset from  
the XRES pin, or reset from  
VPOR2  
VPOR3  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
2.60 V selected in PSoC Designer  
2.82 V selected in PSoC Designer watchdog.  
2.45 V selected in PSoC Designer  
2.71 V selected in PSoC Designer  
2.92 V selected in PSoC Designer  
3.02 V selected in PSoC Designer  
3.13 V selected in PSoC Designer  
1.90 V selected in PSoC Designer  
2.40  
2.64[9]  
2.85[10]  
2.95[11]  
3.06  
1.84  
V
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 12. DC Programming Specifications  
Symbol  
VIN  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Supply voltage for flash write  
operations  
1.91  
3.6  
V
IDDP  
VILP  
VIHP  
IILP  
Supply current during  
programming or verify  
5
25  
VIL  
mA  
V
Input low voltage during  
programming or verify  
See the appropriate DC GPIO  
Specifications on page 14  
Input high voltage during  
programming or verify  
See the appropriate DC GPIO  
Specifications on page 14  
VIH  
V
Input current when Applying VILP Driving internal pull-down resistor  
to P1[0] or P1[1] during  
0.2  
mA  
programming or verify  
IIHP  
Input current when applying VIHP Driving internal pull-down resistor  
to P1[0] or P1[1] during  
1.5  
mA  
programming or verify  
VOLP  
VOHP  
Output low voltage during  
programming or verify  
+ 0.75  
VIN  
V
V
Output high voltage during  
programming or verify  
See appropriate DC GPIO  
Specifications on page 14. For  
VOH  
VIN > 3 V use VOH4 in Table 3 on  
page 11.  
FlashENPB  
FlashDR  
Flash write endurance  
Flash data retention  
Erase/write cycles per block  
50,000  
20  
Following maximum Flash write  
cycles; ambient temperature of  
55 °C  
Years  
Notes  
9. Always greater than 50 mV above V  
10. Always greater than 50 mV above V  
11. Always greater than 50 mV above V  
voltage for falling supply.  
voltage for falling supply.  
voltage for falling supply.  
PPOR1  
PPOR2  
PPOR3  
Document Number: 001-76581 Rev. *D  
Page 18 of 40  
CYRF89435  
2
DC I C Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3, 2.4 V to 3.0 V  
and 0 °C TA 70 °C, or 1.9 V to 2.4 V and 0 °C TA 70 °C, respectively. Typical parameters apply to 3.3 V at 25 °C and are for  
design guidance only.  
Table 13. DC I2C Specifications  
Symbol  
VILI2C  
Description  
Input low level  
Conditions  
3.1 V VIN 3.6 V  
Min  
Typ  
Max  
0.25 × VIN  
0.3 × VIN  
0.3 × VIN  
Units  
V
V
V
V
2.5 V VIN 3.0 V  
1.9 V VIN 2.4 V  
1.9 V VIN 3.6 V  
VIHI2C  
Input high level  
0.65 × VIN  
DC Reference Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 3.0 V and  
0 °C TA 70 °C, or 1.9 V to 2.4 V and 0 °C TA 70 °C, respectively. Typical parameters apply to 3.3 V at 25 °C and are for design  
guidance only.  
Table 14. DC Reference Buffer Specifications  
Symbol  
VRef  
VRefHi  
Description  
Reference buffer output  
Reference buffer output  
Conditions  
1.9 V to 3.6 V  
1.9 V to 3.6 V  
Min  
1
Typ  
Max  
1.05  
1.25  
Units  
V
V
1.2  
DC IDAC Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 15. DC IDAC Specifications  
Symbol  
IDAC_DNL  
IDAC_INL  
Description  
Differential nonlinearity  
Integral nonlinearity  
Range = 0.5x  
Min  
–4.5  
–5  
Typ  
Max  
+4.5  
+5  
Units  
LSB  
LSB  
µA  
Notes  
IDAC_Gain  
(Source)  
6.64  
14.5  
42.7  
91.1  
184.5  
22.46  
47.8  
92.3  
170  
DAC setting = 128 dec.  
Not recommended for CapSense  
applications.  
Range = 1x  
µA  
Range = 2x  
µA  
Range = 4x  
µA  
DAC setting = 128 dec  
DAC setting = 128 dec  
Range = 8x  
426.9  
µA  
Document Number: 001-76581 Rev. *D  
Page 19 of 40  
CYRF89435  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 16. AC Chip-Level Specifications  
Symbol  
FIMO24  
Description  
Conditions  
Min  
Typ  
Max  
Units  
IMO frequency at 24 MHz  
Setting  
22.8  
24  
25.2  
MHz  
FIMO12  
FIMO6  
FCPU  
IMO frequency at 12 MHz setting  
IMO frequency at 6 MHz setting  
CPU frequency  
11.4  
5.7  
0.75  
19  
13  
40  
40  
12  
6.0  
12.6  
6.3  
25.20  
50  
MHz  
MHz  
MHz  
kHz  
kHz  
%
F32K1  
F32K_U  
DCIMO  
DCILO  
ILO frequency  
32  
32  
50  
50  
ILO untrimmed frequency  
Duty cycle of IMO  
82  
60  
ILO duty cycle  
60  
%
SRPOWER_UP Power supply slew rate  
VIN slew rate during power-up  
After supply voltage is valid  
250  
V/ms  
ms  
tXRST  
External reset pulse width at  
power-up  
1
tXRST2  
External reset pulse width after Applies after part has booted  
power-up  
10  
s  
tOS  
Startup time of ECO  
N = 32  
1
s
tJIT_IMO  
6 MHz IMO cycle-to-cycle jitter  
(RMS)  
0.7  
6.7  
ns  
6 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
4.3  
29.3  
ns  
6 MHz IMO period jitter (RMS)  
0.7  
0.5  
3.3  
5.2  
ns  
ns  
12 MHz IMO cycle-to-cycle jitter  
(RMS)  
12 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
2.3  
5.6  
ns  
12 MHz IMO period jitter (RMS)  
0.4  
1.0  
2.6  
8.7  
ns  
ns  
24 MHz IMO cycle-to-cycle jitter  
(RMS)  
24 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
1.4  
0.6  
6.0  
4.0  
ns  
ns  
24 MHz IMO period jitter (RMS)  
Document Number: 001-76581 Rev. *D  
Page 20 of 40  
CYRF89435  
AC GPIO Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 17. AC GPIO Specifications  
Symbol  
FGPIO  
Description  
Conditions  
Min  
Typ  
Max  
6 MHz for  
1.9 V <VIN < 2.40 V  
12 MHz for  
Units  
GPIO operating frequency  
Normal strong mode  
Port 0, 1  
0
MHz  
0
MHz  
ns  
2.40 V < VIN< 3.6 V  
tRISE23  
Rise time, strong mode,  
Cload = 50 pF  
VIN = 3.0 to 3.6 V,  
10% to 90%  
15  
80  
Port 2 or 3 or 4 pins  
tRISE23L  
Rise time,  
strong mode low supply,  
Cload = 50 pF,  
VIN = 1.9 to 3.0 V,  
10% to 90%  
15  
10  
10  
80  
ns  
ns  
ns  
Port 2 or 3 or 4 pins  
tRISE01  
Rise time, strong mode,  
Cload = 50 pF, Ports 0 or 1  
VIN = 3.0 to 3.6 V,  
10% to 90%,  
LDO enabled or  
disabled  
50  
80  
tRISE01L  
Rise time,  
strong mode low supply,  
Cload = 50 pF, Ports 0 or 1  
VIN = 1.9 to 3.0 V,  
10% to 90%,  
LDO enabled or  
disabled  
tFALL  
Fall time, strong mode,  
Cload = 50 pF, all ports  
VIN = 3.0 to 3.6 V,  
10% to 90%  
10  
10  
50  
70  
ns  
ns  
tFALLL  
Fall time,  
strong mode low supply,  
Cload = 50 pF, all ports  
VIN = 1.9 to 3.0 V,  
10% to 90%  
Figure 5. GPIO Timing Diagram  
90%  
GPIO Pin  
Output  
Voltage  
10%  
tRISE23  
tRISE01  
tRISE23L  
tRISE01L  
tFALL  
tFALLL  
Document Number: 001-76581 Rev. *D  
Page 21 of 40  
CYRF89435  
AC Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 18. AC Low Power Comparator Specifications  
Symbol  
tLPC  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Comparator response time,  
50 mV overdrive  
50 mV overdrive does not include  
offset voltage.  
100  
ns  
AC External Clock Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. AC External Clock Specifications  
Symbol  
FOSCEXT  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Frequency (external oscillator  
frequency)  
0.75  
25.20  
MHz  
High period  
20.60  
20.60  
150  
5300  
ns  
ns  
s  
Low period  
Power-up IMO to switch  
Document Number: 001-76581 Rev. *D  
Page 22 of 40  
CYRF89435  
AC Programming Specifications  
Figure 6. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 20. AC Programming Specifications  
Symbol  
tRSCLK  
tFSCLK  
tSSCLK  
Description  
Rise time of SCLK  
Conditions  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Fall time of SCLK  
1
ns  
Data setup time to falling edge of  
SCLK  
40  
ns  
tHSCLK  
Data hold time from falling edge  
of SCLK  
40  
ns  
FSCLK  
Frequency of SCLK  
0
8
MHz  
ms  
ms  
ns  
tERASEB  
tWRITE  
tDSCLK3  
Flash erase time (block)  
Flash block write time  
18  
25  
85  
Data out delay from falling edge 3.0 VDD 3.6  
of SCLK  
tDSCLK2  
tXRST3  
Data out delay from falling edge 1.9 VDD 3.0  
130  
ns  
of SCLK  
External reset pulse width after Required to enter programming  
300  
s  
power-up  
mode when coming out of sleep  
tXRES  
XRES pulse length  
300  
0.1  
1
s  
tVDDWAIT  
VDD stable to wait-and-poll hold  
off  
ms  
tVDDXRES  
VDD stable to XRES assertion  
delay  
14.27  
ms  
tPOLL  
tACQ  
SDATA high pulse time  
0.01  
3.20  
200  
ms  
ms  
“Key window” time after a VDD  
ramp acquire event, based on  
256 ILO clocks.  
19.60  
tXRESINI  
“Key window” time after an  
XRES event, based on 8 ILO  
clocks  
98  
615  
s  
Document Number: 001-76581 Rev. *D  
Page 23 of 40  
CYRF89435  
2
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 21. AC Characteristics of the I2C SDA and SCL Pins  
Standard Mode  
Fast Mode  
Symbol  
fSCL  
Description  
Units  
Min  
0
Max  
100  
Min  
Max  
400  
SCL clock frequency  
0
kHz  
µs  
tHD;STA  
Hold time (repeated) START condition. After this period, the  
first clock pulse is generated  
4.0  
0.6  
tLOW  
LOW period of the SCL clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
100[12]  
0.6  
1.3  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
tHIGH  
HIGH Period of the SCL clock  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Setup time for a repeated START condition  
Data hold time  
3.45  
0.90  
Data setup time  
250  
4.0  
4.7  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Pulse width of spikes are suppressed by the input filter  
tSP  
50  
Figure 7. Definition for Timing for Fast/Standard Mode on the I2C Bus  
Note  
2
2
12. A Fast-Mode I C-bus device can be used in a standard mode I C-bus system, but the requirement t  
250 ns must then be met. This automatically be the case  
SU;DAT  
if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the  
2
SDA line t  
+ t  
= 1000 + 250 = 1250 ns (according to the Standard-Mode I C-bus specification) before the SCL line is released.  
rmax  
SU;DAT  
Document Number: 001-76581 Rev. *D  
Page 24 of 40  
CYRF89435  
SPI Master AC Specifications  
Table 22. SPI Master AC Specifications  
Symbol  
FSCLK  
Description  
Conditions  
Min  
Typ  
Max  
Units  
SCLK clock frequency  
VIN 2.4 V  
6
3
MHz  
MHz  
VIN < 2.4 V  
DC  
SCLK duty cycle  
50  
%
tSETUP  
MISO to SCLK setup time  
VIN 2.4 V  
VIN < 2.4 V  
60  
100  
ns  
ns  
tHOLD  
SCLK to MISO hold time  
SCLK to MOSI valid time  
MOSI high time  
40  
40  
ns  
ns  
ns  
tOUT_VAL  
tOUT_HIGH  
40  
Figure 8. SPI Master Mode 0 and 2  
SPI Master, modes 0 and 2  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TSETUP  
THOLD  
MISO  
(input)  
LSB  
MSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
Figure 9. SPI Master Mode 1 and 3  
SPI Master, modes 1 and 3  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TSETUP  
THOLD  
MISO  
(input)  
MSB  
LSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
LSB  
MSB  
Document Number: 001-76581 Rev. *D  
Page 25 of 40  
CYRF89435  
SPI Slave AC Specifications  
Table 23. SPI Slave AC Specifications  
Symbol  
FSCLK  
Description  
SCLK clock frequency  
SCLK low time  
Conditions  
Min  
Typ  
Max  
4
Units  
MHz  
ns  
tLOW  
42  
tHIGH  
SCLK high time  
42  
ns  
tSETUP  
tHOLD  
MOSI to SCLK setup time  
SCLK to MOSI hold time  
SS high to MISO valid  
SCLK to MISO valid  
30  
ns  
50  
ns  
tSS_MISO  
tSCLK_MISO  
tSS_HIGH  
tSS_CLK  
tCLK_SS  
153  
125  
ns  
ns  
SS high time  
50  
ns  
Time from SS low to first SCLK  
Time from last SCLK to SS high  
2/SCLK  
2/SCLK  
ns  
ns  
Figure 10. SPI Slave Mode 0 and 2  
SPI Slave, modes 0 and 2  
TSS_HIGH  
TCLK_SS  
TSS_CLK  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TOUT_H  
TSS_MISO  
MISO  
(output)  
TSETUP  
THOLD  
MOSI  
(input)  
LSB  
MSB  
Document Number: 001-76581 Rev. *D  
Page 26 of 40  
CYRF89435  
Figure 11. SPI Slave Mode 1 and 3  
SPI Slave, modes 1 and 3  
TSS_CLK  
TCLK_SS  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TOUT_H  
TSCLK_MISO  
TSS_MISO  
MISO  
(output)  
LSB  
MSB  
TSETUP  
THOLD  
MOSI  
(input)  
MSB  
LSB  
Document Number: 001-76581 Rev. *D  
Page 27 of 40  
CYRF89435  
Electrical Specifications – RF Section  
Symbol  
Description  
Supply voltage  
Min  
Typ  
Max  
Units  
Test Condition and Notes  
VIN  
DC power supply voltage range  
Current consumption  
1.9  
3.6  
VDC Input to VIN pins  
IDD_TX2  
Current consumption – Tx  
18.5  
13.7  
mA  
mA  
Transmit power PA2. BRCLK off.  
IDD_TX12  
Transmit power PA12. BRCLK  
off  
IDD_RX  
Current consumption – Rx  
Current consumption – idle  
Current consumption – sleep  
18  
1.1  
1
mA  
mA  
µA  
BRCLK off  
IDD_IDLE1  
IDD_SLPx  
Configured for BRCLK output off  
Temperature = +25 °C.  
Using firmware sleep patch.  
Register 27 = 0x1200,  
for VIN 3.00 VDC only  
IDD_SLPr  
8
µA  
µA  
Temperature = +25 °C;  
using firmware sleep patch  
Register 27 = 0x4200.  
IDD_SLPh  
38  
Temperature = +70 °C  
‘C’ grade part;  
using firmware sleep patch  
Register 27 = 0x4200  
VIH  
Logic input high  
Logic input low  
0.8 VIN  
1.2 VIN  
0.8  
V
V
VIL  
0
I_LEAK_IN  
Input leakage current  
10  
µA  
VOH  
Logic output high  
0.8 VIN  
8
V
V
IOH = 100 µA source  
IOL = 100 µA sink  
MISO in tristate  
7 pF cap. load  
VOL  
Logic output low  
0.4  
10  
25  
25  
25  
I_LEAK_OUT  
T_RISE_OUT  
T_RISE_IN  
Tr_spi  
Output leakage current  
Rise/fall time (SPI MISO)  
Rise/fall time (SPI MOSI)  
CLK rise, fall time (SPI)  
µA  
ns  
ns  
ns  
Requirement for error-free  
register reading, writing.  
F_OP  
Operating frequency range  
2400  
2482  
MHz Usage on-the-air is subject to  
local regulatory agency  
restrictions regarding operating  
frequency.  
VSWR_I  
Antenna port mismatch  
(Z0 = 50 )  
<2:1  
<2:1  
VSWR Receive mode. Measured using  
LC matching circuit  
VSWR_O  
VSWR Transmit mode. Measured using  
LC matching circuit  
Receive section  
Measured using LC matching  
circuit for BER 0.1%  
Document Number: 001-76581 Rev. *D  
Page 28 of 40  
CYRF89435  
Electrical Specifications – RF Section (continued)  
Symbol  
RxSbase  
Description  
Min  
Typ  
Max  
Units  
Test Condition and Notes  
Receiver sensitivity (FEC off)  
–87  
dBm Room temperature only  
0-ppm crystal frequency error.  
RxStemp  
RxSppm  
–84  
–84  
dBm Over temperature;  
0-ppm crystal frequency error.  
dBm Room temperature only  
80-ppm total frequency error  
(± 40-ppm crystal frequency  
error, each end of RF link)  
RxStemp+ppm  
–80  
dBm Over temperature;  
80-ppm total frequency error  
(± 40-ppm crystal frequency  
error, each end of RF link)  
Rxmax-sig  
Ts  
Maximum usable signal  
Data (Symbol) rate  
–20  
0
1
dBm Room temperature only  
µs  
Minimum Carrier/Interference ratio  
For BER 0.1%.  
Room temperature only.  
CI_cochannel  
CI_1  
Co-channel interference  
+9  
+6  
dB  
dB  
–60-dBm desired signal  
–60-dBm desired signal  
Adjacent channel interference,  
1-MHz offset  
CI_2  
CI_3  
OBB  
Adjacent channel  
interference, 2-MHz offset  
–12  
–24  
dB  
dB  
–60-dBm desired signal  
–67-dBm desired signal  
Adjacent channel  
interference, 3-MHz offset  
Out-of-band blocking  
–27  
dBm 30 MHz to 12.75 GHz  
Measured with ACX BF2520  
ceramic filter on ant. pin.  
–67-dBm desired signal,  
BER 0.1%.  
Room temperature only.  
Transmit section  
PAVH  
Measured using a LC matching  
circuit  
RF output power  
+1  
dBm PA0  
(PA_GN = 0, Reg9 = 0x1820).  
Room temperature only  
PAVL  
–11.2  
dBm PA12  
(PA_GN = 12, Reg9 = 0x1E20).  
Room temperature only.  
TxPfx2  
TxPfx3  
Second harmonic  
–45  
dBm Measured using a LC matching  
circuit. Room temperature only.  
Third and higher harmonics  
–45  
dBm Measured using a LC matching  
circuit. Room temperature only.  
Modulation characteristics  
Df1avg  
263  
255  
kHz Modulation pattern: 11110000...  
kHz Modulation pattern: 10101010...  
Df2avg  
In-band spurious emission  
IBS_2  
IBS_3  
IBS_4  
2-MHz offset  
3-MHz offset  
4-MHz offset  
–20  
–30  
dBm  
dBm  
dBm  
–30  
Document Number: 001-76581 Rev. *D  
Page 29 of 40  
CYRF89435  
Electrical Specifications – RF Section (continued)  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Test Condition and Notes  
RF VCO and PLL section  
Fstep  
L100k  
L1M  
Channel (Step) size  
SSB phase noise  
1
–75  
–105  
MHz  
dBc/Hz 100-kHz offset  
dBc/Hz 1-MHz offset  
dFX0  
Crystal oscillator frequency error  
RF PLL settling time  
–40  
+40  
ppm Relative to 12-MHz crystal  
reference frequency  
THOP  
100  
250  
150  
350  
µs  
Settle to within 30 kHz of final  
value. AutoCAL off.  
THOP_AC  
µs  
Settle to within 30 kHz of final  
value. AutoCAL on.  
LDO voltage regulator section  
VDO Dropout voltage  
0.17  
0.3  
V
Measured during receive state  
Document Number: 001-76581 Rev. *D  
Page 30 of 40  
CYRF89435  
Table 24. Initialization Timing Requirements  
Timing  
Min  
Max  
Unit  
Notes  
Parameter  
TRSU  
30 / 150  
ms  
30 ms Reset setup time necessary to ensure complete Reset for VIN = 6.5mV/s,  
150 ms Reset setup time necessary to ensure complete Reset for VIN = 2mV/s  
TRPW  
TCMIN  
TVIN  
1
3
10  
µs  
Reset pulse width necessary to ensure complete reset  
ms  
Minimum recommended crystal oscillator and APLL settling time  
6.5 / 2  
mV/s Maximum ramp time for VIN, measured from 0 to 100% of final voltage.  
For example, if VIN = 3.3 V, the max ramp time is 6.5 × 3.3 = 21.45 ms.  
If VIN = 1.9 V, the max ramp time = 6.5 × 1.9 = 12.35 ms.  
Reset setup time necessary to ensure complete Reset for VIN = 6.5 mV/s  
Reset setup time necessary to ensure complete Reset for VIN = 6.5 mV/s  
Reset setup time necessary to ensure complete Reset for VIN=6.5 mV/s  
Figure 12. Initialization Flowchart  
Initialize  
Initialize  
CYRF89435 at  
power-up  
MCU generates  
negative- going  
RST_n pulse  
Wait Crystal  
Enable Time  
Registers,  
beginning with  
Reg[27]  
Initialization  
Done  
RST_n pulls up  
along with Vin  
Document Number: 001-76581 Rev. *D  
Page 31 of 40  
CYRF89435  
Table 25. SPI Timing Requirements  
Timing  
Min  
Max  
Unit  
Notes  
Parameter  
TSSS  
20  
200  
20  
20  
83  
10  
10  
10  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time from assertion of SPI_SS to CLK edge  
Hold time required deassertion of SPI_SS  
CLK minimum high time  
TSSH  
TSCKH  
TSCKL  
TSCK  
CLK minimum low time  
Maximum CLK clock is 12 MHz  
TSSU  
MOSI setup time  
TSHD  
MOSI hold time  
TSS_SU  
TSS_HD  
TSDO  
Before SPI_SS enable, CLK hold low time requirement  
Minimum SPI inactive time  
35  
5
MISO setup time, ready to read  
TSDO1  
TSDO2  
T1 Min_R50  
T1 Min  
If MISO is configured as tristate, MISO assertion time  
If MISO is configured as tristate, MISO deassertion time  
When reading register 50 (FIFO)  
250  
350  
83  
When writing Register 50 (FIFO), or reading/writing any registers other than  
register 50.  
Figure 13. Power-on and Register Programming Sequence  
TVIN  
VIN  
RST_n  
BRCLK  
Clock stable  
Clock unstable  
SPI_SS  
SPI Activity  
TRPW  
Write Reg[27]=  
(not drawn to scale)  
TRSU  
TCMIN  
0x4200  
After RST_n transitions from 0 to 1, BRCLK begins running at 12-MHz clock.  
After register initialization, CYRF89435 is ready to transmit or receive.  
Document Number: 001-76581 Rev. *D  
Page 32 of 40  
CYRF89435  
Packaging Information  
This section illustrates the packaging specifications for the CY7C89435 PSoC device, along with the thermal impedances for each  
package.  
Important Note  
Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of the emulation tools’  
dimensions, refer to the document titled PSoC Emulator Pod Dimensions at http://www.cypress.com/design/MR10161.  
Figure 14. 40-pin QFN (6 × 6 × 1.0 mm) LT40B 3.5 × 3.5 mm E-Pad (Sawn) Package Outline, 001-13190  
001-13190 *H  
Important Notes  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
Document Number: 001-76581 Rev. *D  
Page 33 of 40  
CYRF89435  
Thermal Impedances  
Table 26. Thermal Impedances per Package  
[13]  
Package  
Typical JA  
Typical JC  
40-pin QFN [14]  
27°C/W  
34°C/W  
Capacitance on Crystal Pins  
Table 27. Typical Package Capacitance on Crystal Pins  
Package  
Package Capacitance  
40-pin QFN  
TBD  
Solder Reflow Specifications  
Table 28 shows the solder reflow temperature limits that must not be exceeded.  
Table 28. Solder Reflow Specifications  
Package  
Maximum Peak Temperature (TC) Maximum Time above TC – 5 °C  
TBD TBD  
40-pin QFN  
Notes  
13. T = T + Power × .  
J
A
JA  
14. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.  
Document Number: 001-76581 Rev. *D  
Page 34 of 40  
CYRF89435  
Evaluation Tools  
Development Tool Selection  
Software  
All evaluation tools are sold at the Cypress Online Store.  
CY8CKIT-006 PSoC® 3 LCD Segment Drive Evaluation Kit  
PSoC Designer™  
Cypress’s PSoC programmable system-on-chip architecture  
gives you the freedom to not only imagine revolutionary new  
products, but the capability to also get those products to market  
faster than anyone else.The ability to drive a 5 V display on 0.5 V  
of input and the ability to drive multiple displays on one PSoC  
device can translate to the ultimate in design freedom, lower  
BOM costs and new product differentiators with this easy to use  
evaluation kit.The kit contains:  
At the core of the PSoC development software suite is PSoC  
Designer. Utilized by thousands of PSoC developers, this robust  
software has been facilitating PSoC designs for over half a  
decade. PSoC Designer is available free of charge at  
http://www.cypress.com.  
PSoC Programmer  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can operate  
directly from PSoC Designer. PSoC Programmer software is  
compatible with both PSoC ICE-Cube In-Circuit Emulator and  
PSoC MiniProg. PSoC Programmer is available free of charge  
at http://www.cypress.com.  
PSoC 3 LCD Segment Drive Evaluation Board  
9 V Battery  
12 V Wall Power Supply  
MiniProg3 Programmer / Debugger  
USB Cable (to connect MiniProg3 to the PC)  
Kit Stand  
Development Kits  
All development kits are sold at the Cypress Online Store.  
Quick Start Guide  
CY3215-DK Basic Development Kit  
Kit CD, which includes: PSoC Creator, PSoC Programmer,  
Projects and Documentation  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface enables users to run, halt, and single step the  
processor and view the content of specific memory locations.  
PSoC Designer supports the advance emulation features also.  
The kit includes:  
Device Programmers  
Firmware needs to be downloaded to PRoC CS device only at  
3.3 V using Miniprog3 Programmer. This Programmer kit can be  
purchased from Cypress Store using part# ‘CY8CKIT-002 -  
MiniProg3’. It is a small, compact programmer which connects  
PC via a USB 2.0 cable (provided along with CY8cKIT-002).  
PSoC Designer Software CD  
ICE-Cube In-Circuit Emulator  
Note: MiniProg1 Programmer should not be used as it does not  
support programming at 3.3 V.  
ICE Flex-Pod for CY8C29X66A Family  
Cat-5 Adapter  
Mini-Eval Programming Board  
110 ~ 240 V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
2 CY8C29466A-24PXI 28-pin PDIP Chip Samples  
Document Number: 001-76581 Rev. *D  
Page 35 of 40  
CYRF89435  
Accessories (Emulation and Programming)  
Table 29. Emulation and Programming Accessories  
Part Number  
Pin Package  
Flex-Pod Kit  
Foot Kit  
Adapter  
TBD  
TBD  
TBD  
TBD  
TBD  
Third Party Tools  
Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and  
production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.  
Ordering Information  
The following table lists the CY7C89435 PSoC devices' key package features and ordering codes.  
Table 30. PSoC Device Key Features and Ordering Information  
Flash SRAM CapSense Digital  
XRES  
Pin  
Analog  
Inputs  
Package  
Ordering Code  
ADC  
(Bytes) (Bytes) Blocks  
I/O Pins  
40-pin (6 × 6 × 1.0 mm) QFN  
CYRF89435-40LTXC  
32 K 2 K  
1
13  
Yes  
Yes  
13  
Ordering Code Definitions  
........................................................................................ TBD  
Document Number: 001-76581 Rev. *D  
Page 36 of 40  
CYRF89435  
Acronyms  
Reference Documents  
Table 31. Acronyms Used in this Document  
Technical reference manual for CY8C20xx6 devices  
Acronym  
AC  
Description  
alternating current  
In-system Serial Programming (ISSP) protocol for 20xx6  
(AN2026C)  
ADC  
API  
CMOS  
CPU  
DAC  
DC  
analog-to-digital converter  
application programming interface  
complementary metal oxide semiconductor  
central processing unit  
digital-to-analog converter  
direct current  
Host Sourced Serial Programming for 20xx6 devices  
(AN59389)  
Document Conventions  
Units of Measure  
EOP  
FSR  
GPIO  
GUI  
end of packet  
full scale range  
Table 32. Units of Measure  
Symbol  
°C  
dB  
fF  
Unit of Measure  
general purpose input/output  
graphical user interface  
inter-integrated circuit  
in-circuit emulator  
digital analog converter current  
internal low speed oscillator  
internal main oscillator  
input/output  
in-system serial programming  
liquid crystal display  
low dropout (regulator)  
least-significant bit  
low voltage detect  
micro-controller unit  
mega instructions per second  
master in slave out  
master out slave in  
degree Celsius  
decibels  
femtofarad  
gram  
I2C  
ICE  
IDAC  
ILO  
IMO  
I/O  
ISSP  
LCD  
LDO  
LSB  
g
Hz  
KB  
Kbit  
KHz  
Ksps  
k  
MHz  
M  
A  
F  
H  
s  
W  
mA  
ms  
mV  
nA  
nF  
ns  
hertz  
1024 bytes  
1024 bits  
kilohertz  
kilo samples per second  
kilohm  
megahertz  
megaohm  
LVD  
microampere  
microfarad  
microhenry  
microsecond  
microwatt  
milliampere  
millisecond  
millivolt  
nanoampere  
nanofarad  
MCU  
MIPS  
MISO  
MOSI  
MSB  
OCD  
POR  
PPOR  
PSRR  
most-significant bit  
on-chip debugger  
power on reset  
precision power on reset  
power supply rejection ratio  
PWRSYS power system  
PSoC®  
SLIMO  
SRAM  
SNR  
Programmable System-on-Chip  
nanosecond  
nanovolt  
ohm  
nV  
W
slow internal main oscillator  
static random access memory  
signal to noise ratio  
quad flat no-lead  
serial I2C clock  
serial I2C data  
serial ISSP data  
serial peripheral interface  
slave select  
shrink small outline package  
test controller  
pA  
pF  
pp  
ppm  
ps  
sps  
s
V
picoampere  
picofarad  
QFN  
SCL  
SDA  
SDATA  
SPI  
SS  
SSOP  
TC  
peak-to-peak  
parts per million  
picosecond  
samples per second  
sigma: one standard deviation  
volt  
W
watt  
USB  
universal serial bus  
USB Data+  
USB Data–  
wafer level chip scale package  
crystal  
USB D+  
USB D–  
WLCSP  
XTAL  
Document Number: 001-76581 Rev. *D  
Page 37 of 40  
CYRF89435  
Numeric Naming  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are decimal.  
Glossary  
Crosspoint connection  
Differential non-linearity  
Connection between any GPIO combination via analog multiplexer bus.  
Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly  
one LSB apart. Differential non-linearity is a measure of the worst case deviation from the  
ideal 1 LSB step.  
Hold time  
Hold time is the time following a clock event during which the data input to a latch or flip-flop  
must remain stable in order to guarantee that the latched data is correct.  
I2C  
It is a serial multi-master bus used to connect low speed peripherals to MCU.  
Integral nonlinearity  
It is a term describing the maximum deviation between the ideal output of a DAC/ADC and  
the actual output level.  
Latch-up current  
Current at which the latch-up test is conducted according to JESD78 standard (at 125  
degree Celsius)  
Power supply rejection ratio (PSRR)  
The PSRR is defined as the ratio of the change in supply voltage to the corresponding  
change in output voltage of the device.  
Scan  
The conversion of all sensor capacitances to digital values.  
Setup time  
Period required to prepare a device, machine, process, or system for it to be ready to  
function.  
Signal-to-noise ratio  
SPI  
The ratio between a capacitive finger signal and system noise.  
Serial peripheral interface is a synchronous serial data link standard.  
Document Number: 001-76581 Rev. *D  
Page 38 of 40  
CYRF89435  
Document History Page  
Document Title: CYRF89435, PRoC™ - CapSense®  
Document Number: 001-76581  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
3545779  
3591949  
ANTG  
ANTG  
03/13/2012 New silicon document  
05/14/2012 Modified title.  
*A  
Updated status “Company Confidential” of the datasheet.  
Changed “PRoC NL - CapSense” to “PRoC-CS” everywhere in the datasheet.  
Updated the Electrical Specifications.  
Updated the RF specifications.  
*B  
*C  
3714928  
3747532  
AKHL  
AKHL  
08/16/2012 Major text update. Updated the pinout (Figure 3).  
09/25/2012 Removed “Company Confidential” tag in the header.  
Replaced package diagram spec with 001-13190.  
*D  
3784571  
AKHL  
10/18/2012 Updated PSoC® Functional Overview (Added Transmit Power Control).  
Updated Electrical Specifications – RF Section (Replaced CYRF8935 with  
CYRF89435 in Figure 12 and also in the last bullet point below Figure 13).  
Updated Development Tool Selection (Updated Evaluation Tools (Removed  
“CY8CKIT-002 - MiniProg 3”), updated Device Programmers (Removed  
“CY3207ISSP In-System Serial Programmer (ISSP)”, added the content from  
the removed section “CY8CKIT-002 - MiniProg 3” with slight modification).  
Updated in new template.  
Document Number: 001-76581 Rev. *D  
Page 39 of 40  
CYRF89435  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any  
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,  
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical  
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-76581 Rev. *D  
Revised October 18, 2012  
Page 40 of 40  
PSoC Designer™ is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation.  
2
2
2
Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I C Patent Rights to use these components in an I C system, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
厂商 型号 描述 页数 下载

KYOCERA AVX

CYR10 玻璃电容器CYR10 , 15 (可靠性指标) M23269 / 01 , 02 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR10, 15 (Established Reliability) M23269/01, 02 (QPL to MIL-PRF-23269) ] 2 页

FOXCONN

CYR2-AP03MJ04 [ Interconnection Device ] 1 页

KYOCERA AVX

CYR51 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

KYOCERA AVX

CYR52 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

KYOCERA AVX

CYR53 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

CYPRESS

CYRF69103 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 73 页

CYPRESS

CYRF69103-40LFXC 无线可编程片上低功耗的16位自由运行定时器[ Programmable Radio on Chip Low Power 16-bit free running timer ] 68 页

CYPRESS

CYRF69103-40LTXC 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 72 页

CYPRESS

CYRF69103A-40LFXC 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 68 页

CYPRESS

CYRF69103_08 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 65 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.205044s