找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

TZA3019AHT

型号:

TZA3019AHT

描述:

2.5 Gb / s的双后置放大器具有电平检测器和2× 2开关[ 2.5 Gbits/s dual postamplifier with level detectors and 2 x 2 switch ]

品牌:

NXP[ NXP ]

页数:

32 页

PDF大小:

175 K

INTEGRATED CIRCUITS  
DATA SHEET  
TZA3019  
2.5 Gbits/s dual  
postamplifier with level  
detectors and 2 × 2 switch  
Preliminary specification  
2000 Apr 10  
File under Integrated Circuits, IC19  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
FEATURES  
APPLICATIONS  
Dual postamplifier  
Postamplifier for Synchronous Digital Hierarchy and  
Synchronous Optical Network (SDH/SONET)  
transponder  
Single 3.3 V power supply  
Wideband operation from 50 kHz to 2.5 GHz (typical  
value)  
SDH/SONET wavelength converter  
Crosspoint or channel switch  
PECL driver  
Fully differential  
Channels are delay matched  
Fibre channel arbitrated loop  
Protection ring  
On-chip DC-offset compensations without external  
capacitor  
Interfacing with positive or negative supplied logic  
Switching possibility between channels  
Monitoring  
Signal level detectors  
Positive Emitter Coupled Logic (PECL) or Current-Mode  
Logic (CML) compatible data outputs adjustable from  
200 to 800 mV (p-p) single-ended  
Swing converter CML 200 mV (p-p) to  
PECL 800 mV (p-p)  
Port bypass circuit  
Power-down capability for unused outputs and detectors  
Rise and fall times 80 ps (typical value)  
2.5 GHz clock amplification.  
Possibility to invert the output of each channel  
separately  
GENERAL DESCRIPTION  
The TZA3019 is a low gain postamplifier multiplexer with a  
dual RSSI and/or LOS detector that is designed for use in  
critical signal path control applications, such as  
loop-through, redundant channel switching or Wavelength  
Division Multiplexing (WDM). The signal path is  
unregistered, so no clock is required for the data inputs.  
The signal path is fully differential and delay matched. It is  
capable of operating from 50 kHz to 2.5 GHz.  
Input level-detection circuits for Received Signal  
Strength Indicator (RSSI) or Loss Of Signal (LOS)  
detection, programmable from 0.4 to 400 mV (p-p)  
single-ended, with open-drain comparator output for  
direct interfacing with positive or negative logic  
Reference voltage for output level and LOS adjustment  
Automatic strongest input signal switch possibility  
(TZA3019 version B)  
The TZA3019 HTQFP32 and HBCC32 packages can be  
delivered in three versions:  
HTQFP32 or HBCC32 plastic package with exposed  
pad.  
TZA3019AHT and TZA3019AV with two RSSI signals  
TZA3019BHT and TZA3019BV with one RSSI and one  
LOS signal  
TZA3019CHT and TZA3019CV with two LOS signals.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TZA3019AHT HTQFP32 plastic, heatsink thin quad flat package; 32 leads; body 5 × 5 × 1 mm  
TZA3019BHT HTQFP32 plastic, heatsink thin quad flat package; 32 leads; body 5 × 5 × 1 mm  
TZA3019CHT HTQFP32 plastic, heatsink thin quad flat package; 32 leads; body 5 × 5 × 1 mm  
SOT547-2  
SOT547-2  
SOT547-2  
TZA3019AV  
TZA3019BV  
TZA3019CV  
TZA3019U  
HBCC32  
HBCC32  
HBCC32  
plastic, heatsink bottom chip carrier; 32 terminals; body 5 × 5 × 0.65 mm SOT560-1  
plastic, heatsink bottom chip carrier; 32 terminals; body 5 × 5 × 0.65 mm SOT560-1  
plastic, heatsink bottom chip carrier; 32 terminals; body 5 × 5 × 0.65 mm SOT560-1  
bare die; 2.22 × 2.22 × 0.28 mm  
2000 Apr 10  
2
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
BLOCK DIAGRAM  
32  
25  
27  
V
V
EE1A  
EE1B  
10  
LOSTH1  
LOS  
DETECTOR  
1×  
RSSI1  
offset  
level  
TZA3019AHT  
TZA3019AV  
12  
29  
31  
LEVEL1  
INV1  
S1  
24  
1
2
3
GND1B  
SWITCH  
GND1A  
23  
22  
21  
OUT1  
IN1  
IN1Q  
OUT1Q  
GND1B  
A1A A1B  
4
GND1A  
TEST  
15  
8
14  
BAND GAP  
REFERENCE  
DFT  
V
ref  
17  
18  
19  
GND2A  
GND2B  
OUT2Q  
OUT2  
A2A A2B  
7
6
5
IN2Q  
IN2  
20  
GND2A  
SWITCH  
GND2B  
30  
28  
13  
S2  
INV2  
level  
LEVEL2  
offset  
26  
1×  
RSSI2  
LOS  
DETECTOR  
11  
9
LOSTH2  
16  
V
V
EE2A  
EE2B  
MGT028  
Fig.1 Block diagram (TZA3019AHT and TZA3019AV).  
3
2000 Apr 10  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
32  
25  
27  
V
V
EE1B  
EE1A  
10  
LOSTH1  
LOS  
DETECTOR  
5 kΩ  
LOS1  
offset  
level  
TZA3019BHT  
TZA3019BV  
12  
LEVEL1  
29  
INV1  
31  
S1  
24  
1
GND1B  
SWITCH  
GND1A  
2
3
23  
22  
21  
OUT1  
IN1  
IN1Q  
OUT1Q  
GND1B  
A1A A1B  
4
GND1A  
TEST  
15  
8
14  
BAND GAP  
REFERENCE  
DFT  
V
ref  
17  
18  
19  
GND2A  
GND2B  
OUT2Q  
OUT2  
A2A A2B  
7
6
5
IN2Q  
IN2  
20  
GND2A  
SWITCH  
GND2B  
30  
28  
13  
S2  
INV2  
level  
LEVEL2  
offset  
26  
1×  
RSSI2  
LOS  
DETECTOR  
11  
9
LOSTH2  
16  
V
V
EE2A  
EE2B  
MGT027  
Fig.2 Block diagram (TZA3019BHT and TZA3019AV).  
4
2000 Apr 10  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
32  
25  
27  
V
V
EE1B  
EE1A  
10  
LOSTH1  
LOS  
DETECTOR  
5 kΩ  
LOS1  
offset  
level  
TZA3019CHT  
TZA3019CV  
12  
LEVEL1  
29  
INV1  
31  
S1  
24  
1
GND1B  
SWITCH  
GND1A  
2
3
23  
22  
21  
OUT1  
IN1  
IN1Q  
OUT1Q  
GND1B  
A1A A1B  
4
GND1A  
TEST  
15  
8
14  
BAND GAP  
REFERENCE  
DFT  
V
ref  
17  
18  
19  
GND2A  
GND2B  
OUT2Q  
OUT2  
A2A A2B  
7
6
5
IN2Q  
IN2  
20  
GND2A  
SWITCH  
GND2B  
30  
28  
13  
S2  
INV2  
level  
LEVEL2  
offset  
LOS  
DETECTOR  
5 kΩ  
26  
LOS2  
11  
9
LOSTH2  
16  
V
V
EE2A  
EE2B  
MGS553  
Fig.3 Block diagram (TZA3019CHT and TZA3019CV).  
5
2000 Apr 10  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
PINNING  
PIN  
SYMBOL TZA3019xHT/xV(1) PAD TYPE(2)  
DESCRIPTION  
A
B
C
GND1A  
IN1  
1
2
1
2
1
2
1
2
S
I
ground for input 1 and LOS1 circuits  
differential circuit 1 input; complimentary to pin IN1Q; DC bias level  
is set internally at approximately 0.33 V  
IN1Q  
3
3
3
3
I
differential circuit 1 input; complimentary to pin IN1; DC bias level is  
set internally at approximately 0.33 V  
GND1A  
n.c  
4
5
6
4
5
6
4
5
6
4
5
6
7
8
S
S
I
ground for input 1 and LOS1 circuits  
not connected  
n.c  
not connected  
GND2A  
IN2  
ground for input 2 and LOS2 circuits  
differential circuit 2 input; complimentary to pin IN2Q; DC bias level  
is set internally at approximately 0.33 V  
IN2Q  
7
7
7
9
I
differential circuit 2 input; complimentary to pin IN2; DC bias level is  
set internally at approximately 0.33 V  
GND2A  
VEE2A  
8
9
8
9
8
9
10  
11  
12  
S
S
I
ground for input 2 and LOS2 circuits  
negative supply voltage for input 2 and LOS2 circuits  
LOSTH1  
10  
10  
10  
Input for level detector programming of input 1 circuit; threshold  
level is set by connecting external resistors between pins  
GND1A and Vref. When forced to VEE2A or not connected, the  
LOS1 circuit will be switched off.  
LOSTH2  
11  
11  
11  
13  
I
Input for level detector programming of input 2 circuit; threshold  
level is set by connecting external resistors between pins  
GND2A and Vref. When forced to VEE2A or not connected, the  
LOS2 circuit will be switched off.  
n.c  
14  
15  
not connected  
LEVEL1  
12  
12  
12  
I
Input for programming output level of output 1 circuit; output level is  
set by connecting external resistors between pins GND1A and Vref.  
When forced to GND1A or not connected, pins OUT1 and OUT1Q  
will be switched off.  
LEVEL2  
Vref  
13  
14  
13  
14  
13  
14  
16  
I
Input for programming output level of output 2 circuit; output level is  
set by connecting external resistors between pins GND2A and Vref.  
When forced to GND2A or not connected, pins OUT2 and OUT2Q  
will be switched off.  
17  
O
reference voltage for level circuit and LOS threshold programming;  
typical value is 1.6 V; no external capacitor allowed  
n.c  
18  
19  
20  
21  
22  
I
TEST  
VEE2B  
GND2B  
OUT2Q  
15  
16  
17  
18  
15  
16  
17  
18  
15  
16  
17  
18  
for test purposes only; to be left open-circuit in the application  
negative supply voltage for output 2 circuit  
ground for output 2 circuit  
S
S
O
PECL or CML compatible differential circuit 2 output;  
complimentary to pin OUT2  
2000 Apr 10  
6
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
PIN  
SYMBOL TZA3019xHT/xV(1) PAD TYPE(2)  
DESCRIPTION  
A
B
C
OUT2  
19  
19  
19  
23  
O
PECL or CML compatible differential circuit 2 output;  
complimentary to pin OUT2Q  
GND2B  
n.c  
20  
20  
20  
24  
25  
26  
27  
28  
S
ground for output 2 circuit  
not connected  
n.c  
not connected  
GND1B  
OUT1Q  
21  
22  
21  
22  
21  
22  
S
O
ground for output 1 circuit  
PECL or CML compatible differential circuit 1 output;  
complimentary to pin OUT1  
OUT1  
23  
23  
23  
29  
O
PECL or CML compatible differential circuit 1 output;  
complimentary to pin OUT1Q  
GND1B  
VEE1B  
24  
25  
26  
24  
25  
26  
24  
25  
30  
31  
32  
33  
S
S
O
ground for output 1 circuit  
negative supply voltage for output 1 circuit  
output of received signal strength indicator of detector  
RSSI2  
LOS2  
26  
O-DRN output loss of signal detector 2; detection of input 2 signal; direct  
drive of positive or negative supplied logic via internal 5 kresistor  
RSSI1  
LOS1  
27  
34  
35  
O
output of received signal strength indicator of detector  
27  
27  
O-DRN output loss of signal detector 2; detection of input 2 signal; direct  
drive of positive or negative supplied logic via internal 5 kresistor  
INV2  
INV1  
S2  
28  
29  
30  
31  
32  
28  
29  
30  
31  
32  
28  
29  
30  
31  
32  
36  
37  
38  
39  
TTL  
TTL  
TTL  
TTL  
input to invert the signal of pins OUT2 and OUT2Q; directly positive  
(inverted) or negative supplied logic driven  
input to invert the signal of pins OUT1 and OUT1Q; directly of  
positive (inverted) or negative supplied logic driven  
input selector output 2 circuit; directly positive (inverted) or negative  
supplied logic driven  
S1  
input selector output 1 circuit; directly positive (inverted) or negative  
supplied logic driven  
VEE1A  
VEEP  
40  
S
S
negative supply voltage for input 1 and LOS1 circuits  
negative supply voltage pad (exposed die pad)  
pad pad pad  
Notes  
1. The ‘x’ in TZA3019xHT/xV represents versions A, B and C.  
2. Pin type abbreviations: O = output, I = input, S = power supply, TTL = logic input and O-DRN = open-drain output.  
2000 Apr 10  
7
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GND1A  
IN1  
GND1B  
OUT1  
exposed pad  
IN1Q  
OUT1Q  
GND1B  
GND2B  
OUT2  
GND1A  
GND2A  
IN2  
TZA3019xHT  
V
IN2Q  
OUT2Q  
GND2B  
EEP  
GND2A  
MGS554  
Fig.4 Pin configuration HTQFP32.  
GND1A  
1
32 31 30 29 28 27 26  
exposed pad  
25  
GND1B  
OUT1  
IN1  
IN1Q  
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
GND1A  
GND2A  
IN2  
OUT1Q  
GND1B  
GND2B  
OUT2  
TZA3019xV  
IN2Q  
V
EEP  
GND2A  
OUT2Q  
GND2B  
9
10 11 12 13 14 15 16  
17  
MGT029  
Fig.5 Pin configuration HBCC32.  
8
2000 Apr 10  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
FUNCTIONAL DESCRIPTION  
In such cases, pull-up resistors of 100 should be  
connected as close as possible to the IC from  
pins OUT1 and OUT1Q, and pins OUT2 and OUT2Q to  
VEE1B and VEE2B respectively. These matching resistors  
are not needed in most applications.  
The TZA3019 is a dual postamplifier with multiplexer and  
loss of signal detection see Figs 1, 2 and 3. The RF path  
starts with the multiplexer, which connects an amplifier to  
one of the two inputs. It is possible to invert the output for  
easy layout of the Printed-Circuit Board (PCB). The signal  
is amplified to a certain level. To guarantee this level with  
minimum distortion over the temperature range and level  
range, an active control part is added. The offset  
compensation circuit following the inverter minimizes the  
offset.  
GND1A,  
GND2A  
handbook, halfpage  
12 pF  
420 Ω  
50 Ω  
The Received Signal Strength Indicator (RSSI) or the Loss  
Of Signal (LOS) detection uses a 7-stage ‘successive  
detection’ circuit. It provides a logarithmic output. The LOS  
is followed by a comparator with a programmable  
threshold. The input signal level-detection is implemented  
to check if the input signal voltage is above the user  
programmed level. This can insure that data will only be  
transmitted when the input signal-to-noise ratio is sufficient  
for low bit error rate system operation. A second  
offset compensation circuit minimizes the offset of the  
logarithmic amplifier.  
50 Ω  
IN1, IN2  
IN1Q, IN2Q  
V
V
,
EE1A  
EE2A  
MGS555  
Fig.6 RF input circuit.  
RF input circuit  
The input circuit contains internal 50 resistors  
decoupled to ground via an internal common mode 12 pF  
capacitor (see Fig.6).  
Postamplifier level adjustment  
The postamplifier boosts the signal up to PECL levels. The  
output can be either CML- or PECL-level compatible,  
adjusted by means of the voltage on pins LEVEL1  
and LEVEL2. The DC voltages of pins OUT1 and OUT1Q,  
and pins OUT2 and OUT2Q match with the DC-levels  
on pins LEVEL1 and LEVEL2, respectively. Due to the  
receiving end 50 load resistance, it means that at the  
same level of Vo(p-p), VLEVEL1 and VLEVEL2 with  
The input pins are DC-biased at approximately 0.33 V by  
an internal reference generator. The TZA3019 can be  
DC-coupled, but AC-coupling is preferred. In case of  
DC-coupling, the driving source must operate within the  
allowable input range (1.0 to +0.3 V). A DC-offset voltage  
of more than a few millivolts should be avoided, since the  
internal DC-offset compensation circuit has a limited  
correction range. When AC-coupling is used, if no  
DC-compatibility is required, the values of the coupling  
capacitors must be large enough to pass the lowest input  
frequency of interest. Capacitor tolerance and resistor  
variation must be included for an accurate calculation.  
Do not use signal frequencies around the low cut-off  
circuit frequencies (f3dB(l) = 50 kHz for the postamplifiers  
and f3dB(l) = 1 MHz for the LOS circuits).  
AC-coupling are not equal to VLEVEL1 and VLEVEL2 with  
DC-coupling (see Figs 7 and 8).  
The postamplifier is in power-down state when pin  
LEVEL1 or LEVEL2 is connected to ground or not  
connected (see Fig.8).  
Postamplifier DC offset cancellation loop  
Offset control loops connected between the inputs of the  
buffers A1A and A2A and the outputs of the amplifiers A1B  
and A2B (see Figs 1, 2 and 3) will keep the input of both  
buffers at their toggle point during the absence of an input  
signal. The active offset compensation circuit is integrated,  
so no external capacitor is required. The loop time  
constant determines the lower cut-off frequency of the  
amplifier chain. The cut-off frequency of the offset  
RF output circuit  
Matching the main amplifier outputs (see Fig.7) is not  
mandatory. In most applications, the transmission line  
receiving end will be properly matched, while very little  
reflections occur.  
Matching the transmitting end to absorb reflections is only  
recommended for very sensitive applications.  
compensations is fixed internally at approximately 5 kHz.  
2000 Apr 10  
9
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
GND1A,  
GND2A  
GND1B,  
GND2B  
50  
50  
100  
100 Ω  
R1  
OUT1,  
OUT2  
V
o
OUT1Q,  
OUT2Q  
LEVEL1,  
LEVEL2  
V
level  
REG  
R2  
0
level  
V
V
ref  
V
o(se)(p-p)  
V
o
MGS556  
(V)  
Vlevel = 0.5 × Vo(se)(p-p)  
.
R1  
R1 + R2  
Vlevel = Vref  
×
.
----------------------  
Level detector in power-down mode: VLEVEL1 or VLEVEL2 = VGND  
.
a. DC-coupling.  
GND1A,  
GND2A  
GND1B,  
GND2B  
50  
50  
100 Ω  
100 Ω  
OUT1,  
OUT2  
V
o
R1  
OUT1Q,  
OUT2Q  
LEVEL1,  
LEVEL2  
V
level  
0
REG  
R2  
V
ref  
V
V
level  
o(se)(p-p)  
V
o
MGL811  
(V)  
Vlevel = 1.5 × Vo(se)(p-p)  
.
R1  
R1 + R2  
Vlevel = Vref  
×
.
----------------------  
Level detector in power-down mode: VLEVEL1 or VLEVEL2 = VGND  
.
b. AC-coupling.  
Fig.7 RF output configurations.  
2000 Apr 10  
10  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
MGS557  
1000  
V
o(se)(p-p)  
(mV)  
800  
DC-coupled  
AC-coupled  
600  
400  
200  
0
0
20  
40  
60  
80  
100  
V
(% of V  
)
ref  
level  
Fig.8 Output signal as a function of Vlevel  
.
TTL logic input of selector and inverter  
Table 2 OUT2 and OUT2Q as function of input S2  
The logic levels are differently defined for positive or  
S2  
OUT2  
OUT2Q  
negative logic (see Fig.9). It should be noted that positive  
logic levels are inverted if a negative supply voltage is  
used.  
0
1
IN2  
IN1  
IN2Q  
IN1Q  
Table 3 OUT1 and OUT1Q as function of INV1  
Outputs as a function of switch input pins S1, S2,  
INV1 and INV2  
INV1  
OUT1  
OUT1Q  
IN1Q or IN2Q  
IN1 or IN2  
See Tables 1, 2, 3 and 4.  
0
1
IN1 or IN2  
The default values for the switch input pins S1, S2, INV1  
and INV2 if not connected, is zero.  
IN1Q or IN2Q  
Table 4 OUT2 and OUT2Q as function of INV2  
Table 1 OUT1 and OUT1Q as function of input S1  
INV2  
OUT2  
OUT2Q  
S1  
0
OUT1  
IN1  
OUT1Q  
IN1Q  
0
1
IN1 or IN2  
IN1Q or IN2Q  
IN1 or IN2  
IN1Q or IN2Q  
1
IN2  
IN2Q  
2000 Apr 10  
11  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
logic  
level  
MGS558  
2.0 V  
(1)  
2.0 V  
1
0
TTL  
0.8 V  
0.8 V  
1.4 V  
1.4 V  
V
GND  
EE  
4  
3  
2  
1  
0
+1  
+2  
+3  
V (V)  
I
a. Negative circuit supply voltage VEE and negative logic supply voltage VEE  
.
logic  
level  
MGS559  
2.0 V  
2.0 V  
1
(1)  
TTL  
0.8 V  
0.8 V  
0
1.4 V  
1.4 V  
V
V
CC  
EE  
GND  
4  
3  
2  
1  
0
+1  
+2  
+3  
V (V)  
I
b. Negative circuit supply voltage VEE and positive logic supply voltage VCC  
.
logic  
level  
MGS560  
2.0 V  
(1)  
2.0 V  
1
TTL  
0.8 V  
0.8 V  
0
1.4 V  
1.4 V  
V
GND  
CC  
1  
0
+1  
+2  
+3  
+4  
+5  
+6  
V (V)  
I
c. Positive circuit supply voltage VCC and positive logic supply voltage VCC  
.
(1) Level not defined.  
Fig.9 Logic levels on pins S1, S2, INV1 and INV2 as a function of the input voltages.  
12  
2000 Apr 10  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
RSSI and LOS detection  
The TZA3019 allows AC-signal level detection. This can  
prevent the outputs from reacting to noise during the  
absence of a valid input signal, and can insure that data  
only will be transmitted when the signal-to-noise ratio of  
the input signal is sufficient to insure low bit error rate  
system operation.  
handbook, halfpage3  
10  
MGS564  
V
i(se)(p-p)  
(mV)  
2
10  
LOS1,  
LOS2  
LOW-level  
(1)  
(2)  
The RSSI detection circuit uses seven limiting amplifiers in  
a ‘successive detection’ topology to closely approximate  
logarithmic response over a total range of 70 dB. The  
detectors provide full-wave rectification of the AC signals  
presented at each previous amplifier stage. Their outputs  
are current drivers. Each cell incorporates a low-pass filter,  
being the first step in recovering the average value of the  
demodulated signal of the input frequency. The summed  
detector output currents are converted to a voltage by an  
internal load resistor. This voltage is buffered and  
10  
1
LOS1,  
LOS2  
HIGH-level  
(3)  
1  
10  
10  
20  
30  
40  
50  
60  
70  
)
V
, V  
LOSTH1 LOSTH2  
(% of V  
ref  
available in the A and B versions of the TZA3019. When  
0.16  
0.32 0.48 0.64 0.8 0.96 1.12  
, V (V)  
V
VRSSI is used VLOSTH must be connected to GND to  
RSSI1 RSSI2  
prevent the LOS comparator from switching to the standby  
mode. The LOS comparator detects an input signal above  
a fixed threshold, resulting in a LOW-level at the LOS  
circuit output.The threshold level is determined by the  
voltage on pins LOSTH1 or LOSTH2 (see Fig.10). A filter  
with a time constant of 1 µs nominal is included to prevent  
noise spikes from triggering the level detector.  
(1) PRBS pattern input signal with a frequency <1 GHz.  
(2) Linearity error typically 0.5 dB.  
(3) ϕ = 1/12.5 dB/mV.  
Fig.10 Loss of signal assert level.  
The comparator (with internal 3 dB hysteresis) drives an  
open-drain circuit with an internal resistor (5 k) for direct  
interfacing to positive or negative logic (see Fig.11). Only  
available in the B and C versions of the TZA3019.  
A full understanding of the offset control loop is useful. The  
primary purpose of the loop is to extend the lower end of  
the dynamic range in any case where the offset voltage of  
the first stage might be high enough to cause later stages  
to prematurely enter limiting, caused by the high DC-gain  
of the amplifier system. The offset is automatically and  
continuously compensated via a feedback path from the  
last stage. An offset at the output of the logarithmic  
converter is equivalent to a change of amplitude at the  
input. Consequently, with DC-coupling, signal absence,  
either LOW-level or HIGH-level is detected as a full signal,  
only signals with an average value equal to zero give zero  
output.  
The response is independent of the sign of the input signal  
because of the particular way the circuit has been built.  
This is part of the demodulating nature of the detector,  
which results in an alternating input voltage being  
transformed to a rectified and filtered quasi DC-output  
signal. For the TZA3019 the logarithmic voltage slope is  
ϕ = 1/13 dB/mV and is essentially temperature and supply  
independent through four feedback loops in the reference  
circuit. The internal LOS detector output voltage is based  
on Vref. The demodulator characteristic depends on the  
waveform and the response depends roughly on the input  
signal RMS value. This influences high frequencies, a  
square wave input of 2.4 GHz (LOS circuit bandwidth  
of 2.4 GHz) offsets the intercept voltage by 20%. VLOSTH  
can be calculated using the following formulae:  
Version B can be used for an auto function, which switches  
the strongest input signal to output 1 and the weakest to  
output 2. To achieve this output VRSSI2 must be used as  
the reference voltage for input VLOSTH. Then the output  
LOS1 can switch S1 and S2.  
VLOSTH = VRSSI = S × 20log(Vi 18µV)  
(1)  
where S = sensitivity.  
Example: a 200 mV (p-p) single-ended 1.2 GB/s PRBS  
signal has an RSSI from 1003 mV.  
2000 Apr 10  
13  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
V
GND  
56 kΩ  
handbook, halfpage  
CC  
handbook, halfpage  
GND  
5.6 kΩ  
LOS1,  
LOS2  
TZA3019  
LOS1,  
LOS2  
TZA3019  
5 kΩ  
5 kΩ  
GND1A,  
GND2A  
GND1A,  
GND2A  
I
LOS  
V
I
LOS  
V
EE  
EE  
MGS562  
MGS561  
a. Negative supply and negative logic.  
b. Negative supply and positive logic.  
V
handbook, halfpage  
CC  
56 kΩ  
LOS1,  
LOS2  
TZA3019  
5 kΩ  
GND1A,  
GND2A  
I
LOS  
GND  
MGS563  
VCC VEE < 7 V.  
c. Positive supply and positive logic.  
Fig.11 Loss of signal outputs, pins LOS1 and LOS2.  
Supply current  
(1)  
60  
For the supply currents IEE1B and IEE2B, see Fig.12.  
58  
I
I
50  
Using a positive supply voltage  
EE1B,  
EE2B  
(mA)  
Although the TZA3019 has been designed to use a single  
3.3 V supply voltage (see Fig.13), a +3.3 V supply  
(see Fig.14) can also be used. However, care should be  
taken with respect to RF transmission lines. The on-chip  
signals refer to the various ground pins as being positive  
supply pins in a +3.3 V application. The external  
transmission lines will most likely be referred to the  
pins VEE1A, VEE2A, VEE1B and VEE2B, being the system  
ground. The RF signals will change from one reference  
plane to another when interfacing the RF inputs and  
outputs. A positive supply application is very vulnerable to  
interference with respect to this point. For a successful  
+3.3 V application, special care should be taken when  
designing the PCB layout in order to reduce the influence  
of interference and to keep the positive supply voltage as  
clean as possible.  
40  
30  
20  
17  
10  
5
0
0
0.2  
0.5  
V
0.8  
1
(V)  
o(se)(p-p)  
MGS566  
(1) IEE1B and IEE2B at 25 °C.  
Fig.12 Supply current as a function of output  
voltage  
2000 Apr 10  
14  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VEE  
Vn  
PARAMETER  
MIN.  
5.5  
MAX.  
+0.5  
UNIT  
negative supply voltage  
DC voltage  
V
V
pins IN1, IN1Q, IN2, IN2Q, LOSTH1, LOSTH2, LEVEL1, LEVEL2,  
Vref, TEST, OUT2Q, OUT2, OUT1Q, OUT1, VEEP, GND1A,  
GND2A, GND1B and GND2B  
VEE 0.5 0.5  
pins LOS1, LOS2, INV1, INV2, S1 and S2  
DC current  
VEE 0.5 VEE + 7  
V
In  
pins IN1, IN1Q, IN2 and IN2Q  
pins LOSTH1, LOSTH2, LEVEL1 and LEVEL2  
pins Vref, TEST, LOS1 and LOS2  
pins OUT1, OUT1Q, OUT2 and OUT2Q  
pins INV1, INV2, S1 and S2  
total power dissipation  
20  
0
+20  
14  
mA  
µA  
mA  
mA  
µA  
W
1  
30  
0
+1  
+30  
20  
Ptot  
Tstg  
Tj  
1.2  
storage temperature  
65  
+150  
150  
+85  
°C  
junction temperature  
°C  
Tamb  
ambient temperature  
40  
°C  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-s)  
thermal resistance from junction to  
solder point (exposed die pad); note 1  
15  
33  
18  
K/W  
K/W  
K/W  
Rth(j-a)  
thermal resistance from junction to  
ambient; note 1  
1s2p multi-layer test board  
Rth(s-a)  
thermal resistance from solder point to 1s2p multi-layer test board  
ambient (exposed die pad); note 1  
Rth(s-a)(req)  
required thermal resistance from  
solder point to ambient  
LOS circuits switched on  
Vo = 200 mV (p-p) single-ended;  
both output circuits  
60  
30  
K/W  
K/W  
Vo = 800 mV (p-p) single-ended;  
both output circuits  
Note  
1. JEDEC standard.  
2000 Apr 10  
15  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
CHARACTERISTICS  
Typical values at Tamb = 25 °C and VEE = 3.3 V; minimum and maximum values are valid over the entire ambient  
temperature range and supply voltage range; all voltages referenced to ground; unless otherwise specified; note 1.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SUPPLY PINS VEE1A, VEE1B, VEE2A AND VEE2B  
VEE  
negative supply voltage  
negative supply current  
3.13  
3.3  
3.47  
V
IEE1A  
IEE2A  
,
,
LOS circuit power-down  
LOS circuit switched on  
amplifier power-down  
14  
24  
2
24  
40  
6
34  
56  
10  
24  
mA  
mA  
mA  
mA  
IEE1B  
IEE2B  
negative supply current  
Vo = 200 mV (p-p)  
single-ended; one output  
circuit  
11  
17  
Vo = 800 mV (p-p)  
single-ended; one output  
circuit  
47  
60  
77  
mA  
Ptot  
total power dissipation  
power-down  
100  
220  
200  
380  
300  
555  
mW  
mW  
both LOS circuits switched on  
Vo = 200 mV (p-p)  
single-ended; both output  
circuits  
Vo = 800 mV (p-p)  
single-ended; both output  
circuits  
450  
660  
925  
mW  
TC  
temperature coefficient  
LOS circuit switched on; IEE1A  
IEE2A  
;
30  
15  
50  
30  
80  
50  
µA/°C  
µA/°C  
Vo = 800 mV (p-p)  
single-ended; IEE1A; IEE2A  
Tj  
junction temperature  
ambient temperature  
40  
40  
+125  
+85  
°C  
°C  
Tamb  
+25  
Inputs multiplexer and loss of signal detector  
PECL OR CML INPUT PINS IN1, IN1Q, IN2 AND IN2Q  
Vi(p-p)  
input voltage swing  
(peak-to-peak value)  
single-ended; note 2  
50  
500  
mV  
Vi(bias)  
VI  
DC input bias voltage  
0.28  
1.0  
0.33  
0.4  
V
V
DC and AC input window  
voltage  
note 3  
+0.3  
Ri  
Ci  
input resistance  
single-ended  
35  
50  
70  
input capacitance  
single-ended; note 3  
0.6  
0.8  
1.2  
pF  
2000 Apr 10  
16  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Postamplifier  
AMPLIFIERS A1A, A1B, A2A AND A2B  
Gv  
small signal voltage gain  
Vo = 200 mV (p-p)  
10  
15  
19  
dB  
single-ended; note 4  
Vo = 800 mV (p-p)  
22  
29  
34  
dB  
single-ended; note 4  
fD  
signal path data rate  
notes 5 and 9  
2500  
5
Mbits/s  
kHz  
f3dB(l)  
low 3 dB cut-off frequency note 3  
2
10  
DC compensation  
f3dB(h)  
tPD  
high 3 dB cut-off frequency  
2.0  
200  
0
GHz  
ps  
propagation delay  
note 3  
150  
250  
5
tPD  
propagation delay  
difference  
at the same signal levels;  
note 3  
ps  
J
total jitter  
20 bits of the 28.5kbits  
pattern; notes 3 and 6  
8
ps  
αct  
crosstalk  
crosstalk of IC only  
90  
110  
dB  
PECL OR CML OUTPUT PINS OUT1, OUT1Q, OUT2 AND OUT2Q  
Vo(se)(p-p)  
single-ended output voltage 50 load  
200  
800  
mV  
(peak-to-peak value)  
TC  
temperature coefficient  
output level  
−1  
0
−1  
mV/K  
tr  
rise time  
20% to 80%; note 5  
80  
ps  
ps  
tf  
fall time  
80% to 20%; note 5  
single-ended  
80  
Ro  
Co  
output resistance  
output capacitance  
70  
0.6  
100  
0.8  
130  
1.2  
single-ended; note 3  
pF  
LEVEL CONTROL INPUT PINS LEVEL1 AND LEVEL2  
Vi  
Ri  
input voltage  
Vref  
150  
0
V
input resistance  
measured to  
350  
600  
kΩ  
GND1A or GND2A  
Multiplexer and inverter switch  
PECL OR CML INPUT PINS IN1, IN1Q, IN2 AND IN2Q  
αOS(red)  
input offset reduction  
Vo = 200 mV (p-p)  
single-ended; note 7  
4
9
13  
dB  
dB  
mV  
µV  
dB  
Vo = 800 mV (p-p)  
single-ended; note 7  
10  
10  
14  
20  
Vio(cor)  
input offset voltage  
correction range  
peak-to-peak value  
single-ended  
+10  
170  
12  
Vn(i)(eq)(rms) equivalent input noise  
voltage (RMS value)  
Vo = 800 mV (p-p)  
single-ended; note 3  
75  
5
Fn  
noise factor  
note 3  
2000 Apr 10  
17  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SWITCH CIRCUIT  
ta  
td  
assert time  
de-assert time  
multiplexer and inverter  
multiplexer and inverter  
70  
100  
200  
160  
ns  
ns  
55  
80  
TTL INPUT PINS S1, S2, INV1 AND INV2  
VIL  
LOW-level input voltage  
positive logic  
2.0  
VEE + 7.3 V  
negative logic  
V
EE 0.3 −  
2.5  
+0.3  
+0.8  
400  
V
VIH  
HIGH-level input voltage  
negative logic  
1.3  
0.3  
100  
10  
V
positive logic  
V
Ri  
Ii  
input resistance  
input current  
measured to VEE1A or VEE2A  
180  
kΩ  
µA  
+10  
Received Signal Strength Indicator and Loss Of Signal detector  
RSSI AND LOS CIRCUIT  
Vi(se)(p-p)  
single-ended input voltage  
swing (peak-to-peak value)  
0.4  
400  
mV  
DR  
dynamic range  
LOS sensitivity  
57  
60  
63  
dB  
SLOS  
50 MHz, square; note 8  
620 MHz, square; note 8  
1.2 GHz, square; note 8  
11  
12.5  
11.9  
11.1  
12.7  
14  
mV/dB  
mV/dB  
mV/dB  
mV/dB  
10.7  
10  
13  
12.2  
14.2  
100 MB/s PRBS (231 1);  
11.2  
note 8  
1.2 GB/s PRBS (231 1);  
note 8  
100 GB/s PRBS (231 − 1);  
note 8  
10.9  
10.7  
2  
12.4  
11.9  
0
13.9  
13  
mV/dB  
mV/dB  
µV/dbK  
TCsens  
temperature coefficient  
sensitivity  
2  
LE  
linearity error  
see Fig.10  
0.5  
35  
1
dB  
dB  
mV  
αOS(red)  
Vio(cor)  
input offset reduction  
notes 3 and 7  
25  
5  
45  
+5  
input offset voltage  
correction range  
peak-to-peak value  
single-ended  
f3dB(l)  
f3dB(h)  
low 3 dB cut-off frequency  
0.5  
1.5  
1
2
2
MHz  
GHz  
high 3 dB cut-off frequency note 8  
2.5  
LOS CIRCUIT  
hysLOS  
LOS hysteresis  
input signal waveform  
2.0  
3.0  
4.0  
dB  
dependency  
ta  
td  
assert time  
note 3  
5
5
µS  
µS  
de-assert time  
note 3  
INPUT PINS LOSTH1 AND LOSTH2  
Vi  
Ri  
input voltage  
VEE  
150  
0
V
input resistance  
measured to VEE1A or VEE2A  
350  
600  
kΩ  
2000 Apr 10  
18  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
OUTPUT PINS LOS1 AND LOS2  
Vo  
output voltage  
VEE  
5
3.5  
V
Io(sink)  
Ro  
output sink current  
output resistance  
1
mA  
internal output series  
resistance  
3.5  
6.5  
kΩ  
OUTPUT PINS RSSI1 AND RSSI2  
Vo  
Io  
output voltage  
output current  
1  
1  
0
V
+1  
mA  
Band gap reference circuit  
OUTPUT PIN VREF  
Vref  
reference voltage  
1.45  
1.6  
1.8  
V
Cext  
allowed external  
capacitance  
10  
pF  
Io(sink)  
output sink current  
500  
µA  
Notes  
1. It is assumed that both CML inputs carry a complementary signal with the specified peak-to-peak value (true  
differential excitation).  
2. Minimum signal with limiting output.  
3. Guaranteed by design.  
Vo  
4. GV  
=
------  
Vi  
5. Based on 3dB cut-off frequency.  
6. Vi = 100 mV (p-p) single-ended and Vo = 200 mV (p-p) single-ended.  
G AC  
7. Input offset reduction =  
-----------  
GDC  
8. Sensitivity depends on the waveform and is therefore a function of 3 dB cut-off frequency see equation (1).  
9. Low limit can go as low as DC if input signal overrides input offset voltage correction range.  
APPLICATION INFORMATION  
All VEE pins (one at each corner and the exposed die pad)  
need to be connected to a common supply plane with an  
inductance as low as possible. This plane should be  
decoupled to ground. To avoid high frequency resonance,  
multiple bypass capacitors should not be mounted at the  
same location. To minimize low frequency switching noise  
in the vicinity of the TZA3019, the power supply line should  
be filtered once using a beaded capacitor circuit with a low  
cut-off frequency (see Figs 13 and 14).  
RF input and output connections  
Striplines, or microstrips, with an odd mode characteristic  
impedance of Zo = 50 must be used for the differential  
RF connections on the PCB. This applies to both the signal  
inputs and the signal outputs. The two lines in each pair  
should have the same length.  
Grounding and power supply decoupling  
The VEE connection on the PCB also needs to be a large  
copper area to improve heat transfer to the PCB and thus  
support IC cooling.  
The ground connection on the PCB needs to be a large  
copper filled area connected to a common ground plane  
with an inductance as low as possible.  
2000 Apr 10  
19  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
2
Boundary of 200 mm area  
0
1
2
3
4
5 mm  
To central  
decoupling  
To central  
V decoupling  
EE  
V
EE  
0603  
0603  
GND1A  
GND1B  
OUT1  
IN1  
IN1Q  
OUT1Q  
GND1B  
GND2B  
GND1A  
GND2A  
IN2  
OUT2  
IN2Q  
OUT2Q  
GND2B  
GND2A  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
To central  
decoupling  
To central  
V
V
decoupling  
EE  
EE  
0603  
0603  
0603  
HTQFP  
MGS567  
In order to enable heat flow out of the package, the following measures have to be taken:  
(1) Solder the 3 × 3 mm2 die pad to a plane with maximum size.  
(2) Add a plane with minimum 200 mm2 in an inner layer, surrounded by ground layers.  
(3) Use maximum amount of vias to connect two planes.  
(4) Use minimum of openings in heat transport area between hot plane and ground planes.  
Fig.13 PCB layout for negative supply voltage.  
2000 Apr 10  
20  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
2
Boundary of 200 mm area  
0
1
2
3
4
5 mm  
To central  
decoupling  
To central  
V
V
decoupling  
EE  
EE  
0603  
0603  
GND1A  
GND1B  
OUT1  
IN1  
IN1Q  
OUT1Q  
GND1B  
GND2B  
GND1A  
GND2A  
IN2  
OUT2  
IN2Q  
OUT2Q  
GND2B  
GND2A  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
To central  
decoupling  
To central  
V decoupling  
EE  
V
EE  
0603  
0603  
0603  
HTQFP  
MGS568  
In order to enable heat flow out of the package, the following measures have to be taken:  
(1) Solder the 3 × 3 mm2 die pad to a plane with maximum size.  
(2) Add a plane with minimum 200 mm2 in an inner layer, surrounded by ground layers.  
(3) Use maximum amount of vias to connect two planes.  
(4) Use minimum of openings in heat transport area between hot plane and ground planes.  
Fig.14 PCB layout for positive supply voltage.  
2000 Apr 10  
21  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
BONDING PAD LOCATIONS  
COORDINATES(1)  
COORDINATES(1)  
SYMBOL  
OUT2  
PAD  
x
y
SYMBOL  
PAD  
x
y
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+707  
+550  
+393  
+236  
+79  
396  
239  
81  
GND1A  
IN1  
1
928  
928  
928  
928  
928  
928  
928  
928  
928  
928  
707  
550  
393  
236  
79  
+710  
+553  
+396  
+239  
+81  
GND2B  
n.c.  
2
IN1Q  
3
n.c.  
+81  
GND1A  
n.c.  
4
GND1B  
OUT1Q  
OUT1  
GND1B  
VEE1B  
RSSI2  
LOS2  
RSSI1  
LOS1  
INV2  
+239  
+396  
+553  
+710  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
+928  
5
n.c.  
6
81  
GND2A  
IN2  
7
239  
396  
553  
710  
928  
928  
928  
928  
928  
928  
928  
928  
928  
928  
710  
553  
8
IN2Q  
9
GND2A  
VEE2A  
LOSTH1  
LOSTH2  
n.c.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
79  
INV1  
236  
−393  
−550  
707  
LEVEL1  
LEVEL2  
VREF  
n.c.  
S2  
+79  
S1  
+236  
+393  
+550  
+707  
+928  
+928  
VEE1A  
Note  
TEST  
VEE2B  
GND2B  
OUT2Q  
1. All x and y coordinates represent the position of the  
centre of the pad in µm with respect to the centre of the  
die (see Fig.15)  
2000 Apr 10  
22  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
40 39 38 37 36 35 34 33 32 31  
GND1A  
IN1  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GND1B  
OUT1  
OUT1Q  
GND1B  
n.c.  
IN1Q  
GND1A  
n.c.  
3
4
5
x
0
0
6
n.c.  
n.c.  
7
GND2A  
IN2  
GND2B  
OUT2  
OUT2Q  
GND2B  
y
8
TZA3019U  
9
IN2Q  
GND2A  
10  
11 12 13 14 15 16 17 18 19 20  
MGT030  
Fig.15 Bonding pad locations TZA3019U.  
2000 Apr 10  
23  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
PACKAGE OUTLINE  
HTQFP32: plastic, heatsink thin quad flat package; 32 leads; body 5 x 5 x 1.0 mm  
SOT547-2  
c
y
heathsink side  
X
D
h
24  
17  
A
Z
25  
E
16  
e
H
E
E
E
(A )  
3
h
A
2
A
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
9
32  
detail X  
1
8
w M  
Z
v
M
A
B
D
b
p
e
D
B
H
v M  
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
h
h
D
E
p
D
max.  
0.15 1.05  
0.05 0.95  
0.27 0.20 5.1  
0.17 0.09 4.9  
3.1  
2.7  
5.1  
4.9  
3.1  
2.7  
7.1  
6.9  
7.1  
6.9  
0.75  
0.45  
0.89 0.89  
0.61 0.61  
7°  
0°  
mm  
1.2  
0.25  
0.5  
1.0  
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
SOT547-2  
99-06-15  
2000 Apr 10  
24  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
HBCC32: plastic, heatsink bottom chip carrier; 32 terminals; body 5 x 5 x 0.65 mm  
SOT560-1  
D
x
B
b
w M  
1
w M  
ball A1  
index area  
b
b
3
E
w M  
b
w M  
2
detail X  
x
C
A
B
C
e
1
e
y
v
A
E
e
4
e
2
1
1
32  
A
X
D
1
1
A
2
e
3
A
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
A
A
b
E
e
e
1
w
b
b
b
D
D
E
e
e
3
e
4
v
x
y
UNIT  
1
2
1
1
2
3
1
2
max.  
0.10 0.70 0.35 0.50 0.50 0.50 5.1  
0.05 0.60 0.20 0.30 0.35 0.35 4.9  
3.2 5.1  
3.0 4.9  
3.2  
3.0  
mm 0.80  
0.15 0.15 0.05  
0.5  
4.2  
4.2  
4.15 4.15  
0.2  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
EIAJ  
99-09-10  
00-02-01  
SOT560-1  
MO-217  
2000 Apr 10  
25  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
2000 Apr 10  
26  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2000 Apr 10  
27  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS  
STATUS  
DEFINITIONS (1)  
Objective specification  
Development This data sheet contains the design target or goal specifications for  
product development. Specification may change in any manner without  
notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to  
make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors  
reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Note  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2000 Apr 10  
28  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
NOTES  
2000 Apr 10  
29  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
NOTES  
2000 Apr 10  
30  
Philips Semiconductors  
Preliminary specification  
2.5 Gbits/s dual postamplifier with level  
detectors and 2 × 2 switch  
TZA3019  
NOTES  
2000 Apr 10  
31  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403510/50/01/pp32  
Date of release: 2000 Apr 10  
Document order number: 9397 750 06019  
厂商 型号 描述 页数 下载

RHOMBUS-IND

TZA1-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

NXP

TZA1000 QIC读写放大器[ QIC read-write amplifier ] 24 页

NXP

TZA1000T/N3 [ IC 1 CHANNEL READ WRITE AMPLIFIER CIRCUIT, PDSO24, 7.50 MM, PLASTIC, SOT-137-1, SOP-24, Drive Electronics ] 26 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.244444s