找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

CYRF89235-40LTXC

型号:

CYRF89235-40LTXC

描述:

PROCA ?? ¢ USB[ PRoC™ USB ]

品牌:

CYPRESS[ CYPRESS ]

页数:

45 页

PDF大小:

645 K

CYRF89235  
PRoC™ USB  
PRoC™ USB  
Crystal-less oscillator with support for an external crystal or  
PRoC-USB Features  
Single Device, Two Functions  
8-bit, flash based USB peripheral MCU function and 2.4-GHz  
radio transceiver function in a single device  
resonator  
Internal ±5.0% 6, 12, or 24 MHz main oscillator (IMO):  
• 0.25% accuracy with oscillator lock to USB data, no  
external components required  
RF Attributes  
Fully integrated 2.4-GHz radio on a chip  
1-Mbps over-the-air data rate  
• Internal low-speed oscillator (ILO) at 32 kHz for watchdog  
and sleep. The frequency range is 19 to 50 kHz with a  
32-kHz typical value  
Programmable pin configurations.  
Transmit power typical: 0 dBm  
Receive sensitivity typical: –87 dBm  
1 µA typical current consumption in sleep state  
Closed-loop frequency synthesis  
Supports frequency-hopping spread spectrum  
Up to 13 general-purpose I/Os (GPIOs)  
25 mA sink current on all GPIO  
• 60 mA total sink current on Even port pins and 60 mA total  
sink current on Odd port pins  
On-chip packet framer with 64-byte first in first out (FIFO)  
• 120 mA total sink current on all GPIOs  
Pull-up, High Z, open drain, CMOS drive modes on all GPIO  
CMOS drive mode A –5 mA source current on ports 0 and 1  
and 1 mA on port 2  
data buffer  
Built-in auto-retry-acknowledge protocol simplifies usage  
Built-in cyclic redundancy check (CRC), forward error  
correction (FEC), data whitening  
Supports DC ~ 12-MHz SPI bus interface  
Additional outputs for interrupt request (IRQ) generation  
Digital readout of received signal strength indication (RSSI)  
• 20 mA total source current on all GPIOs  
Low dropout voltage regulator for Port 1 pins:  
• Programmable to output 3.0, 2.5, or 1.8 V  
Selectable, regulated digital I/O on Port 1  
Configurable input threshold for Port 1  
Hot-swappable Capability on Port 1  
Full-Speed USB (12 Mbps)  
Eight unidirectional endpoints  
One bidirectional control endpoint  
USB 2.0-compliant  
MCU Attributes  
Powerful Harvard-architecture processor  
M8C processor speeds running up to 24 MHz  
Low power at high processing speeds  
Interrupt controller  
1.9 V to 3.6V operating voltage without USB  
Operating voltage with USB enabled:  
• 3.15 V to 3.45 V when supply voltage is around 3.3 V  
Commercial temperature range: 0 °C to +70 °C  
Flexible on-chip memory  
Dedicated 512 bytes buffer  
No external crystal required  
Additional system resources  
Configurable communication speeds  
I2C slave:  
32 KB flash program storage:  
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
• 50,000 erase and write cycles  
• Flexible protection modes  
• Implementation requires no clock stretching  
• Implementation during sleep modes with less than 100 A  
• Hardware address detection  
Up to 2048 bytes SRAM data storage  
In-system serial programming (ISSP)  
Complete development tools  
SPI master and SPI slave:  
• Configurable between 46.9 kHz and 12 MHz  
Three 16-bit timers  
10-bit ADC used to monitor battery voltage or other signals  
with external components  
Watchdog and sleep timers  
Integrated supervisory circuit  
Free development tool PSoC Designer™  
Full-featured, in-circuit emulator and programmer  
Full-speed emulation  
Complex breakpoint structure  
128-KB trace memory  
Precision, programmable clocking  
Cypress Semiconductor Corporation  
Document Number: 001-77748 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 15, 2013  
CYRF89235  
PRoC-USB Logical Block Diagram  
Port 2 Port 1 Port 0  
Prog. LDO  
enCoRe V  
CORE  
System Bus  
SRAM  
2048 Bytes  
32K Flash  
(M8C)  
SROM  
CPU Core  
Sleep and  
Watchdog  
Interrupt  
Controller  
6/12/24 MHz Internal Main Oscillator  
V
IN  
VOUT  
VDD_IO  
WIRELESSUSB NL  
SYSTEM  
GFSK  
LDO Linear  
Regulator  
Modulator  
PKT  
PA  
FIFO  
ANT  
VCO  
Synthesizer  
ANTb  
RST_n  
Pwr/ Reset  
BRCLK  
Receive  
GFSK  
Demodulator  
X
Image  
Xtal Osc  
LNA+BPF  
Rej. Mxr.  
XTALi  
XTALo  
POR and LVD  
System Resets  
Full  
Speed  
USB  
I2C Slave/SPI  
Master-Slave  
3 16-Bit  
Timers  
ADC  
SYSTEM RESOURCES  
Document Number: 001-77748 Rev. *F  
Page 2 of 45  
CYRF89235  
Contents  
Functional Overview ........................................................4  
The enCoRe V Core ....................................................4  
Full-Speed USB ...........................................................4  
10-bit ADC ...................................................................5  
SPI ...............................................................................5  
I2C Slave .....................................................................6  
WirelessUSB-NL Subsystem .......................................7  
Transmit Power Control ...............................................7  
Power-on and Register Initialization Sequence ...........7  
Additional System Resources .....................................8  
Getting Started ..................................................................8  
Application Notes ........................................................8  
Development Kits ........................................................8  
Training .......................................................................8  
CYPros Consultants ....................................................8  
Solutions Library ..........................................................8  
Technical Support .......................................................8  
Development Tools ..........................................................9  
PSoC Designer Software Subsystems ........................9  
Designing with PSoC Designer .....................................10  
Select User Modules .................................................10  
Configure User Modules ............................................10  
Organize and Connect ..............................................10  
Generate, Verify, and Debug .....................................10  
Pin Configuration ...........................................................11  
Pin Definitions ................................................................12  
Register Reference .........................................................13  
Register Conventions ................................................13  
Register Mapping Tables ..........................................13  
Electrical Specifications ................................................16  
Absolute Maximum Ratings .......................................16  
Operating Temperature .............................................16  
DC Chip-Level Specifications ....................................17  
DC USB Interface Specifications ...............................18  
ADC Electrical Specifications ....................................19  
DC Analog Mux Bus Specifications ...........................20  
DC Low Power Comparator Specifications ...............20  
Comparator User Module Electrical Specifications ...20  
DC GPIO Specifications ............................................21  
DC POR and LVD Specifications ..............................23  
DC Programming Specifications ...............................24  
DC I2C Specifications ...............................................25  
DC Reference Buffer Specifications ..........................25  
DC IDAC Specifications ............................................25  
AC Chip Level Specifications ....................................26  
AC USB Data Timings Specifications ........................27  
AC USB Driver Specifications ...................................27  
AC General Purpose I/O Specifications ....................28  
AC Comparator Specifications ..................................29  
AC External Clock Specifications ..............................29  
AC Programming Specifications ................................30  
AC I2C Specifications ................................................31  
SPI Master AC Specifications ...................................32  
SPI Slave AC Specifications .....................................33  
Electrical Specifications - RF Section ..........................35  
Initialization Timing Requirements ............................38  
SPI Timing Requirements .........................................39  
Packaging Information ...................................................40  
Packaging Dimensions ..............................................40  
Thermal Impedances .................................................41  
Capacitance on Crystal Pins .....................................41  
Solder Reflow Peak Temperature .............................41  
Ordering Information ......................................................42  
Ordering Code Definitions .........................................42  
Acronyms ........................................................................43  
Document Conventions .................................................43  
Units of Measure .......................................................43  
Numeric Naming ........................................................43  
Document History Page .................................................44  
Sales, Solutions, and Legal Information ......................45  
Worldwide Sales and Design Support .......................45  
Products ....................................................................45  
PSoC Solutions .........................................................45  
Document Number: 001-77748 Rev. *F  
Page 3 of 45  
CYRF89235  
Figure 1. USB Transceiver Regulator  
Functional Overview  
The enCoRe V family of devices are designed to replace multiple  
traditional full-speed USB microcontroller system components  
with one, low cost single-chip programmable component.  
Communication peripherals (I2C/SPI), a fast CPU, flash program  
memory, SRAM data memory, and configurable I/O are included  
in a range of convenient pinouts.  
PS2 Pull Up  
VOLTAGE  
REGULATOR  
5V 3.3V  
1.5K  
5K  
The architecture for this device family, as illustrated in the  
PRoC-USB Logical Block Diagram on page 2, consists of three  
main areas: the CPU core, the WirelessUSB™ NL subsystem  
and the system resources.  
TEN  
TD  
DP  
DM  
TRANSMITTER  
RECEIVERS  
PDN  
This product is an enhanced version of Cypress’s successful full  
speed-USB peripheral controllers. Enhancements include faster  
CPU at lower voltage operation, lower current consumption,  
twice the RAM and flash, hot-swappable I/Os, I2C hardware  
address recognition, new very low current sleep mode, and new  
package options.  
RD  
DPO  
RSE0  
The enCoRe V Core  
DMO  
The enCoRe V Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO and  
ILO. The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a four-MIPS, 8-bit Harvard  
architecture microprocessor.  
At the enCoRe V system level, the full-speed USB system  
resource interfaces to the rest of the enCoRe V by way of the  
M8C's register access instructions and to the outside world by  
way of the two USB pins. The SIE supports nine endpoints  
including a bidirectional control endpoint (endpoint 0) and eight  
System resources provide additional capability, such as a  
configurable I2C slave and SPI master-slave communication  
interface and various system resets supported by the M8C.  
unidirectional data endpoints (endpoints  
1 to 8). The  
unidirectional data endpoints are individually configurable as  
either IN or OUT.  
Full-Speed USB  
The USB serial interface engine (SIE) allows the enCoRe V  
device to communicate with the USB host at full-speed data rates  
(12 Mb/s). The SIE simplifies the interface to USB traffic by  
automatically handling the following USB processing tasks  
without firmware intervention:  
The enCoRe V USB system resource adheres to the USB 2.0  
Specification for full-speed devices operating at 12 Mb/second  
with one upstream port and one USB address. enCoRe V USB  
consists of these components:  
Serial interface engine (SIE) block.  
PSoC memory arbiter (PMA) block.  
512 bytes of dedicated SRAM.  
Translates the encoded received data and formats the data to  
be transmitted on the bus.  
Generates and checks cyclical redundancy checks (CRCs).  
Incoming packets failing checksum verification are ignored.  
A full-speed USB Transceiver with internal regulator and two  
dedicated USB pins.  
Checks addresses. Ignores all transactions not addressed to  
the device.  
Sends appropriate ACK/NAK/Stall handshakes.  
Identifies token type (SETUP, IN, OUT) and sets the  
appropriate token bit once a valid token in received.  
Identifies Start-of-Frame (SOF) and saves the frame count.  
Sends data to or retrieves data from the USB SRAM, by way  
of the PSoC Memory Arbiter (PMA).  
Document Number: 001-77748 Rev. *F  
Page 4 of 45  
CYRF89235  
Firmware is required to handle various parts of the USB  
interface. The SIE issues interrupts after key USB events to  
direct firmware to appropriate tasks:  
input mux or the temperature sensor with an input voltage range  
of 0 V to VREFADC  
.
In the ADC only configuration (the ADC MUX selects the Analog  
mux bus, not the default temperature sensor connection), an  
external voltage can be connected to the input of the modulator  
for voltage conversion. The ADC is run for a number of cycles  
set by the timer, depending upon the desired resolution of the  
ADC. A counter counts the number of trips by the comparator,  
which is proportional to the input voltage. The Temp Sensor block  
clock speed is 36 MHz and is divided down to 1 to 12 MHz for  
ADC operation.  
Fill and empty the USB data buffers in USB SRAM.  
Enable PMA channels appropriately.  
Coordinate enumeration by decoding USB device requests.  
Suspend and resume coordination.  
Verify and select data toggle values.  
10-bit ADC  
SPI  
The ADC on enCoRe V device is an independent block with a  
state machine interface to control accesses to the block. The  
ADC is housed together with the temperature sensor core and  
can be connected to this or the Analog mux bus. As a default  
operation, the ADC is connected to the temperature sensor  
diodes to give digital values of the temperature.  
The serial peripheral interconnect (SPI) 3-wire protocol uses  
both edges of the clock to enable synchronous communication  
without the need for stringent setup and hold requirements.  
Figure 3. Basic SPI Configuration  
SPI Master  
Data is output by  
both the Master  
and Slave on  
one edge of the  
clock.  
SPI Slave  
Figure 2. ADC System Performance Block Diagram  
VIN  
Data is registered at the  
input of both devices on the  
opposite edge of the clock.  
SCLK  
MOSI  
MISO  
TEMP SENSOR/ ADC  
A device can be a master or slave. A master outputs clock and  
data to the slave device and inputs slave data. A slave device  
inputs clock and data from the master device and outputs data  
for input to the master. Together, the master and slave are  
essentially a circular Shift register, where the master generates  
the clocking and initiates data transfers.  
TEMP  
DIODES  
ADC  
A basic data transfer occurs when the master sends eight bits of  
data, along with eight clocks. In any transfer, both master and  
slave transmit and receive simultaneously. If the master only  
sends data, the received data from the slave is ignored. If the  
master wishes to receive data from the slave, the master must  
send dummy bytes to generate the clocking for the slave to send  
data back.  
SYSTEM BUS  
INTERFACE BLOCK  
COMMAND/ STATUS  
Figure 4. SPI Block Diagram  
SPI Block  
MOSI,  
MISO  
MOSI,  
MISO  
DATA_IN DATA_OUT  
SCLK  
SCLK  
CLK_IN  
SYSCLK  
SS_  
CLK_OUT  
INT  
Interface to the M8 C  
( Processor) Core  
Registers  
The ADC User Module contains an integrator block and one  
comparator with positive and negative input set by the MUXes.  
The input to the integrator stage comes from the analog global  
CONFIGURATION[7:0] CONTROL[7:0]  
TRANSMIT[7:0] RECEIVE[7:0]  
Document Number: 001-77748 Rev. *F  
Page 5 of 45  
CYRF89235  
SPI configuration register (SPI_CFG) sets master/slave  
functionality, clock speed, and interrupt select. SPI control  
register (SPI_CR) provides four control bits and four status bits  
for device interfacing and synchronization.  
Interrupt or polling CPU interface.  
Support for clock rates of up to 400 kHz.  
7- or 10-bit addressing (through firmware support).  
The SPIM hardware has no support for driving the Slave Select  
(SS_) signal. The behavior and use of this signal is dependent  
on the application and enCoRe V device and, if required, must  
be implemented in firmware.  
SMBus operation (through firmware support).  
Enhanced features of the I2C Slave Enhanced Module include:  
Support for 7-bit hardware address compare.  
Flexible data buffering schemes.  
There is an additional data input in the SPIS, Slave Select (SS_),  
which is an active low signal. SS_ must be asserted to enable  
the SPIS to receive and transmit. SS_ has two high level  
functions:  
A "no bus stalling" operating mode.  
A low power bus monitoring mode.  
To allow for the selection of a given slave in a multi-slave  
environment.  
The I2C block controls the data (SDA) and the clock (SCL) to the  
external I2C interface through direct connections to two  
dedicated GPIO pins. When I2C is enabled, these GPIO pins are  
not available for general purpose use. The enCoRe V CPU  
firmware interacts with the block through I/O register reads and  
writes, and firmware synchronization is implemented through  
polling and/or interrupts.  
ToprovideadditionalclockingforTXdataqueuinginSPImodes  
0 and 1.  
2
I C Slave  
The I2C slave enhanced communications block is  
a
serial-to-parallel processor, designed to interface the enCoRe V  
device to a two-wire I2C serial communications bus. To eliminate  
the need for excessive CPU intervention and overhead, the block  
provides I2C-specific support for status detection and generation  
of framing bits. By default, the I2C slave enhanced module is  
firmware compatible with the previous generation of I2C slave  
functionality. However, this module provides new features that  
are configurable to implement significant flexibility for both  
internal and external interfacing. The basic I2C features include:  
In the default operating mode, which is firmware compatible with  
previous versions of I2C slave modules, the I2C bus is stalled  
upon every received address or byte, and the CPU is required to  
read the data or supply data as required before the I2C bus  
continues. However, this I2C Slave Enhanced module provides  
new data buffering capability as an enhanced feature. In the  
EZI2C buffering mode, the I2C slave interface appears as a  
32-byte RAM buffer to the external I2C master. Using a simple  
predefined protocol, the master controls the read and write  
pointers into the RAM. When this method is enabled, the slave  
never stalls the bus. In this protocol, the data available in the  
RAM (this is managed by the CPU) is valid.  
Slave, transmitter, and receiver operation.  
Byte processing for low CPU overhead.  
Figure 5. I2C Block Diagram  
I2C Plus  
Slave  
I2C Core  
Buffer Module  
CPU Port  
SDA_IN  
SCL_IN  
I2C Basic  
Configuration  
I2C_BUF  
To/From  
I2C_CFG  
I2C_SCR  
I2C_DR  
GPIO  
Pins  
SDA_OUT  
SCL_OUT  
I2C_EN  
32 Byte RAM  
HW Addr Cmp  
Buffer Ctl  
I2C_ADDR  
I2C_BP  
SYSCLK  
I2C_CP  
MCU_BP  
MCU_CP  
Plus Features  
I2C_XCFG  
STANDBY  
I2C_XSTAT  
Document Number: 001-77748 Rev. *F  
Page 6 of 45  
CYRF89235  
Figure 6. WirelessUSB-NL logic Block Diagram  
WirelessUSB-NL Subsystem  
VDD1...VDD7  
WirelessUSB-NL, optimized to operate in the 2.4-GHz ISM band,  
is Cypress's third generation of 2.4-GHz low-power RF  
V
IN  
VOUT  
VDD_IO  
technology. WirelessUSB-NL implements  
a
Gaussian  
LDO Linear  
Regulator  
GFSK  
Modulator  
frequency-shift keying (GFSK) radio using a differentiated  
single-mixer, closed-loop modulation design that optimizes  
power efficiency and interference immunity. Closed-loop  
modulation effectively eliminates the problem of frequency drift,  
enabling WirelessUSB-NL to transmit up to 255-byte payloads  
without repeatedly having to pay power penalties for re-locking  
the phase-locked loop (PLL) as in open-loop designs  
PKT  
PA  
SPI_SS  
CLK  
ANT  
VCO  
Synthesizer  
ANTb  
MISO  
MOSI  
Among the advantages of WirelessUSB-NL are its fast lock times  
and channel switching, along with the ability to transmit larger  
payloads. Use of longer payload packets, compared to multiple  
short payload packets, can reduce overhead, improve overall  
power efficiency, and help alleviate spectrum crowding.  
RST_n  
Pwr/ Reset  
BRCLK  
GFSK  
X
Image  
Xtal Osc  
Demodulator  
LNA + BPF  
Rej. Mxr.  
XTALi  
XTALo  
GND GND  
Combined with Cypress's enCoRe V based full-speed USB  
controllers, WirelessUSB-NL also provides the lowest bill of  
materials (BOM) cost solution for sophisticated PC peripheral  
applications such as wireless keyboards and mice, as well as  
best-in-class wireless performance in other demanding  
applications, such as toys, remote controls, fitness, automation,  
presenter tools, and gaming.  
Transmit Power Control  
The following table lists recommended settings for register 9 for  
short-range applications, where reduced transmit RF power is a  
desirable trade off for lower current.  
With PRoC-USB, the WirelessUSB-NL transceiver can add  
wireless capability to a wide variety of full speed USB  
applications.  
Table 1. Transmit Power Control  
Typical  
Transmit  
Power  
Value of Register 9  
Power Setting  
Description  
The WirelessUSB-NL is a fully-integrated CMOS RF transceiver,  
GFSK data modem, and packet framer, optimized for use in the  
2.4-GHz ISM band. It contains transmit, receive, RF synthesizer,  
and digital modem functions, with few external components. The  
transmitter supports digital power control. The receiver uses  
extensive digital processing for excellent overall performance,  
even in the presence of interference and transmitter  
impairments.  
Silicon ID  
0x1002  
Silicon ID  
0x2002  
(dBm)  
PA0 - Highest power  
PA2 - High power  
PA4 - High power  
PA8 - Low power  
PA12 - Lower power  
+1  
0
0x1820  
0x1920  
0x1A20  
0x1C20  
0x1E20  
0x7820  
0x7920  
0x7A20  
0x7C20  
0x7E20  
–3  
–7.5  
–11.2  
The product transmits GFSK data at approximately 0-dBm  
output power. Sigma-Delta PLL delivers high-quality DC-coupled  
transmit data path.  
Note: Silicon ID can be read from Register 31.  
The low-IF receiver architecture produces good selectivity and  
image rejection, with typical sensitivity of –87 dBm or better on  
most channels. Sensitivity on channels that are integer multiples  
of the crystal reference oscillator frequency (12 MHz) may show  
approximately 5 dB degradation. Digital RSSI values are  
available to monitor channel quality.  
Power-on and Register Initialization Sequence  
For proper initialization at power up, VIN must ramp up at the  
minimum overall ramp rate no slower than shown by TVIN  
specification in the following figure. During this time, the RST_n  
line must track the VIN voltage ramp-up profile to within  
approximately 0.2 V. Since most MCU GPIO pins automatically  
default to a high-Z condition at power up, it only requires a pull-up  
resistor. When power is stable and the MCU POR releases, and  
MCU begins to execute instructions, RST_n must then be pulsed  
low as shown in Figure 18 on page 39, followed by writing  
Reg 27 = 0x4200. During or after this SPI transaction, the State  
Machine status can be read to confirm FRAMER_ST = 1,  
indicating a proper initialization.  
On-chip transmit and receive FIFO registers are available to  
buffer the data transfer with MCU. Over-the-air data rate is  
always 1 Mbps even when connected to a slow, low-cost MCU.  
Built-in CRC, FEC, data whitening, and automatic  
retry/acknowledge are all available to simplify and optimize  
performance for individual applications.  
For more details on the radio’s implementation details and timing  
requriements, please go through the WirelessUSB-NL datasheet  
in www.cypress.com.  
Document Number: 001-77748 Rev. *F  
Page 7 of 45  
CYRF89235  
Additional System Resources  
Development Kits  
System resources, some of which have been previously listed,  
provide additional capability useful to complete systems.  
Additional resources include low-voltage detection and power-on  
reset. The following statements describe the merits of each  
system resource.  
PSoC development kits are available online from Cypress at  
http://www.cypress.com and through a growing number of  
regional and global distributors, including Arrow, Avnet, Digi-Key,  
Farnell, Future Electronics, and Newark.  
Training  
Low-voltage detection (LVD) interrupts can signal the appli-  
cation of falling voltage levels, while the advanced power-on  
reset (POR) circuit eliminates the need for a system supervisor.  
Free PSoC technical training (on demand, webinars, and  
workshops) is available online at http://www.cypress.com. The  
training covers a wide variety of topics and skill levels to assist  
you in your designs.  
The 5 V maximum input, 1.8, 2.5, or 3 V selectable output, LDO  
regulator provides regulation for I/Os. A register controlled  
bypass mode enables the user to disable the LDO.  
CYPros Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant, go to http://www.cypress.com and look for  
CYPros Consultants.  
Standard Cypress PSoC IDE tools are available for debugging  
the enCoRe V family of parts.  
Getting Started  
Solutions Library  
The quickest path to understanding the PRoC-USB silicon is by  
reading this data sheet and using the PSoC® Designer™  
integrated development environment (IDE). This datasheet is an  
overview of the PSoC integrated circuit and presents specific pin,  
register, and electrical specifications. For in-depth information,  
along with detailed programming information, see the enCoRe™  
Visit our growing library of solution-focused designs at  
http://www.cypress.com. Here you can find various application  
designs that include firmware and hardware design files that  
enable you to complete your designs quickly.  
V
CY7C643xx, enCoRe™ V LV CY7C604xx Technical  
Technical Support  
Reference Manual (TRM) for this PSoC device.  
For assistance with technical issues, search KnowledgeBase  
articles and forums at http://www.cypress.com. If you cannot find  
an answer to your question, call technical support at  
1-800-541-4736.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device data sheets on the web  
at http://www.cypress.com.  
Application Notes  
Application notes are an excellent introduction to the wide variety  
of possible PSoC designs and are available at  
http://www.cypress.com.  
Document Number: 001-77748 Rev. *F  
Page 8 of 45  
CYRF89235  
of debugging tools. You can develop your design in C, assembly,  
or a combination of the two.  
Development Tools  
PSoC Designer™ is the revolutionary integrated design  
environment (IDE) that you can use to customize PSoC to meet  
your specific application requirements. PSoC Designer software  
accelerates system design and time to market. Develop your  
applications using a library of precharacterized analog and digital  
peripherals (called user modules) in a drag-and-drop design  
environment. Then, customize your design by leveraging the  
dynamically generated application programming interface (API)  
libraries of code. Finally, debug and test your designs with the  
integrated debug environment, including in-circuit emulation and  
standard software debug features. PSoC Designer includes:  
Assemblers. The assemblers allow you to merge assembly  
code seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all of the features of C, tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Application editor graphical user interface (GUI) for device and  
user module configuration and dynamic reconfiguration  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow you to read and program and  
read and write data memory, and read and write I/O registers.  
You can read and write CPU registers, set and clear breakpoints,  
and provide program run, halt, and step control. The debugger  
also allows you to create a trace buffer of registers and memory  
locations of interest.  
Extensive user module catalog  
Integrated source-code editor (C and assembly)  
Free C compiler with no size restrictions or time limits  
Built-in debugger  
In-circuit emulation  
Built-in support for communication interfaces:  
Hardware and software I2C slaves and masters  
Full-speed USB 2.0  
Online Help System  
The online help system displays online, context-sensitive help.  
Designed for procedural and quick reference, each functional  
subsystem has its own context-sensitive help. This system also  
provides tutorials and links to FAQs and an Online Support  
Forum to aid the designer.  
SPI master and slave, and wireless  
PSoC Designer supports the entire library of PSoC 1 devices and  
runs on Windows XP, Windows Vista, and Windows 7.  
PSoC Designer Software Subsystems  
In-Circuit Emulator  
Design Entry  
A
low-cost, high-functionality in-circuit emulator (ICE) is  
In the chip-level view, choose a base device to work with. Then  
select different onboard analog and digital components that use  
the PSoC blocks, which are called user modules. Examples of  
user modules are analog-to-digital converters (ADCs),  
digital-to-analog converters (DACs), amplifiers, and filters.  
Configure the user modules for your chosen application and  
connect them to each other and to the proper pins. Then  
generate your project. This prepopulates your project with APIs  
and libraries that you can use to program your application.  
available for development support. This hardware can program  
single devices.  
The emulator consists of a base unit that connects to the PC  
using a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full-speed  
(24-MHz) operation.  
The tool also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration makes it possible to change configurations at run  
time. In essence, this allows you to use more than 100 percent  
of PSoC's resources for a given application.  
Device Programmers  
Firmware needs to be downloaded to PRoC USB device only at  
3.3 V using Miniprog3 Programmer. This Programmer kit can be  
purchased from Cypress Store using part# ‘CY8CKIT-002 -  
MiniProg3’. It is a small, compact programmer which connects  
PC via a USB 2.0 cable (provided along with CY8cKIT-002)  
Code Generation Tools  
Note: MiniProg1 Programmer should not be used as it does not  
support programming at 3.3 V.  
The code generation tools work seamlessly within the  
PSoC Designer interface and have been tested with a full range  
Document Number: 001-77748 Rev. *F  
Page 9 of 45  
CYRF89235  
module and provide performance specifications. Each datasheet  
describes the use of each user module parameter, and other  
information that you may need to successfully implement your  
design.  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed-function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and lowering inventory costs. These  
configurable resources, called PSoC blocks, have the ability to  
implement a wide variety of user-selectable functions. The PSoC  
development process is:  
Organize and Connect  
Build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. Perform the selection,  
configuration, and routing so that you have complete control over  
all on-chip resources.  
1. Select user modules.  
Generate, Verify, and Debug  
2. Configure user modules.  
3. Organize and connect.  
4. Generate, verify, and debug.  
When you are ready to test the hardware configuration or move  
on to developing code for the project, perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides APIs with high-level functions to control  
and respond to hardware events at run time, and interrupt  
service routines that you can adapt as needed.  
Select User Modules  
PSoC Designer provides a library of prebuilt, pretested hardware  
peripheral components called user modules. User modules  
make selecting and implementing peripheral devices, both  
analog and digital, simple.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
Configure User Modules  
Each user module that you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a  
pulse-width modulator (PWM) user module configures one or  
more digital PSoC blocks, one for each eight bits of resolution.  
Using these parameters, you can establish the pulse width and  
duty cycle. Configure the parameters and properties to  
correspond to your chosen application. Enter values directly or  
by selecting values from drop-down menus. All of the user  
modules are documented in datasheets that may be viewed  
directly in PSoC Designer or on the Cypress website. These user  
module datasheets explain the internal operation of the user  
The last step in the development process takes place inside  
PSoC Designer's Debugger (accessed by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full speed. PSoC Designer debugging  
capabilities rival those of systems costing many times more. In  
addition to traditional single-step, run-to-breakpoint, and  
watch-variable features, the debug interface provides a large  
trace buffer. It allows you to define complex breakpoint events  
that include monitoring address and data bus values, memory  
locations, and external signals.  
Document Number: 001-77748 Rev. *F  
Page 10 of 45  
CYRF89235  
Pin Configuration  
The PRoC-USB device is available in a 40-pin QFN package, which is illustrated in the subsequent tables.  
Figure 7. 40-pin QFN pinout  
Document Number: 001-77748 Rev. *F  
Page 11 of 45  
CYRF89235  
Pin Definitions  
Pin No  
Pin name  
P1[3]/SCLK  
P1[1]/MOSI [1, 2] Digital I/O, Analog I/O, TC CLK, I2C SCL, SPI MOSI  
Pin Description  
1
2
3
Digital I/O, Analog I/O, SPI CLK  
GND  
VDD  
Ground connection  
4, 20, 25, 33,  
34, 37  
Core power supply voltage. Connect all VDD pins to VOUT pin.  
5
6
D+  
D-  
USB PHY, Digital I/O  
USB PHY, Digital I/O  
7
FIFO  
FIFO status indicator bit  
8, 21, 24  
9
VIN  
Unregulated input voltage to the on-chip low drop out (LDO) voltage regulator  
Analog I/O, Digital I/O, TC DATA, I2C SDA  
VDD for the digital interface  
P1[0] [1, 2]  
VDD_IO  
P1[2]  
10  
11  
Analog I/O, Digital I/O  
12  
P1[4]  
Analog I/O, Digital I/O, EXT CLK  
13  
XRES  
Active high external reset with internal pull-down  
Enable input for SPI, active low. Also used to bring device out of sleep state.  
Transmit/receive packet status indicator bit  
Clock input for SPI interface  
14  
SPI_SS  
PKT  
15  
16  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
RST_n  
17  
Data input for the SPI bus  
18  
Data output (tristate when not active)  
19  
RST_n Low: Chip shutdown to conserve power. Register values lost  
RST_n High: Turn on chip, registers restored to default value  
22  
23  
26  
27  
28  
29  
30  
31  
32  
35  
36  
38  
39  
40  
VOUT  
P0[4]  
1.8 V output from on-chip LDO. Connect to all VDD pins, do not connect to external loads.  
Analog I/O, Digital I/O, VREF  
XTALO  
XTALI  
P0[7]  
Output of the crystal oscillator gain block  
Input to the crystal oscillator gain block  
Analog I/O, Digital I/O,SPI CLK  
P0[3]  
Analog I/O, Digital I/O, Integrating input  
P0[1]  
Analog I/O, Digital I/O, Integrating input  
P2[5]  
Analog I/O, Digital I/O, XTAL Out  
P2[3]  
Analog I/O, Digital I/O, XTAL In  
ANTb  
Differential RF input/output. Each of these pins must be DC grounded, 20 kor less  
Differential RF input/output. Each of these pins must be DC grounded, 20 kor less  
Digital I/O, Analog I/O, I2C SCL, SPI SS  
ANT  
P1[7]/SS_N  
P1[5]/MISO  
VDD  
Digital I/O, Analog I/O, I2C SDA, SPI MISO  
Core power supply voltage. Connect all VDD pins to VOUT pin.  
Notes  
2
1. During power up or reset event, device P1[0] and P1[1] may disturb the I C bus. Use alternate pins if issues are encountered.  
2. These are the in-system serial programming (ISSP) pins that are not High Z at power-on reset (POR).  
Document Number: 001-77748 Rev. *F  
Page 12 of 45  
CYRF89235  
Register Reference  
The section discusses the registers of the enCoRe V device. It lists all the registers in mapping tables, in address order.  
Register Conventions  
Register Mapping Tables  
The register conventions specific to this section are listed in the  
following table.  
The enCoRe V device has a total register address space of 512  
bytes. The register space is also referred to as I/O space and is  
broken into two parts: Bank 0 (user space) and Bank 1  
(configuration space). The XIO bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XIO bit  
is set, the user is said to be in the “extended” address space or  
the “configuration” registers.  
Table 2. Register Conventions  
Convention  
Description  
Read register or bits  
R
W
L
Write register or bits  
Logical register or bits  
Clearable register or bits  
Access is bit specific  
C
#
Document Number: 001-77748 Rev. *F  
Page 13 of 45  
CYRF89235  
Table 3. Register Map Bank 0 Table: User Space  
Name  
PRT0DR  
PRT0IE  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
EP1_CNT0  
EP1_CNT1  
EP2_CNT0  
EP2_CNT1  
EP3_CNT0  
EP3_CNT1  
EP4_CNT0  
EP4_CNT1  
EP5_CNT0  
EP5_CNT1  
EP6_CNT0  
EP6_CNT1  
EP7_CNT0  
EP7_CNT1  
EP8_CNT0  
EP8_CNT1  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
#
RW  
#
RW  
#
RW  
#
RW  
#
RW  
#
RW  
#
RW  
#
RW  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
PRT1DR  
PRT1IE  
RW  
RW  
PRT2DR  
PRT2IE  
RW  
RW  
I2C_XCFG  
I2C_XSTAT  
I2C_ADDR  
I2C_BP  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
R
RW  
R
R
RW  
R
RW  
RW  
RW  
PRT3DR  
PRT3IE  
RW  
RW  
I2C_CP  
CPU_BP  
CPU_CP  
I2C_BUF  
CUR_PP  
STK_PP  
PRT4DR  
PRT4IE  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
IDX_PP  
RW  
RW  
RW  
RW  
#
MVR_PP  
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
PMA0_DR  
PMA1_DR  
PMA2_DR  
PMA3_DR  
PMA4_DR  
PMA5_DR  
PMA6_DR  
PMA7_DR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
INT_CLR0  
INT_CLR1  
INT_CLR2  
RW  
RW  
RW  
INT_MSK2  
INT_MSK1  
INT_MSK0  
INT_SW_EN  
INT_VC  
RW  
RW  
RW  
RW  
RC  
W
RES_WDT  
PMA8_DR  
PMA9_DR  
PMA10_DR  
PMA11_DR  
PMA12_DR  
PMA13_DR  
PMA14_DR  
PMA15_DR  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SPI_TXR  
SPI_RXR  
SPI_CR  
W
R
#
PT0_CFG  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
USB_SOF0  
USB_SOF1  
USB_CR0  
USBIO_CR0  
USBIO_CR1  
EP0_CR  
EP0_CNT0  
EP0_DR0  
EP0_DR1  
EP0_DR2  
EP0_DR3  
EP0_DR4  
EP0_DR5  
EP0_DR6  
EP0_DR7  
R
R
RW  
#
#
#
PT0_DATA1  
PT0_DATA0  
PT1_CFG  
PT1_DATA1  
PT1_DATA0  
PT2_CFG  
#
PT2_DATA1  
PT2_DATA0  
CPU_F  
RL  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CPU_SCR1  
CPU_SCR0  
#
#
Gray fields are reserved; do not access these fields.  
# Access is bit specific.  
Document Number: 001-77748 Rev. *F  
Page 14 of 45  
CYRF89235  
Table 4. Register Map Bank 1 Table: Configuration Space  
Name  
PRT0DM0  
PRT0DM1  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
PMA4_RA  
PMA5_RA  
PMA6_RA  
PMA7_RA  
PMA8_WA  
PMA9_WA  
PMA10_WA  
PMA11_WA  
PMA12_WA  
PMA13_WA  
PMA14_WA  
PMA15_WA  
PMA8_RA  
PMA9_RA  
PMA10_RA  
PMA11_RA  
PMA12_RA  
PMA13_RA  
PMA14_RA  
PMA15_RA  
EP1_CR0  
EP2_CR0  
EP3_CR0  
EP4_CR0  
EP5_CR0  
EP6_CRO  
EP7_CR0  
EP8_CR0  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
PRT1DM0  
PRT1DM1  
RW  
RW  
PRT2DM0  
PRT2DM1  
RW  
RW  
PRT3DM0  
PRT3DM1  
RW  
RW  
PRT4DM0  
PRT4DM1  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
EC0_ENBUS  
EC0_TRIM  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
#
#
#
#
#
#
#
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
IO_CFG1  
OUT_P1  
IO_CFG2  
MUX_CR4  
OSC_CR0  
ECO_CFG  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
RW  
RW  
R
VLT_CMP  
IMO_TR  
ILO_TR  
W
W
SPI_CFG  
USB_CR1  
RW  
SLP_CFG  
SLP_CFG2  
SLP_CFG3  
RW  
RW  
RW  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
#
PMA0_WA  
PMA1_WA  
PMA2_WA  
PMA3_WA  
PMA4_WA  
PMA5_WA  
PMA6_WA  
PMA7_WA  
PMA0_RA  
PMA1_RA  
PMA2_RA  
PMA3_RA  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CPU_F  
RL  
IMO_TR1  
RW  
USB_MISC_CR  
BD  
BE  
BF  
RW  
Gray fields are reserved; do not access these fields.  
# Access is bit specific.  
Document Number: 001-77748 Rev. *F  
Page 15 of 45  
CYRF89235  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the enCoRe V USB devices. For the most up-to-date electrical  
specifications, verify that you have the most recent data sheet available by visiting the company web site at http://www.cypress.com  
Figure 8. Voltage versus CPU Frequency  
Figure 9. IMO Frequency Trim Options  
3.6V  
3.6 V  
SLIMO  
Mode  
SLIMO SLIMO  
Mode  
= 00  
Mode  
= 01  
= 10  
1.9V  
1.9 V  
750 kHz  
3 MHz  
6 MHz 12 MHz 24 MHz  
750kHz  
3 MHz  
24 MHz  
IMO Frequency  
CPU Frequency  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 5. Absolute Maximum Ratings  
Symbol  
TSTG  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Storage temperature  
Higher storage temperatures  
reduce data retention time.  
Recommended Storage  
–55  
25  
125  
°C  
Temperature is +25 °C ± 25 °C.  
Extended duration storage  
temperatures above 85 °C  
degrades reliability.  
[3]  
VIN  
1.9  
–0.5  
–0.5  
–25  
3.63  
VIN + 0.5  
VIN + 0.5  
+50  
V
V
VIO  
DC input voltage  
[4]  
VIOZ  
IMIO  
DC voltage applied to tristate  
V
Maximum current into any port  
pin  
mA  
ESD  
Electrostatic discharge voltage Human body model ESD  
i) RF pins (ANT, ANTb)  
V
500  
500  
2000  
ii) Analog pins (XTALi, XTALo)  
iii) Remaining pins  
LU  
Latch-up current  
In accordance with JESD78  
standard  
140  
mA  
Operating Temperature  
Table 6. Operating Temperature  
Symbol  
Description  
Ambient temperature  
Conditions  
Min  
Typ  
Max  
Units  
TA  
0
70  
°C  
Notes  
3. Program the device at 3.3 V only. Hence use Miniprog3 only since Miniprog1 does not support programming at 3.3 V.  
4. Port1 pins are hot-swap capable with I/O configured in High-Z mode, and pin input voltage above VIN  
.
Document Number: 001-77748 Rev. *F  
Page 16 of 45  
CYRF89235  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 7. DC Chip-Level Specifications  
Symbol  
[5, 6, 7, 8]  
Description  
Supply voltage  
Conditions  
Min  
Typ  
Max  
Units  
VIN  
No USB activity. Refer the table  
DC POR and LVD  
1.9  
3.6  
V
Specifications on page 23  
[5, 6, 7, 8]  
VINUSB  
IDD24  
Operating voltage  
USB activity,  
USB regulator bypassed  
3.15  
3.3  
3.45  
4.00  
V
Supply current, IMO = 24 MHz  
Conditions are VIN 3.0 V,  
TA = 25 °C, CPU = 24 MHz.  
no I/O sourcing current  
2.88  
mA  
IDD12  
Supply current, IMO = 12 MHz  
Supply current, IMO = 6 MHz  
Deep sleep current  
Conditions are VIN 3.0 V,  
TA = 25 °C, CPU = 12 MHz.  
no I/O sourcing current  
1.71  
1.16  
2.60  
1.80  
mA  
mA  
IDD6  
Conditions are VIN 3.0 V,  
TA = 25 °C, CPU = 6 MHz.  
no I/O sourcing current  
ISB0  
VIN 3.0 V, TA = 25 °C, I/O  
regulator turned off  
0.10  
1.07  
1.64  
1.05  
1.50  
A  
A  
A  
ISB1  
Standby current with POR, LVD VIN 3.0 V, TA = 25 °C, I/O  
and sleep timer regulator turned off  
Standby current with I2C enabled Conditions are VIN = 3.3 V,  
TA = 25 °C and CPU = 24 MHz  
ISBI2C  
Notes  
5. If powering down in standby sleep mode, to properly detect and recover from a VIN brown out condition any of the following actions must be taken:  
Bring the device out of sleep before powering down.  
Assure that VIN falls below 100 mV before powering back up.  
Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.  
Increase the buzz rate to assure that the falling edge of VIN is captured. The rate is configured through the PSSDC bits in the SLP_CFG register.  
For the referenced registers, refer to the enCoRe V Technical Reference Manual. In deep sleep mode, additional low power voltage monitoring circuitry allows VIN  
brown out conditions to be detected for edge rates slower than 1 V/ms.  
6. Always greater than 50 mV above VPPOR1 voltage for falling supply.  
7. Always greater than 50 mV above VPPOR2 voltage for falling supply.  
8. Always greater than 50 mV above VPPOR3 voltage for falling supply.  
Document Number: 001-77748 Rev. *F  
Page 17 of 45  
CYRF89235  
DC USB Interface Specifications  
Table 8. DC USB Interface Specifications  
Symbol  
RUSBI  
Description  
USB D+ pull-up resistance  
USB D+ pull-up resistance  
Static output high  
Conditions  
With idle bus  
Min  
900  
1425  
2.8  
Typ  
Max  
1575  
3090  
3.6  
Units  
V
V
V
V
RUSBA  
VOHUSB  
VOLUSB  
VDI  
While receiving traffic  
Static output low  
0.3  
Differential input sensitivity  
0.2  
0.8  
VCM  
Differential input common mode  
range  
2.5  
VSE  
CIN  
Single ended receiver threshold  
Transceiver capacitance  
0.8  
2.0  
50  
V
pF  
A  
IIO  
High Z state data line leakage  
PS/2 pull-up resistance  
On D+ or D– line  
–10  
3000  
21.78  
+10  
RPS2  
REXT  
5000  
22.0  
7000  
22.22  
External USB series resistor  
In series with each USB pin  
Document Number: 001-77748 Rev. *F  
Page 18 of 45  
CYRF89235  
ADC Electrical Specifications  
Table 9. ADC User Module Electrical Specifications  
Symbol  
Input  
Description  
Conditions  
Min  
Typ  
Max  
Units  
VIN  
CIIN  
RIN  
Input voltage range  
0
VREFADC  
5
V
pF  
Input capacitance  
Input resistance  
Equivalent switched cap input  
resistance for 8-, 9-, or 10-bit  
resolution  
1/(500fF × 1/(400fF × 1/(300fF ×  
dataclock) dataclock) dataclock)  
Reference  
VREFADC  
ADC reference voltage  
1.14  
2.25  
1.26  
6
V
Conversion Rate  
FCLK Data clock  
Source is chip’s internal main  
oscillator. See AC Chip-Level  
Specifications for accuracy  
MHz  
S8  
8-bit sample rate  
10-bit sample rate  
Data clock set to 6 MHz. sample  
rate = 0.001/ (2^Resolution/Data  
Clock)  
23.43  
5.85  
ksps  
ksps  
S10  
Data clock set to 6 MHz. sample  
rate = 0.001/ (2^resolution/data  
clock)  
DC Accuracy  
RES  
Resolution  
Can be set to 8-, 9-, or 10-bit  
8
–1  
–2  
0
10  
+2  
bits  
LSB  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
INL  
+2  
LSB  
EOFFSET  
8-bit resolution  
10-bit resolution  
For any resolution  
3.20  
12.80  
19.20  
76.80  
+5  
LSB  
0
LSB  
EGAIN  
Power  
IADC  
Gain error  
–5  
%FSR  
Operating current  
2.10  
24  
2.60  
mA  
dB  
dB  
PSRR  
Power supply rejection ratio  
PSRR (VIN > 3.0 V)  
PSRR (VIN < 3.0 V)  
30  
Document Number: 001-77748 Rev. *F  
Page 19 of 45  
CYRF89235  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 10. DC Analog Mux Bus Specifications  
Symbol  
RSW  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Switch resistance to common  
analog bus  
800  
RGND  
Resistanceofinitializationswitch –  
to GND  
800  
The maximum pin voltage for measuring RW and RGND is 1.8 V  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 11. DC Comparator Specifications  
Symbol  
VLPC  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Low power comparator (LPC)  
common mode  
Maximum voltage limited to VIN  
0.0  
1.8  
V
ILPC  
LPC supply current  
LPC voltage offset  
10  
3
40  
30  
A  
VOSLPC  
mV  
Comparator User Module Electrical Specifications  
The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the  
entire device voltage and temperature operating range: 0 °C TA 70 °C, 1.9 V VIN 3.6 V.  
Table 12. Comparator User Module Electrical Specifications  
Symbol  
tCOMP  
Description  
Conditions  
50 mV overdrive  
Min  
Typ  
70  
Max  
100  
30  
Units  
ns  
Comparator response time  
Offset  
Valid from 0.2 V to VIN – 0.2 V  
2.5  
20  
mV  
µA  
Current  
Average DC current, 50 mV  
overdrive  
80  
Supply voltage > 2 V  
Supply voltage < 2 V  
Power supply rejection ratio  
0
80  
40  
dB  
dB  
V
PSRR  
Power supply rejection ratio  
Input range  
1.5  
Document Number: 001-77748 Rev. *F  
Page 20 of 45  
CYRF89235  
DC GPIO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 3.0 V and  
0 °C TA 70 °C, or 1.9 V to 2.4 V and 0 °C TA °C, respectively. Typical parameters apply to 3.3 V at 25 °C and are for design  
guidance only.  
Table 13. 2.4 V to 3.0 V DC GPIO Specifications  
Symbol  
RPU  
Description  
Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max  
8
Units  
k  
4
VOH1  
VOH2  
VOH3  
High output voltage Port 2 or 3 or IOH < 10 A, maximum of 10 mA VIN – 0.20  
4 pins source current in all I/Os  
V
High output voltage Port 2 or 3 or IOH = 0.2 mA, maximum of 10 mA VIN – 0.40  
4 pins source current in all I/Os  
V
V
High output voltage Port 0 or 1 IOH < 10 A, maximum of 10 mA VIN – 0.20  
pins with LDO regulator Disabled source current in all I/Os  
for port 1  
VOH4  
High output voltage Port 0 or 1 IOH = 2 mA, maximum of 10 mA  
pins with LDO regulator Disabled source current in all I/Os  
for Port 1  
VIN – 0.50  
V
V
VOH5A  
High output voltage Port 1 pins IOH < 10 A, VIN > 2.4 V,  
with LDO enabled for 1.8 V out maximumof20 mAsourcecurrent  
in all I/Os  
1.50  
1.80  
2.10  
VOH6A  
VOL  
High output voltage Port 1 pins IOH = 1 mA, VIN > 2.4 V, maximum  
with LDO enabled for 1.8 V out of 20 mA source current in all I/Os  
1.20  
V
V
Low output voltage  
IOL = 10 mA, maximum of 30 mA  
sink current on even port pins (for  
example, P0[2] and P1[4]) and 30  
mA sink current on odd port pins  
(for example, P0[3] and P1[5])  
0.75  
VIL  
VIH  
VH  
Input low voltage  
1.40  
0.72  
V
V
Input high voltage  
Input hysteresis voltage  
Input leakage (absolute value)  
Capacitive load on pins  
80  
1
1000  
7
mV  
nA  
pF  
IIL  
CPIN  
Package and  
0.50  
1.70  
pin dependent Temp = 25 C  
VILLVT2.5  
Input Low Voltage with low  
threshold enable set, Enable for threshold voltage of Port1 input  
Port1  
Bit3 of IO_CFG1 set to enable low  
0.7  
1.2  
V
VIHLVT2.5  
Input High Voltage with low  
Bit3 of IO_CFG1 set to enable low  
V
threshold enable set, Enable for threshold voltage of Port1 input  
Port1  
Document Number: 001-77748 Rev. *F  
Page 21 of 45  
CYRF89235  
Table 14. 1.9 V to 2.4 V DC GPIO Specifications  
Symbol Description  
RPU Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max  
8
Units  
k  
4
VOH1  
VOH2  
VOH3  
High output voltage Port 2 or 3 or IOH = 10 A, maximum of 10 mA VIN – 0.20  
4 pins source current in all I/Os  
V
High output voltage Port 2 or 3 or IOH = 0.5 mA, maximum of 10 mA VIN – 0.50  
4 pins  
V
V
source current in all I/Os  
High output voltage Port 0 or 1  
pins with LDO regulator Disabled source current in all I/Os  
for Port 1  
IOH = 100 A, maximum of 10 mA VIN – 0.20  
VOH4  
High output voltage Port 0 or 1 IOH = 2 mA, maximum of 10 mA VIN – 0.50  
V
V
Pins with LDO Regulator  
Disabled for Port 1  
source current in all I/Os  
VOL  
Low output voltage  
IOL = 5 mA, maximum of 20 mA  
sink current on even port pins (for  
example, P0[2] and P1[4]) and 30  
mA sink current on odd port pins  
(for example, P0[3] and P1[5])  
0.40  
VIL  
VIH  
VH  
Input low voltage  
0.30 × VIN  
V
V
Input high voltage  
0.65 × VIN  
Input hysteresis voltage  
Input leakage (absolute value)  
Capacitive load on pins  
80  
1
mV  
nA  
pF  
IIL  
1000  
7
CPIN  
Package and  
0.50  
1.70  
pin dependent temp = 25 °C  
Document Number: 001-77748 Rev. *F  
Page 22 of 45  
CYRF89235  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 15. DC POR and LVD Specifications  
Symbol  
VPOR1  
Description  
2.36 V selected in  
PSoC Designer  
Conditions  
Min  
Typ  
Max  
Units  
VIN must be greater than or equal  
to 1.9 V during startup, reset from  
the XRES pin, or reset from  
watchdog.  
2.36  
2.41  
V
VPOR2  
VPOR3  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
2.60 V selected in  
PSoC Designer  
2.60  
2.82  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
2.66  
2.95  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
2.82 V selected in  
PSoC Designer  
2.45 V selected in  
PSoC Designer  
2.40  
V
2.71 V selected in  
PSoC Designer  
2.64[9]  
2.85[10]  
2.95[11]  
3.06  
2.92 V selected in  
PSoC Designer  
3.02 V selected in  
PSoC Designer  
3.13 V selected in  
PSoC Designer  
1.90 V selected in  
PSoC Designer  
1.84  
Notes  
9. Always greater than 50 mV above VPPOR1 voltage for falling supply.  
10. Always greater than 50 mV above VPPOR2 voltage for falling supply.  
11. Always greater than 50 mV above VPPOR3 voltage for falling supply.  
Document Number: 001-77748 Rev. *F  
Page 23 of 45  
CYRF89235  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 16. DC Programming Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
VIN  
IDDP  
VILP  
Supply voltage for flash write  
operations  
1.91  
3.6  
V
Supply current during  
programming or verify  
5
25  
mA  
V
Input low voltage during  
programming or verify  
See the appropriate DC Analog  
Mux Bus Specifications on page  
20  
VIL  
VIHP  
Input high voltage during  
programming or verify  
See the appropriate DC Analog  
Mux Bus Specifications on page  
20  
VIH  
V
IILP  
Input current when Applying VILP Driving internal pull-down resistor  
to P1[0] or P1[1] during  
programming or verify  
0.2  
1.5  
mA  
mA  
IIHP  
Input current when applying VIHP Driving internal pull-down resistor  
to P1[0] or P1[1] during  
programming or verify  
VOLP  
VOHP  
Output low voltage during  
programming or verify  
0.75  
VIN  
V
V
Output high voltage during  
programming or verify  
See appropriate DC Analog Mux  
Bus Specifications on page 20.  
For VIN > 3 V use VOH4 in Table 6  
on page 16.  
VOH  
FlashENPB  
FlashDR  
Flash write endurance  
Flash data retention  
Erase/write cycles per block  
50,000  
20  
Following maximum Flash write  
cycles; ambient temperature of  
55 °C  
Years  
Document Number: 001-77748 Rev. *F  
Page 24 of 45  
CYRF89235  
2
DC I C Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3, 2.4 V to 3.0 V  
and 0 °C TA 70 °C, or 1.9 V to 2.4 V and 0 °C TA 70 °C, respectively. Typical parameters apply to 3.3 V at 25 °C and are for  
design guidance only.  
Table 17. DC I2C Specifications  
Symbol  
VILI2C  
Description  
Input low level  
Conditions  
3.1 V VIN 3.6 V  
Min  
Typ  
Max  
0.25 × VIN  
0.3 × VIN  
0.3 × VIN  
Units  
V
V
V
V
2.5 V VIN 3.0 V  
1.9 V VIN 2.4 V  
1.9 V VIN 3.6 V  
VIHI2C  
Input high level  
0.65 × VIN  
DC Reference Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 3.0 V and  
0 °C TA 70 °C, or 1.9 V to 2.4 V and 0 °C TA 70 °C, respectively. Typical parameters apply to 3.3 V at 25 °C and are for design  
guidance only.  
Table 18. DC Reference Buffer Specifications  
Symbol  
VRef  
VRefHi  
Description  
Reference buffer output  
Reference buffer output  
Conditions  
1.9 V to 3.6 V  
1.9 V to 3.6 V  
Min  
1
Typ  
Max  
1.05  
1.25  
Units  
V
V
1.2  
DC IDAC Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. DC IDAC Specifications  
Symbol  
IDAC_DNL  
IDAC_INL  
Description  
Differential nonlinearity  
Integral nonlinearity  
Range = 0.5x  
Min  
–4.5  
–5  
Typ  
Max  
+4.5  
+5  
Units  
LSB  
LSB  
µA  
Notes  
IDAC_Gain  
(Source)  
6.64  
14.5  
42.7  
91.1  
184.5  
22.46  
47.8  
92.3  
170  
DAC setting = 128 dec.  
Range = 1x  
µA  
Range = 2x  
µA  
Range = 4x  
µA  
DAC setting = 128 dec.  
DAC setting = 128 dec.  
Range = 8x  
426.9  
µA  
Document Number: 001-77748 Rev. *F  
Page 25 of 45  
CYRF89235  
AC Chip Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 20. AC Chip-Level Specifications  
Symbol  
FIMO24  
Description  
Conditions  
Min  
Typ  
Max  
Units  
IMO frequency at 24 MHz  
Setting  
22.8  
24  
25.2  
MHz  
FIMO12  
FIMO6  
FCPU  
IMO frequency at 12 MHz setting  
IMO frequency at 6 MHz setting  
CPU frequency  
11.4  
5.7  
0.75  
19  
13  
40  
40  
12  
6.0  
12.6  
6.3  
25.20  
50  
MHz  
MHz  
MHz  
kHz  
kHz  
%
F32K1  
F32K_U  
DCIMO  
DCILO  
ILO frequency  
32  
32  
50  
50  
ILO untrimmed frequency  
Duty cycle of IMO  
82  
60  
ILO duty cycle  
60  
%
SRPOWER_UP Power supply slew rate  
VIN slew rate during power-up  
After supply voltage is valid  
250  
V/ms  
ms  
tXRST  
External reset pulse width at  
power-up  
1
tXRST2  
External reset pulse width after Applies after part has booted  
power-up  
10  
s  
tOS  
Startup time of ECO  
N=32  
1
s
tJIT_IMO  
6 MHz IMO cycle-to-cycle jitter  
(RMS)  
0.7  
6.7  
ns  
6 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
4.3  
29.3  
ns  
6 MHz IMO period jitter (RMS)  
0.7  
0.5  
3.3  
5.2  
ns  
ns  
12 MHz IMO cycle-to-cycle jitter  
(RMS)  
12 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
2.3  
5.6  
ns  
12 MHz IMO period jitter (RMS)  
0.4  
1.0  
2.6  
8.7  
ns  
ns  
24 MHz IMO cycle-to-cycle jitter  
(RMS)  
24 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
1.4  
0.6  
6.0  
4.0  
ns  
ns  
24 MHz IMO period jitter (RMS)  
Document Number: 001-77748 Rev. *F  
Page 26 of 45  
CYRF89235  
AC USB Data Timings Specifications  
Table 21. AC Characteristics – USB Data Timings  
Symbol  
tDRATE  
Description  
Conditions  
Average bit rate  
Min  
Typ  
Max  
Units  
Full speed data rate  
12 –  
0.25%  
12  
12 +  
0.25%  
MHz  
tJR1  
Receiver jitter tolerance  
Receiver jitter tolerance  
FS Driver jitter  
To next transition  
To pair transition  
To next transition  
To pair transition  
To SE0 transition  
–18.5  
–9.0  
–3.5  
–4.0  
–2.0  
18.5  
9
ns  
ns  
ns  
ns  
ns  
tJR2  
tDJ1  
3.5  
4.0  
5
tDJ2  
FS Driver jitter  
tFDEOP  
Source jitter for differential  
transition  
tFEOPT  
tFEOPR  
tFST  
Source SE0 interval of EOP  
Receiver SE0 interval of EOP  
160.0  
82.0  
175  
ns  
ns  
ns  
Width of SE0 interval during  
differential transition  
14  
AC USB Driver Specifications  
Table 22. AC Characteristics – USB Driver  
Symbol  
Description  
Transition rise time  
Conditions  
Min  
4
Typ  
Max  
20  
Units  
ns  
tFR  
tFF  
tFRFM  
VCRS  
50 pF  
50 pF  
Transition fall time  
4
20  
ns  
Rise/fall time matching  
Output signal crossover voltage  
90  
1.30  
111  
2.00  
%
V
Document Number: 001-77748 Rev. *F  
Page 27 of 45  
CYRF89235  
AC General Purpose I/O Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 23. AC GPIO Specifications  
Symbol  
FGPIO  
Description  
Conditions  
Min  
Typ  
Max  
6 MHz for  
1.9 V <VIN < 2.40 V  
12 MHz for  
Units  
GPIO operating frequency  
Normal strong mode  
Port 0, 1  
0
MHz  
0
MHz  
ns  
2.40 V < VIN< 3.6 V  
tRISE23  
tRISE23L  
tRISE01  
Rise time, strong mode,  
Cload = 50 pF  
Port 2 or 3 or 4 pins  
VIN = 3.0 to 3.6 V,  
10% to 90%  
15  
80  
80  
50  
Rise time, strong mode low  
supply, Cload = 50 pF,  
Port 2 or 3 or 4 pins  
VIN = 1.9 to 3.0 V,  
10% to 90%  
15  
10  
ns  
ns  
Rise time, strong mode,  
Cload = 50 pF,  
VIN = 3.0 to 3.6 V,  
10% to 90%  
Ports 0 or 1  
LDO enabled or  
disabled  
tRISE01L  
Rise time, strong mode low  
supply, Cload = 50 pF,  
Ports 0 or 1  
VIN = 1.9 to 3.0 V,  
10% to 90%  
LDO enabled or  
10  
80  
ns  
disabled  
tFALL  
Fall time, strong mode,  
Cload = 50 pF,  
all ports  
VIN = 3.0 to 3.6 V,  
10% to 90%  
10  
10  
50  
70  
ns  
ns  
tFALLL  
Fall time,  
strong mode low supply,  
Cload = 50 pF, all ports  
VIN = 1.9 to 3.0 V,  
10% to 90%  
Figure 10. GPIO Timing Diagram  
90%  
GPIO Pin  
Output  
Voltage  
10%  
tRISE23  
tRISE01  
tRISE23L  
tRISE01L  
tFALL  
tFALLL  
Document Number: 001-77748 Rev. *F  
Page 28 of 45  
CYRF89235  
AC Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 24. AC Low Power Comparator Specifications  
Symbol  
tLPC  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Comparator response time,  
50 mV overdrive  
50 mV overdrive does not include  
offset voltage.  
100  
ns  
AC External Clock Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 25. AC External Clock Specifications  
Symbol  
FOSCEXT  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Frequency (external oscillator  
frequency)  
0.75  
25.20  
MHz  
High period  
20.60  
20.60  
150  
5300  
ns  
ns  
s  
Low period  
Power-up IMO to switch  
Document Number: 001-77748 Rev. *F  
Page 29 of 45  
CYRF89235  
AC Programming Specifications  
The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 26. AC Programming Specifications  
Symbol  
tRSCLK  
tFSCLK  
tSSCLK  
Description  
Rise time of SCLK  
Conditions  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Fall time of SCLK  
1
ns  
Data setup time to falling edge of  
SCLK  
40  
ns  
tHSCLK  
Data hold time from falling edge  
of SCLK  
40  
ns  
FSCLK  
Frequency of SCLK  
0
8
MHz  
ms  
ms  
ns  
tERASEB  
tWRITE  
tDSCLK3  
Flash erase time (block)  
Flash block write time  
18  
25  
85  
Data out delay from falling edge 3.0 VDD 3.6  
of SCLK  
tDSCLK2  
tXRST3  
Data out delay from falling edge 1.9 VDD 3.0  
130  
ns  
of SCLK  
External reset pulse width after Required to enter programming  
300  
s  
power-up  
mode when coming out of sleep  
tXRES  
XRES pulse length  
300  
0.1  
1
s  
tVDDWAIT  
VDD stable to wait-and-poll hold  
off  
ms  
tVDDXRES  
VDD stable to XRES assertion  
delay  
14.27  
ms  
tPOLL  
tACQ  
SDATA high pulse time  
0.01  
3.20  
200  
ms  
ms  
“Key window” time after a VDD  
ramp acquire event, based on  
256 ILO clocks.  
19.60  
tXRESINI  
“Key window” time after an  
XRES event, based on 8 ILO  
clocks  
98  
615  
s  
Figure 11. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
Document Number: 001-77748 Rev. *F  
Page 30 of 45  
CYRF89235  
2
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 27. AC Characteristics of the I2C SDA and SCL Pins  
Standard Mode  
Fast Mode  
Symbol  
fSCL  
Description  
Units  
Min  
0
Max  
100  
Min  
Max  
400  
SCL clock frequency  
0
kHz  
µs  
tHD;STA  
Hold time (repeated) START condition. After this period, the  
first clock pulse is generated  
4.0  
0.6  
tLOW  
LOW period of the SCL clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
100[12]  
0.6  
1.3  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
tHIGH  
HIGH Period of the SCL clock  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Setup time for a repeated START condition  
Data hold time  
3.45  
0.90  
Data setup time  
250  
4.0  
4.7  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Pulse width of spikes are suppressed by the input filter  
tSP  
50  
Figure 12. Definition for Timing for Fast/Standard Mode on the I2C Bus  
Note  
12. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu  
paste. Refer to the solder manufacturer specifications.  
Document Number: 001-77748 Rev. *F  
Page 31 of 45  
CYRF89235  
SPI Master AC Specifications  
Table 28. SPI Master AC Specifications  
Symbol  
FSCLK  
Description  
Conditions  
Min  
Typ  
Max  
Units  
SCLK clock frequency  
VIN 2.4 V  
6
3
MHz  
MHz  
VIN < 2.4 V  
DC  
SCLK duty cycle  
50  
%
tSETUP  
MISO to SCLK setup time  
VIN 2.4 V  
VIN < 2.4 V  
60  
100  
ns  
ns  
tHOLD  
SCLK to MISO hold time  
SCLK to MOSI valid time  
MOSI high time  
40  
40  
ns  
ns  
ns  
tOUT_VAL  
tOUT_HIGH  
40  
Figure 13. SPI Master Mode 0 and 2  
SPI Master, modes 0 and 2  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TSETUP  
THOLD  
MISO  
(input)  
LSB  
MSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
Figure 14. SPI Master Mode 1 and 3  
SPI Master, modes 1 and 3  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TSETUP  
THOLD  
MISO  
(input)  
MSB  
LSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
LSB  
MSB  
Document Number: 001-77748 Rev. *F  
Page 32 of 45  
CYRF89235  
SPI Slave AC Specifications  
Table 29. SPI Slave AC Specifications  
Symbol  
FSCLK  
Description  
SCLK clock frequency  
SCLK low time  
Conditions  
Min  
Typ  
Max  
4
Units  
MHz  
ns  
tLOW  
42  
tHIGH  
SCLK high time  
42  
ns  
tSETUP  
tHOLD  
MOSI to SCLK setup time  
SCLK to MOSI hold time  
SS high to MISO valid  
SCLK to MISO valid  
30  
ns  
50  
ns  
tSS_MISO  
tSCLK_MISO  
tSS_HIGH  
tSS_CLK  
tCLK_SS  
153  
125  
ns  
ns  
SS high time  
50  
ns  
Time from SS low to first SCLK  
Time from last SCLK to SS high  
2/SCLK  
2/SCLK  
ns  
ns  
Figure 15. SPI Slave Mode 0 and 2  
SPI Slave, modes 0 and 2  
TSS_HIGH  
TCLK_SS  
TSS_CLK  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TOUT_H  
TSS_MISO  
MISO  
(output)  
TSETUP  
THOLD  
MOSI  
(input)  
LSB  
MSB  
Document Number: 001-77748 Rev. *F  
Page 33 of 45  
CYRF89235  
Figure 16. SPI Slave Mode 1 and 3  
SPI Slave, modes 1 and 3  
TSS_CLK  
TCLK_SS  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TOUT_H  
TSCLK_MISO  
TSS_MISO  
MISO  
(output)  
LSB  
MSB  
TSETUP  
THOLD  
MOSI  
(input)  
MSB  
LSB  
Document Number: 001-77748 Rev. *F  
Page 34 of 45  
CYRF89235  
Electrical Specifications - RF Section  
Symbol  
Description  
Supply voltage  
Min  
Typ  
Max  
Units  
Test Condition and Notes  
VIN  
DC power supply voltage range  
Current consumption  
1.9  
3.6  
VDC Input to VIN pins  
IDD_TX2  
IDD_TX12  
IDD_RX  
Current consumption – Tx  
18.5  
13.7  
18  
mA  
mA  
mA  
mA  
µA  
Transmit power PA2.  
Transmit power PA12.  
Current consumption – Rx  
Current consumption – idle  
Current consumption – sleep  
IDD_IDLE1  
IDD_SLPx  
1.1  
1
Temperature = +25 °C.  
Using firmware sleep patch.  
Register 27 = 0x1200,  
for VIN 3.00 VDC only  
IDD_SLPr  
8
µA  
µA  
Temperature = +25 °C;  
using firmware sleep patch  
Register 27 = 0x4200.  
IDD_SLPh  
38  
Temperature = +70 °C  
‘C’ grade part;  
using firmware sleep patch  
Register 27 = 0x4200  
VIH  
Logic input high  
Logic input low  
0.8 VIN  
1.2 VIN  
0.8  
V
V
VIL  
0
I_LEAK_IN  
Input leakage current  
10  
µA  
VOH  
Logic output high  
0.8 VIN  
8
V
V
IOH = 100 µA source  
IOL = 100 µA sink  
MISO in tristate  
7 pF cap. load  
VOL  
Logic output low  
0.4  
10  
25  
25  
25  
I_LEAK_OUT  
T_RISE_OUT  
T_RISE_IN  
Tr_spi  
Output leakage current  
Rise/fall time (SPI MISO)  
Rise/fall time (SPI MOSI)  
CLK rise, fall time (SPI)  
µA  
ns  
ns  
ns  
Requirement for error-free  
register reading, writing.  
F_OP  
Operating frequency range  
2400  
2482  
MHz Usage on-the-air is subject to  
local regulatory agency  
restrictions regarding operating  
frequency.  
VSWR_I  
Antenna port mismatch  
(Z0 = 50 )  
<2:1  
<2:1  
VSWR Receive mode. Measured using  
LC matching circuit  
VSWR_O  
VSWR Transmit mode. Measured using  
LC matching circuit  
Receive section  
Measured using LC matching  
circuit for BER 0.1%  
Document Number: 001-77748 Rev. *F  
Page 35 of 45  
CYRF89235  
Electrical Specifications - RF Section (continued)  
Symbol  
RxSbase  
Description  
Min  
Typ  
Max  
Units  
Test Condition and Notes  
Receiver sensitivity (FEC off)  
–87  
dBm Room temperature only  
0-ppm crystal frequency error.  
RxStemp  
RxSppm  
–84  
–84  
dBm Over temperature;  
0-ppm crystal frequency error.  
dBm Room temperature only  
80-ppm total frequency error  
(± 40-ppm crystal frequency  
error, each end of RF link)  
RxStemp+ppm  
–80  
dBm Over temperature;  
80-ppm total frequency error  
(± 40-ppm crystal frequency  
error, each end of RF link)  
Rxmax-sig  
Ts  
Maximum usable signal  
Data (Symbol) rate  
–20  
0
1
dBm Room temperature only  
µs  
Minimum Carrier/Interference ratio  
For BER 0.1%.  
Room temperature only.  
CI_cochannel  
CI_1  
Co-channel interference  
+9  
+6  
dB  
dB  
–60-dBm desired signal  
–60-dBm desired signal  
Adjacent channel interference,  
1-MHz offset  
CI_2  
CI_3  
OBB  
Adjacent channel interference,  
2-MHz offset  
–12  
–24  
dB  
dB  
–60-dBm desired signal  
–67-dBm desired signal  
Adjacent channel interference,  
3-MHz offset  
Out-of-band blocking  
–27  
dBm 30 MHz to 12.75 GHz  
Measured with ACX BF2520  
ceramic filter on ant. pin.  
–67-dBm desired signal,  
BER 0.1%.  
Room temperature only.  
Transmit section  
PAVH  
Measured using a LC matching  
circuit  
RF output power  
+1  
dBm PA0  
(PA_GN = 0, Reg9 = 0x1820).  
Room temperature only  
PAVL  
–11.2  
dBm PA12  
(PA_GN = 12, Reg9 = 0x1E20).  
Room temperature only.  
TxPfx2  
TxPfx3  
Second harmonic  
–45  
dBm Measured using a LC matching  
circuit. Room temperature only.  
Third and higher harmonics  
–45  
dBm Measured using a LC matching  
circuit. Room temperature only.  
Modulation characteristics  
Df1avg  
263  
255  
kHz Modulation pattern: 11110000...  
kHz Modulation pattern: 10101010...  
Df2avg  
In-band spurious emission  
IBS_2  
IBS_3  
IBS_4  
2-MHz offset  
3-MHz offset  
4-MHz offset  
–20  
–30  
dBm  
dBm  
dBm  
–30  
Document Number: 001-77748 Rev. *F  
Page 36 of 45  
CYRF89235  
Electrical Specifications - RF Section (continued)  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Test Condition and Notes  
RF VCO and PLL section  
Fstep  
L100k  
L1M  
Channel (Step) size  
SSB phase noise  
1
–75  
–105  
MHz  
dBc/Hz 100-kHz offset  
dBc/Hz 1-MHz offset  
dFX0  
Crystal oscillator frequency error  
RF PLL settling time  
–40  
+40  
ppm Relative to 12-MHz crystal  
reference frequency  
THOP  
100  
250  
150  
350  
µs  
Settle to within 30 kHz of final  
value. AutoCAL off.  
THOP_AC  
µs  
Settle to within 30 kHz of final  
value. AutoCAL on.  
LDO voltage regulator section  
VDO Dropout voltage  
0.17  
0.3  
V
Measured during receive state  
Document Number: 001-77748 Rev. *F  
Page 37 of 45  
CYRF89235  
Initialization Timing Requirements  
Table 30. Initialization Timing Requirements  
Timing  
Min  
Max  
Unit  
Notes  
Parameter  
TRSU  
30 / 150  
ms  
30 ms Reset setup time necessary to ensure complete Reset for VIN = 6.5 mV/s,  
150 ms Reset setup time necessary to ensure complete Reset for VIN = 2 mV/s  
TRPW  
TCMIN  
TVIN  
1
3
10  
µs  
Reset pulse width necessary to ensure complete reset  
ms  
Minimum recommended crystal oscillator and APLL settling time  
6.5 / 2  
mV/s Maximum ramp time for VIN, measured from 0 to 100% of final voltage.  
For example, if VIN= 3.3 V, the max ramp time is 6.5 × 3.3 = 21.45 ms.  
If VIN= 1.9 V, the max ramp time = 6.5 × 1.9 = 12.35 ms.  
Reset setup time necessary to ensure complete Reset for VIN = 6.5mV/s  
Reset setup time necessary to ensure complete Reset for VIN = 6.5mV/s  
Reset setup time necessary to ensure complete Reset for VIN = 6.5mV/s  
Figure 17. Initialization Flowchart  
Initialize  
Initialize  
CYRF89235 at  
power-up  
MCU generates  
negative- going  
RST_n pulse  
Wait Crystal  
Enable Time  
Registers,  
beginning with  
Reg[27]  
Initialization  
Done  
RST_n pulls up  
along with Vin  
Document Number: 001-77748 Rev. *F  
Page 38 of 45  
CYRF89235  
SPI Timing Requirements  
Table 31. SPI Timing Requirements  
Timing  
Min  
Max  
Unit  
Notes  
Parameter  
TSSS  
20  
200  
40  
40  
83  
30  
10  
10  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time from assertion of SPI_SS to CLK edge  
Hold time required deassertion of SPI_SS  
CLK minimum high time  
TSSH  
TSCKH  
TSCKL  
TSCK  
CLK minimum low time  
Maximum CLK clock is 12 MHz  
TSSU  
MOSI setup time  
TSHD  
MOSI hold time  
TSS_SU  
TSS_HD  
TSDO  
Before SPI_SS enable, CLK hold low time requirement  
Minimum SPI inactive time  
35  
5
MISO setup time, ready to read  
TSDO1  
TSDO2  
T1 Min_R50  
T1 Min  
If MISO is configured as tristate, MISO assertion time  
If MISO is configured as tristate, MISO deassertion time  
When reading register 50 (FIFO)  
250  
350  
83  
When writing Register 50 (FIFO), or reading/writing any registers other than  
register 50.  
Figure 18. Power-on and Register Programming Sequence  
TVIN  
VIN  
RST_n  
BRCLK  
Clock stable  
Clock unstable  
SPI_SS  
SPI Activity  
TRPW  
Write Reg[27]=  
(not drawn to scale)  
TRSU  
TCMIN  
0x4200  
After register initialization, CYRF89235 is ready to transmit or receive.  
Document Number: 001-77748 Rev. *F  
Page 39 of 45  
CYRF89235  
Packaging Information  
This section illustrates the packaging specifications for the PRoC-USB device, along with the thermal impedances for each package.  
Important Note  
Emulation tools may require a larger area on the target PCB than the chip’s footprint.  
Packaging Dimensions  
Figure 19. 40-pin QFN (6 × 6 × 1.0 mm) LT40B 3.5 × 3.5 mm E-Pad (Sawn) Package Outline, 001-13190  
001-13190 *H  
Document Number: 001-77748 Rev. *F  
Page 40 of 45  
CYRF89235  
Thermal Impedances  
Table 32. Thermal Impedances per Package  
[13]  
Package  
Typical JA  
Typical JC  
40-pin QFN [14]  
27 °C/W  
34 °C/W  
Capacitance on Crystal Pins  
Table 33. Typical Package Capacitance on Crystal Pins  
Package  
Package Capacitance  
40-pin QFN  
3.6 pF  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 34. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature [15]  
Maximum Peak Temperature  
260  
265  
40-pin QFN  
Notes  
13. TJ = TA + Power x   
JA.  
14. To achieve the thermal impedance specified for the package, solder the center thermal pad to the PCB ground plane.  
15. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste.  
Refer to the solder manufacturer specifications.  
Document Number: 001-77748 Rev. *F  
Page 41 of 45  
CYRF89235  
Ordering Information  
Table 35. Ordering Information  
Flash SRAM  
Ordering Code  
Package Information  
40-pin QFN (6 × 6 mm)  
No. of GPIOs  
(KB)  
(KB)  
CYRF89235-40LTXC  
32  
2
13  
Ordering Code Definitions  
235  
40  
LT  
C
89  
CY  
RF  
X
Thermal Rating  
I
,
C = Commercial , = Industrial E = Extended  
X = Lead-Free, X absent = Leaded  
Package : LT = QFN  
40 pin  
235 = PRoC-USB  
Family Code 89 = Wireless  
:
Marketing code  
radio frequency  
RF = Wireless  
product family  
(
)
: CY = Cypress  
Company ID  
Document Number: 001-77748 Rev. *F  
Page 42 of 45  
CYRF89235  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
API  
application programming interface  
central processing unit  
general purpose I/O  
in-circuit emulator  
Symbol  
C  
dB  
fF  
Unit of Measure  
CPU  
GPIO  
ICE  
degree Celsius  
decibels  
femtofarad  
hertz  
ILO  
internal lowspeed oscillator  
internal main oscillator  
input/output  
Hz  
KB  
Kbit  
kHz  
k  
MHz  
M  
A  
F  
IMO  
1024 bytes  
1024 bits  
I/O  
LSb  
least significant bit  
kilohertz  
LVD  
low voltage detect  
kilohm  
megahertz  
megaohm  
MSb  
POR  
PPOR  
PSoC  
SLIMO  
SRAM  
most significant bit  
power-on reset  
microampere  
microfarad  
microhenry  
microsecond  
microvolt  
precision power-on reset  
programmable system-on-chip  
slow IMO  
H  
s  
static random access memory  
V  
Vrms  
W  
mA  
ms  
mV  
nA  
ns  
microvolts root-mean-square  
microwatts  
milliampere  
millisecond  
millivolt  
nanoampere  
nanosecond  
nanovolt  
nV  
W
ohm  
pA  
pF  
picoampere  
picofarad  
pp  
peak-to-peak  
parts per million  
picosecond  
samples per second  
sigma: one standard deviation  
volt  
ppm  
ps  
sps  
V
Numeric Naming  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, ‘01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or ‘0x’ are  
decimal.  
Document Number: 001-77748 Rev. *F  
Page 43 of 45  
CYRF89235  
Document History Page  
Document Title: CYRF89235, PRoC™ USB  
Document Number: 001-77748  
Orig. of  
Change  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
**  
3554967  
3605878  
ANTG  
ANTG  
04/03/2012 New data sheet.  
*A  
05/02/2012 Modified title.  
Updated status “Company Confidential” of the datasheet.  
Changed “PRoC NL Dongle” to “PRoC-USB” everywhere in the datasheet.  
*B  
*C  
3714928  
3747532  
AKHL  
AKHL  
08/16/2012 Major text update. Added Electrical Specifications - RF Section.  
09/18/2012 Removed “Company Confidential” tag in the header.  
Replaced package diagram spec with 001-13190.  
*D  
3784571  
AKHL  
10/26/2012 Updated Functional Overview (Added Transmit Power Control).  
Updated Development Tools (Updated PSoC Designer Software Subsystems  
(Added Device Programmers)).  
Updated Electrical Specifications - RF Section (Replaced CYRF8935 with  
CYRF89235 in Figure 17 and also in the last bullet point below Figure 18).  
Updated Packaging Information (No update in package diagram, updated  
Thermal Impedances (Updated Table 32)).  
Updated in new template.  
*E  
*F  
3872679  
3982770  
AKHL  
AKHL  
01/19/2013 Updated PRoC-USB Features (Replaced “Up to 37 general-purpose I/Os  
(GPIOs)” with “Up to 13 general-purpose I/Os (GPIOs)”).  
Updated Electrical Specifications (Updated DC Chip-Level Specifications  
(Changed maximum value of VINUSB parameter from 3.60 V to 3.45 V in  
Table 7)).  
05/15/2013 Updated PRoC-USB Features.  
Updated PRoC-USB Logical Block Diagram.  
Updated Functional Overview:  
Updated WirelessUSB-NL Subsystem (Updated Figure 6).  
Updated Transmit Power Control (Updated Table 1).  
Updated Electrical Specifications:  
Updated Absolute Maximum Ratings (Updated Table 5).  
Updated Operating Temperature (Updated Table 6).  
Updated DC Chip-Level Specifications (Updated Table 7).  
Updated DC IDAC Specifications (Updated Table 19).  
Updated Electrical Specifications - RF Section:  
Updated SPI Timing Requirements (Updated Table 31).  
Updated Packaging Information:  
No change in Package Diagram revision.  
Removed “Package Handling”.  
Updated Capacitance on Crystal Pins (Updated Table 33).  
Updated Solder Reflow Peak Temperature (Updated Table 34).  
Updated Ordering Information:  
No change in part numbers.  
Added Ordering Code Definitions.  
Document Number: 001-77748 Rev. *F  
Page 44 of 45  
CYRF89235  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Clocks & Buffers  
Interface  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2012-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-77748 Rev. *F  
Revised May 15, 2013  
Page 45 of 45  
PSoC Designer™ is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation.  
2
2
2
Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I C Patent Rights to use these components in an I C system, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
厂商 型号 描述 页数 下载

KYOCERA AVX

CYR10 玻璃电容器CYR10 , 15 (可靠性指标) M23269 / 01 , 02 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR10, 15 (Established Reliability) M23269/01, 02 (QPL to MIL-PRF-23269) ] 2 页

FOXCONN

CYR2-AP03MJ04 [ Interconnection Device ] 1 页

KYOCERA AVX

CYR51 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

KYOCERA AVX

CYR52 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

KYOCERA AVX

CYR53 玻璃电容器CYR51 , 52 , 53 (可靠性指标) M23269 / 10 ( QPL至MIL-PRF- 23269 )[ Glass Capacitors CYR51, 52, 53 (Established Reliability) M23269/10 (QPL to MIL-PRF-23269) ] 2 页

CYPRESS

CYRF69103 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 73 页

CYPRESS

CYRF69103-40LFXC 无线可编程片上低功耗的16位自由运行定时器[ Programmable Radio on Chip Low Power 16-bit free running timer ] 68 页

CYPRESS

CYRF69103-40LTXC 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 72 页

CYPRESS

CYRF69103A-40LFXC 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 68 页

CYPRESS

CYRF69103_08 无线可编程片上低功耗[ Programmable Radio on Chip Low Power ] 65 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.226266s